New Wound Management of Driveline Infections with Cold Atmospheric Plasma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cold Atmospheric Argon Plasma Treatment
2.1.1. Wound Dressing
2.1.2. Statistics
3. Results
3.1. Mortality, Survival, and Follow-Up
3.2. Calculated Costs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de By, T.M.; Mohacsi, P.; Gummert, J.; Bushnaq, H.; Krabatsch, T.; Gustafsson, F.; Leprince, P.; Martinelli, L.; Meyns, B.; Morshuis, M.; et al. The European Registry for Patients with Mechanical Circulatory Support (EUROMACS): First annual report. Eur. J. Cardiothorac Surg 2015, 47, 770–776, discussion 776–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldstein, D.J.; Naftel, D.; Holman, W.; Bellumkonda, L.; Pamboukian, S.V.; Pagani, F.D.; Kirklin, J. Continuous-flow devices and percutaneous site infections: Clinical outcomes. J. Heart Lung Transplant. 2012, 31, 1151–1157. [Google Scholar] [CrossRef] [PubMed]
- Elkind, M.S.V.; Boehme, A.K.; Smith, C.J.; Meisel, A.; Buckwalter, M.S. Infection as a Stroke Risk Factor and Determinant of Outcome After Stroke. Stroke 2020, 51, 3156–3168. [Google Scholar] [CrossRef] [PubMed]
- Boehme, A.K.; Ranawat, P.; Luna, J.; Kamel, H.; Elkind, M.S. Risk of Acute Stroke After Hospitalization for Sepsis: A Case-Crossover Study. Stroke 2017, 48, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Hannan, M.M.; Husain, S.; Mattner, F.; Danziger-Isakov, L.; Drew, R.J.; Corey, G.R.; Schueler, S.; Holman, W.L.; Lawler, L.P.; Gordon, S.M.; et al. Working formulation for the standardization of definitions of infections in patients using ventricular assist devices. J. Heart Lung Transplant. 2011, 30, 375–384. [Google Scholar] [CrossRef]
- Brany, D.; Dvorska, D.; Halasova, E.; Skovierova, H. Cold Atmospheric Plasma: A Powerful Tool for Modern Medicine. Int. J. Mol. Sci. 2020, 21, 2932. [Google Scholar] [CrossRef] [Green Version]
- Yadav, D.K.; Adhikari, M.; Kumar, S.; Ghimire, B.; Han, I.; Kim, M.H.; Choi, E.H. Cold atmospheric plasma generated reactive species aided inhibitory effects on human melanoma cells: An in vitro and in silico study. Sci. Rep. 2020, 10, 3396. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.J.; Chung, T.H. Cold atmospheric plasma jet-generated RONS and their selective effects on normal and carcinoma cells. Sci. Rep. 2016, 6, 20332. [Google Scholar] [CrossRef] [Green Version]
- Hartwig, S.; Doll, C.; Voss, J.O.; Hertel, M.; Preissner, S.; Raguse, J.D. Treatment of Wound Healing Disorders of Radial Forearm Free Flap Donor Sites Using Cold Atmospheric Plasma: A Proof of Concept. J. Oral Maxillofac Surg. 2017, 75, 429–435. [Google Scholar] [CrossRef]
- Isbary, G.; Morfill, G.; Schmidt, H.U.; Georgi, M.; Ramrath, K.; Heinlin, J.; Karrer, S.; Landthaler, M.; Shimizu, T.; Steffes, B.; et al. A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Br. J. Dermatol. 2010, 163, 78–82. [Google Scholar] [CrossRef]
- Gordon, R.J.; Weinberg, A.D.; Pagani, F.D.; Slaughter, M.S.; Pappas, P.S.; Naka, Y.; Goldstein, D.J.; Dembitsky, W.P.; Giacalone, J.C.; Ferrante, J.; et al. Prospective, multicenter study of ventricular assist device infections. Circulation 2013, 127, 691–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirklin, J.K.; Naftel, D.C.; Pagani, F.D.; Kormos, R.L.; Stevenson, L.W.; Blume, E.D.; Myers, S.L.; Miller, M.A.; Baldwin, J.T.; Young, J.B. Seventh INTERMACS annual report: 15,000 patients and counting. J. Heart Lung Transplant. 2015, 34, 1495–1504. [Google Scholar] [CrossRef] [PubMed]
- Gordon, R.J.; Quagliarello, B.; Lowy, F.D. Ventricular assist device-related infections. Lancet Infect. Dis. 2006, 6, 426–437. [Google Scholar] [CrossRef]
- Bernhardt, A.M.; Pamirsad, M.A.; Brand, C.; Reichart, D.; Tienken, M.; Barten, M.J.; Schaefer, A.; Grahn, H.; Rybczynski, M.; Deuse, T.; et al. The value of fluorine-18 deoxyglucose positron emission tomography scans in patients with ventricular assist device specific infectionsdagger. Eur. J. Cardiothorac Surg. 2017, 51, 1072–1077. [Google Scholar] [CrossRef] [PubMed]
- Levy, D.T.; Minamoto, G.Y.; Da Silva, R.; Puius, Y.A.; Peck, N.; Goldstein, D.; D’Alessandro, D.; Muggia, V.A. Role of gallium SPECT-CT in the diagnosis of left ventricular assist device infections. ASAIO J. 2015, 61, e5–e10. [Google Scholar] [CrossRef] [PubMed]
- Litzler, P.Y.; Manrique, A.; Etienne, M.; Salles, A.; Edet-Sanson, A.; Vera, P.; Bessou, J.P.; Hitzel, A. Leukocyte SPECT/CT for detecting infection of left-ventricular-assist devices: Preliminary results. J. Nucl. Med. 2010, 51, 1044–1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez, G.A.; Breton, J.D.N.; Chaparro, S.V. Driveline Infection in Ventricular Assist Devices and Its Implication in the Present Era of Destination Therapy. Open J. Cardiovasc Surg. 2017, 9, 1179065217714216. [Google Scholar] [CrossRef] [PubMed]
- Choi, L.; Choudhri, A.F.; Pillarisetty, V.G.; Sampath, L.A.; Caraos, L.; Brunnert, S.R.; Oz, M.C.; Modak, S.M. Development of an infection-resistant LVAD driveline: A novel approach to the prevention of device-related infections. J. Heart Lung Transplant. 1999, 18, 1103–1110. [Google Scholar] [CrossRef]
- Jarvik, R.; Westaby, S.; Katsumata, T.; Pigott, D.; Evans, R.D. LVAD power delivery: A percutaneous approach to avoid infection. Ann. Thorac. Surg. 1998, 65, 470–473. [Google Scholar] [CrossRef]
- Baradarian, S.; Stahovich, M.; Krause, S.; Adamson, R.; Dembitsky, W. Case series: Clinical management of persistent mechanical assist device driveline drainage using vacuum-assisted closure therapy. ASAIO J. 2006, 52, 354–356. [Google Scholar] [CrossRef]
- Jarvis, W.R. Selected aspects of the socioeconomic impact of nosocomial infections: Morbidity, mortality, cost, and prevention. Infect. Control Hosp. Epidemiol. 1996, 17, 552–557. [Google Scholar] [CrossRef] [PubMed]
- Guest, J.F.; Ayoub, N.; McIlwraith, T.; Uchegbu, I.; Gerrish, A.; Weidlich, D.; Vowden, K.; Vowden, P. Health economic burden that wounds impose on the National Health Service in the UK. BMJ Open 2015, 5, e009283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guest, J.F.; Ayoub, N.; McIlwraith, T.; Uchegbu, I.; Gerrish, A.; Weidlich, D.; Vowden, K.; Vowden, P. Health economic burden that different wound types impose on the UK’s National Health Service. Int. Wound J. 2017, 14, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Ragnarson Tennvall, G.; Hjelmgren, J. Annual costs of treatment for venous leg ulcers in Sweden and the United Kingdom. Wound Repair. Regen. 2005, 13, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.; Kapp, S. Informal carers and wound management: An integrative literature review. J. Wound Care 2015, 24, 489–490. [Google Scholar] [CrossRef]
- Napp, J.; Daeschlein, G.; Napp, M.; von Podewils, S.; Gumbel, D.; Spitzmueller, R.; Fornaciari, P.; Hinz, P.; Junger, M. On the history of plasma treatment and comparison of microbiostatic efficacy of a historical high-frequency plasma device with two modern devices. GMS Hyg Infect. Control 2015, 10, Doc08. [Google Scholar] [CrossRef]
- Yan, D.; Sherman, J.H.; Keidar, M. Cold atmospheric plasma, a novel promising anti-cancer treatment modality. Oncotarget 2017, 8, 15977–15995. [Google Scholar] [CrossRef] [Green Version]
- Kalghatgi, S.; Kelly, C.M.; Cerchar, E.; Torabi, B.; Alekseev, O.; Fridman, A.; Friedman, G.; Azizkhan-Clifford, J. Effects of non-thermal plasma on mammalian cells. PLoS ONE 2011, 6, e16270. [Google Scholar] [CrossRef] [Green Version]
- Pai, K.; Timmons, C.; Roehm, K.D.; Ngo, A.; Narayanan, S.S.; Ramachandran, A.; Jacob, J.D.; Ma, L.M.; Madihally, S.V. Investigation of the Roles of Plasma Species Generated by Surface Dielectric Barrier Discharge. Sci. Rep. 2018, 8, 16674. [Google Scholar] [CrossRef] [Green Version]
- Lendeckel, D.; Eymann, C.; Emicke, P.; Daeschlein, G.; Darm, K.; O’Neil, S.; Beule, A.G.; von Woedtke, T.; Volker, U.; Weltmann, K.D.; et al. Proteomic Changes of Tissue-Tolerable Plasma Treated Airway Epithelial Cells and Their Relation to Wound Healing. Biomed. Res. Int. 2015, 2015, 506059. [Google Scholar] [CrossRef]
- Persson, S.T.; Ekstrom, S.; Papareddy, P.; Herwald, H. Cold Atmospheric Plasma Disarms M1 Protein, an Important Streptococcal Virulence Factor. J. Innate Immun. 2020, 12, 277–290. [Google Scholar] [CrossRef]
- Kusne, S.; Mooney, M.; Danziger-Isakov, L.; Kaan, A.; Lund, L.H.; Lyster, H.; Wieselthaler, G.; Aslam, S.; Cagliostro, B.; Chen, J.; et al. An ISHLT consensus document for prevention and management strategies for mechanical circulatory support infection. J. Heart Lung Transplant. 2017, 36, 1137–1153. [Google Scholar] [CrossRef] [PubMed]
- Weyand, M.; Hermann, M.; Kondruweit, M.; Deng, M.C.; Schmid, C.; Peters, G.; Scheld, H.H. Clinical impact of infections in left ventricular assist device recipients: The importance of site and organism. Transplant. Proc. 1997, 29, 3327–3329. [Google Scholar] [CrossRef]
- Gordon, S.M.; Schmitt, S.K.; Jacobs, M.; Smedira, N.M.; Goormastic, M.; Banbury, M.K.; Yeager, M.; Serkey, J.; Hoercher, K.; McCarthy, P.M. Nosocomial bloodstream infections in patients with implantable left ventricular assist devices. Ann. Thorac. Surg. 2001, 72, 725–730. [Google Scholar] [CrossRef]
- Kremer, J.; El-Dor, A.; Rivinius, R.; Schlegel, P.; Sommer, W.; Warnecke, G.; Karck, M.; Ruhparwar, A.; Meyer, A.L. Wound Infections in Adult Patients after Berlin Heart((R)) EXCOR Biventricular Assist Device Implantation. Life 2022, 12, 1550. [Google Scholar] [CrossRef]
- Nienaber, J.J.; Kusne, S.; Riaz, T.; Walker, R.C.; Baddour, L.M.; Wright, A.J.; Park, S.J.; Vikram, H.R.; Keating, M.R.; Arabia, F.A.; et al. Clinical manifestations and management of left ventricular assist device-associated infections. Clin. Infect. Dis. 2013, 57, 1438–1448. [Google Scholar] [CrossRef]
- Zierer, A.; Melby, S.J.; Voeller, R.K.; Guthrie, T.J.; Ewald, G.A.; Shelton, K.; Pasque, M.K.; Moon, M.R.; Damiano, R.J., Jr.; Moazami, N. Late-onset driveline infections: The Achilles’ heel of prolonged left ventricular assist device support. Ann. Thorac. Surg. 2007, 84, 515–520. [Google Scholar] [CrossRef]
- Hilker, L.; von Woedtke, T.; Weltmann, K.D.; Wollert, H.G. Cold atmospheric plasma: A new tool for the treatment of superficial driveline infections. Eur. J. Cardiothorac Surg. 2017, 51, 186–187. [Google Scholar] [CrossRef]
Characteristics | |
---|---|
Number of patients (n) | 15 |
Age (y) | 50.5 ± 13.2 |
Gender (male) | 15 |
Devices: | |
HeartWare HVAD | 5 (33.3%) |
HeartMate III | 10 (66.7%) |
Height (cm) | 176.3 ± 6.5 |
Weight (kg) | 83.4 ± 18.5 |
BMI | 26.2 ± 5.4 |
Diabetes mellitus | 5 (33.3%) |
Arterial hypertension | 9 (60.0%) |
Smoking | 12 (80.0%) |
Dyslipoproteinamia | 6 (40.0%) |
Renal insufficiency | 6 (40.0%) |
COPD | 2 (13.3%) |
Peripheral artery disease | 1 (6.7%) |
Time from LVAD implantation to first CAP (d) | 586 ± 550 |
Number of CAP sessions (n) | 7.7 ± 5.6 |
Duration of CAP treatment (d) | 46.5 ± 37.2 |
Complete healing (n) | 7 (46.7%) |
Device | Sessions (n) | Treatment (d) | Duration (min) | Species | Wound Result | |
---|---|---|---|---|---|---|
#1 | HVAD | 2 | 3 | 240–480 | S. aureus, Corynebacterium species | Successful HTX |
#2 | HVAD | 8 | 20 | 240–480 | S. aureus, S.epidermidis, S. lugdunensis, Corynebacterium accolens | Complete healing |
#3 | HMIII | 11 | 81 | 240–480 | S. aureus | Complete healing |
#4 | HMIII | 11 | 54 | 240–480 | Candida parapsilois | Successful HTX |
#5 | HMIII | 8 | 24 | 240–480 | S. aureus | Wound reduction with new VAC-treatment during follow-up |
#6 | HMIII | 1 | 0 | 480 | S. aureus | Complete healing |
#7 | HMIII | 4 | 21 | 240 | S. aureus | Complete healing |
#8 | HMIII | 2 | 53 | 480 | Pseudomonas aeruginosa | Wound reduction with new VAC-treatment during follow-up |
#9 | HMIII | 17 | 66 | 480 | S. aureus, E. faecalis, Candida parapsilois, Corynebacterium stratium, Proteus mirabilis, Pseudomonas aeruginosa, Serratia mirabilis | Successful HTX |
#10 | HMIII | 15 | 117 | 120–480 | S. haemolyticus | Complete healing |
#11 | HVAD | 14 | 109 | 240–480 | no identified pathogen | Successful HTX |
#12 | HMIII | 14 | 37 | 240–480 | S. epidermidis, Citrobacter koseri | Complete healing |
#13 | HVAD | 3 | 42 | 120–240 | E. faecalis, Proteus mirabilis, Citrobacter freundii | Complete healing with reoccurrence of DLI after 458 days |
#14 | HVAD | 5 | 71 | 240 | S. aureus | Successful HTX |
#15 | HMIII | 1 | 0 | 120 | no identified pathogen | Complete healing |
Grade | Wound Description |
---|---|
0 | Adequat wound healing with no signs of skin irriation. No fluid drainage. No tenderness. |
1 | Sufficient wound healing. Slight skin irration with redness. Beginning of tenderness and slight wound drainage. |
2 | Early skin retraction. Wound drainage. Extension of hyperthermic redness around the driveline. |
3 | Extention of skin retraction. Hypertrophic granulation/granuloma pyogenicum. Severe wound drainage. Skin tenderness and pain. |
4 | Extensive wound granulation with subsequent skin arosion. Open wounds around the cannulas. Extreme tendernss and pain. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kremer, J.; Meinert, É.F.R.C.; Farag, M.; Mueller, F.; Soethoff, J.P.; Karck, M.; Schmack, B.; Meyer, A.L.; Warnecke, G. New Wound Management of Driveline Infections with Cold Atmospheric Plasma. J. Cardiovasc. Dev. Dis. 2022, 9, 405. https://doi.org/10.3390/jcdd9110405
Kremer J, Meinert ÉFRC, Farag M, Mueller F, Soethoff JP, Karck M, Schmack B, Meyer AL, Warnecke G. New Wound Management of Driveline Infections with Cold Atmospheric Plasma. Journal of Cardiovascular Development and Disease. 2022; 9(11):405. https://doi.org/10.3390/jcdd9110405
Chicago/Turabian StyleKremer, Jamila, Étienne Fasolt Richard Corvin Meinert, Mina Farag, Florian Mueller, Jasmin Penelope Soethoff, Matthias Karck, Bastian Schmack, Anna Lassia Meyer, and Gregor Warnecke. 2022. "New Wound Management of Driveline Infections with Cold Atmospheric Plasma" Journal of Cardiovascular Development and Disease 9, no. 11: 405. https://doi.org/10.3390/jcdd9110405
APA StyleKremer, J., Meinert, É. F. R. C., Farag, M., Mueller, F., Soethoff, J. P., Karck, M., Schmack, B., Meyer, A. L., & Warnecke, G. (2022). New Wound Management of Driveline Infections with Cold Atmospheric Plasma. Journal of Cardiovascular Development and Disease, 9(11), 405. https://doi.org/10.3390/jcdd9110405