Modalities of Exercise Training in Patients with Extracorporeal Membrane Oxygenation Support
Abstract
:1. Introduction
2. Extracorporeal Membrane Oxygenation (ECMO)
3. Intensive Care Unit-Acquired Weakness (ICU-AW) and ECMO Support
3.1. Prevalence and Risk Factors of ICU-AW
3.2. Clinical Significance of ICU-AW
4. Rehabilitation in ECMO Patients—Safety, Feasibility and Efficacy
4.1. Screening and Assessment for Exercise
4.2. Prehabilitation in ECMO Patients
4.3. Early Mobilization in the ICU
5. ECMO and Specific Exercise Interventions
5.1. Neuromuscular Electrical Stimulation (NMES)
5.2. Cycling
5.3. Strength Training
5.4. Proposed Exercise Training Protocols per Subgroup of Patients
6. Clinical Implications and Contraindications for Rehabilitation in ECMO Patients
7. Future Perspectives
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Herridge, M.S.; Tansey, C.M.; Matté, A.; Tomlinson, G.; Diaz-Granados, N.; Cooper, A.; Guest, C.B.; Mazer, C.D.; Mehta, S.; Stewart, T.E.; et al. Functional disability 5 years after acute respiratory distress syndrome. N. Engl. J. Med. 2011, 364, 1293–1304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, P.E.; Goad, A.; Thompson, C.; Taylor, K.; Harry, B.; Passmore, L.; Ross, A.; Anderson, L.; Baker, S.; Sanchez, M.; et al. Early intensive care unit mobility therapy in the treatment of acute respiratory failure. Crit. Care Med. 2008, 36, 2238–2243. [Google Scholar] [CrossRef] [Green Version]
- Stiller, K. Physiotherapy in intensive care: An updated systematic review. Chest 2013, 144, 825–847. [Google Scholar] [CrossRef]
- Hodgson, C.L.; Berney, S.; Harrold, M.; Saxena, M.; Bellomo, R. Clinical review: Early patient mobilization in the ICU. Crit. Care 2013, 17, 207. [Google Scholar] [CrossRef] [Green Version]
- Schweickert, W.D.; Pohlman, M.C.; Pohlman, A.S.; Nigos, C.; Pawlik, A.J.; Esbrook, C.L.; Spears, L.; Miller, M.; Franczyk, M.; Deprizio, D.; et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: A randomised controlled trial. Lancet 2009, 373, 1874–1882. [Google Scholar] [CrossRef]
- Abrams, D.; Combes, A.; Brodie, D. Extracorporeal membrane oxygenation in cardiopulmonary disease in adults. J. Am. Coll. Cardiol. 2014, 63, 2769–2778. [Google Scholar] [CrossRef] [Green Version]
- Pavlushkov, E.; Berman, M.; Valchanov, K. Cannulation techniques for extracorporeal life support. Ann. Transl. Med. 2017, 5, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makdisi, G.; Wang, I.W. Extra Corporeal Membrane Oxygenation (ECMO) review of a lifesaving technology. J. Thorac. Dis. 2015, 7, E166–E176. [Google Scholar] [CrossRef] [Green Version]
- E.L.S. Organization. ELSO Guidelines for Cardiopulmonary Extracorporeal Life Support; Version 1.4; E.L.S. Organization: Ann Arbor, MI, USA, 2017. [Google Scholar]
- Zhang, J.J.Y.; Ong, J.A.; Syn, N.L.; Lorusso, R.; Tan, C.S.; MacLaren, G.; Ramanathan, K. Extracorporeal Membrane Oxygenation in Pregnant and Postpartum Women: A Systematic Review and Meta-Regression Analysis. J. Intensive Care Med. 2021, 36, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Peek, G.J.; Mugford, M.; Tiruvoipati, R.; Wilson, A.; Allen, E.; Thalanany, M.M.; Hibbert, C.L.; Truesdale, A.; Clemens, F.; Cooper, N.; et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): A multicentre randomised controlled trial. Lancet 2009, 374, 1351–1363. [Google Scholar] [CrossRef]
- Posluszny, J.; Rycus, P.T.; Bartlett, R.H.; Engoren, M.; Haft, J.W.; Lynch, W.R.; Park, P.K.; Raghavendran, K.; Napolitano, L.M. Outcome of Adult Respiratory Failure Patients Receiving Prolonged (≥14 Days) ECMO. Ann. Surg. 2016, 263, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Noah, M.A.; Peek, G.J.; Finney, S.J.; Griffiths, M.J.; Harrison, D.A.; Grieve, R.; Sadique, M.Z.; Sekhon, J.S.; McAuley, D.F.; Firmin, R.K.; et al. Referral to an extracorporeal membrane oxygenation center and mortality among patients with severe 2009 influenza A(H1N1). JAMA 2011, 306, 1659–1668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robba, C.; Ortu, A.; Bilotta, F.; Lombardo, A.; Sekhon, M.S.; Gallo, F.; Matta, B.F. Extracorporeal membrane oxygenation for adult respiratory distress syndrome in trauma patients: A case series and systematic literature review. J. Trauma Acute Care Surg. 2017, 82, 165–173. [Google Scholar] [CrossRef]
- Lewandowski, K.; Rossaint, R.; Pappert, D.; Gerlach, H.; Slama, K.J.; Weidemann, H.; Frey, D.J.; Hoffmann, O.; Keske, U.; Falke, K.J. High survival rate in 122 ARDS patients managed according to a clinical algorithm including extracorporeal membrane oxygenation. Intensive Care Med. 1997, 23, 819–835. [Google Scholar] [CrossRef] [PubMed]
- Combes, A.; Hajage, D.; Capellier, G.; Demoule, A.; Lavoué, S.; Guervilly, C.; Da Silva, D.; Zafrani, L.; Tirot, P.; Veber, B.; et al. Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2018, 378, 1965–1975. [Google Scholar] [CrossRef]
- Combes, A.; Peek, G.J.; Hajage, D.; Hardy, P.; Abrams, D.; Schmidt, M.; Dechartres, A.; Elbourne, D. ECMO for severe ARDS: Systematic review and individual patient data meta-analysis. Intensive Care Med. 2020, 46, 2048–2057. [Google Scholar] [CrossRef]
- Ortega-Deballon, I.; Hornby, L.; Shemie, S.D.; Bhanji, F.; Guadagno, E. Extracorporeal resuscitation for refractory out-of-hospital cardiac arrest in adults: A systematic review of international practices and outcomes. Resuscitation 2016, 101, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Thiagarajan, R.R.; Barbaro, R.P.; Rycus, P.T.; McMullan, D.M.; Conrad, S.A.; Fortenberry, J.D.; Paden, M.L. Extracorporeal Life Support Organization Registry International Report 2016. ASAIO J. 2017, 63, 60–67. [Google Scholar] [CrossRef]
- Bréchot, N.; Hajage, D.; Kimmoun, A.; Demiselle, J.; Agerstrand, C.; Montero, S.; Schmidt, M.; Luyt, C.E.; Lebreton, G.; Hékimian, G.; et al. Venoarterial extracorporeal membrane oxygenation to rescue sepsis-induced cardiogenic shock: A retrospective, multicentre, international cohort study. Lancet 2020, 396, 545–552. [Google Scholar] [CrossRef]
- Wunsch, H. Mechanical Ventilation in COVID-19: Interpreting the Current Epidemiology. Am. J. Respir. Crit. Care Med. 2020, 202, 1–4. [Google Scholar] [CrossRef]
- Barbaro, R.P.; MacLaren, G.; Boonstra, P.S.; Iwashyna, T.J.; Slutsky, A.S.; Fan, E.; Bartlett, R.H.; Tonna, J.E.; Hyslop, R.; Fanning, J.J.; et al. Extracorporeal membrane oxygenation support in COVID-19: An international cohort study of the Extracorporeal Life Support Organization registry. Lancet 2020, 396, 1071–1078. [Google Scholar] [CrossRef]
- Bartlett, R.H.; Gattinoni, L. Current status of extracorporeal life support (ECMO) for cardiopulmonary failure. Minerva Anestesiol. 2010, 76, 534–540. [Google Scholar]
- Aubron, C.; Cheng, A.C.; Pilcher, D.; Leong, T.; Magrin, G.; Cooper, D.J.; Scheinkestel, C.; Pellegrino, V. Factors associated with outcomes of patients on extracorporeal membrane oxygenation support: A 5-year cohort study. Crit. Care 2013, 17, R73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevens, R.D.; Dowdy, D.W.; Michaels, R.K.; Mendez-Tellez, P.A.; Pronovost, P.J.; Needham, D.M. Neuromuscular dysfunction acquired in critical illness: A systematic review. Intensive Care Med. 2007, 33, 1876–1891. [Google Scholar] [CrossRef]
- Tennilä, A.; Salmi, T.; Pettilä, V.; Roine, R.O.; Varpula, T.; Takkunen, O. Early signs of critical illness polyneuropathy in ICU patients with systemic inflammatory response syndrome or sepsis. Intensive Care Med. 2000, 26, 1360–1363. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, C.; Bellomo, R.; Berney, S.; Bailey, M.; Buhr, H.; Denehy, L.; Harrold, M.; Higgins, A.; Presneill, J.; Saxena, M.; et al. Early mobilization and recovery in mechanically ventilated patients in the ICU: A bi-national, multi-centre, prospective cohort study. Crit. Care 2015, 19, 81. [Google Scholar] [CrossRef] [Green Version]
- Parry, S.M.; El-Ansary, D.; Cartwright, M.S.; Sarwal, A.; Berney, S.; Koopman, R.; Annoni, R.; Puthucheary, Z.; Gordon, I.R.; Morris, P.E.; et al. Ultrasonography in the intensive care setting can be used to detect changes in the quality and quantity of muscle and is related to muscle strength and function. J. Crit. Care 2015, 30, 1151.e9. [Google Scholar] [CrossRef] [PubMed]
- Puthucheary, Z.A.; Rawal, J.; McPhail, M.; Connolly, B.; Ratnayake, G.; Chan, P.; Hopkinson, N.S.; Phadke, R.; Dew, T.; Sidhu, P.S.; et al. Acute skeletal muscle wasting in critical illness. JAMA 2013, 310, 1591–1600. [Google Scholar] [CrossRef] [Green Version]
- De Jonghe, B.; Sharshar, T.; Lefaucheur, J.P.; Authier, F.J.; Durand-Zaleski, I.; Boussarsar, M.; Cerf, C.; Renaud, E.; Mesrati, F.; Carlet, J.; et al. Paresis acquired in the intensive care unit: A prospective multicenter study. JAMA 2002, 288, 2859–2867. [Google Scholar] [CrossRef] [Green Version]
- Levine, S.; Nguyen, T.; Taylor, N.; Friscia, M.E.; Budak, M.T.; Rothenberg, P.; Zhu, J.; Sachdeva, R.; Sonnad, S.; Kaiser, L.R.; et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N. Engl. J. Med. 2008, 358, 1327–1335. [Google Scholar] [CrossRef]
- Fan, E.; Cheek, F.; Chlan, L.; Gosselink, R.; Hart, N.; Herridge, M.S.; Hopkins, R.O.; Hough, C.L.; Kress, J.P.; Latronico, N.; et al. An official American Thoracic Society Clinical Practice guideline: The diagnosis of intensive care unit-acquired weakness in adults. Am. J. Respir. Crit. Care Med. 2014, 190, 1437–1446. [Google Scholar] [CrossRef]
- Jolley, S.E.; Bunnell, A.E.; Hough, C.L. ICU-Acquired Weakness. Chest 2016, 150, 1129–1140. [Google Scholar] [CrossRef] [Green Version]
- Ohtake, P.J.; Lee, A.C.; Scott, J.C.; Hinman, R.S.; Ali, N.A.; Hinkson, C.R.; Needham, D.M.; Shutter, L.; Smith-Gabai, H.; Spires, M.C.; et al. Physical Impairments Associated with Post-Intensive Care Syndrome: Systematic Review Based on the World Health Organization’s International Classification of Functioning, Disability and Health Framework. Phys. Ther. 2018, 98, 631–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayes, K.; Holland, A.E.; Pellegrino, V.A.; Mathur, S.; Hodgson, C.L. Acute skeletal muscle wasting and relation to physical function in patients requiring extracorporeal membrane oxygenation (ECMO). J. Crit. Care 2018, 48, 1–8. [Google Scholar] [CrossRef]
- Bear, D.E.; MacGowan, L.; Elstad, M.; Puthucheary, Z.; Connolly, B.; Wright, R.; Hart, N.; Harridge, S.; Whelan, K.; Barrett, N.A.; et al. Relationship Between Skeletal Muscle Area and Density and Clinical Outcome in Adults Receiving Venovenous Extracorporeal Membrane Oxygenation. Crit. Care Med. 2021, 49, e350–e359. [Google Scholar] [CrossRef] [PubMed]
- Faron, A.; Kreyer, S.; Sprinkart, A.M.; Muders, T.; Ehrentraut, S.F.; Isaak, A.; Fimmers, R.; Pieper, C.C.; Kuetting, D.; Schewe, J.C.; et al. CT fatty muscle fraction as a new parameter for muscle quality assessment predicts outcome in venovenous extracorporeal membrane oxygenation. Sci. Rep. 2020, 10, 22391. [Google Scholar] [CrossRef] [PubMed]
- Dünser, M.W.; Hasibeder, W.R. Sympathetic overstimulation during critical illness: Adverse effects of adrenergic stress. J. Intensive Care Med. 2009, 24, 293–316. [Google Scholar] [CrossRef] [PubMed]
- Vanhorebeek, I.; Latronico, N.; Van den Berghe, G. ICU-acquired weakness. Intensive Care Med. 2020, 46, 637–653. [Google Scholar] [CrossRef] [PubMed]
- Klaude, M.; Mori, M.; Tjäder, I.; Gustafsson, T.; Wernerman, J.; Rooyackers, O. Protein metabolism and gene expression in skeletal muscle of critically ill patients with sepsis. Clin. Sci. 2012, 122, 133–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stana, F.; Vujovic, M.; Mayaki, D.; Leduc-Gaudet, J.P.; Leblanc, P.; Huck, L.; Hussain, S.N.A. Differential Regulation of the Autophagy and Proteasome Pathways in Skeletal Muscles in Sepsis. Crit. Care Med. 2017, 45, e971–e979. [Google Scholar] [CrossRef]
- Chatre, L.; Verdonk, F.; Rocheteau, P.; Crochemore, C.; Chrétien, F.; Ricchetti, M. A novel paradigm links mitochondrial dysfunction with muscle stem cell impairment in sepsis. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 2546–2553. [Google Scholar] [CrossRef] [PubMed]
- Rocheteau, P.; Chatre, L.; Briand, D.; Mebarki, M.; Jouvion, G.; Bardon, J.; Crochemore, C.; Serrani, P.; Lecci, P.P.; Latil, M.; et al. Sepsis induces long-term metabolic and mitochondrial muscle stem cell dysfunction amenable by mesenchymal stem cell therapy. Nat. Commun. 2015, 6, 10145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roll, M.A.; Kuys, S.; Walsh, J.R.; Tronstad, O.; Ziegenfuss, M.D.; Mullany, D.V. Long-Term Survival and Health-Related Quality of Life in Adults after Extra Corporeal Membrane Oxygenation. Heart Lung Circ. 2019, 28, 1090–1098. [Google Scholar] [CrossRef]
- Harley, O.; Reynolds, C.; Nair, P.; Buscher, H. Long-Term Survival, Posttraumatic Stress, and Quality of Life post Extracorporeal Membrane Oxygenation. ASAIO J. 2020, 66, 909–914. [Google Scholar] [CrossRef]
- Sylvestre, A.; Adda, M.; Maltese, F.; Lannelongue, A.; Daviet, F.; Parzy, G.; Coiffard, B.; Roch, A.; Loundou, A.; Baumstarck, K.; et al. Long-term neurocognitive outcome is not worsened by of the use of venovenous ECMO in severe ARDS patients. Ann. Intensive Care 2019, 9, 82. [Google Scholar] [CrossRef]
- Herridge, M.S.; Cheung, A.M.; Tansey, C.M.; Matte-Martyn, A.; Diaz-Granados, N.; Al-Saidi, F.; Cooper, A.B.; Guest, C.B.; Mazer, C.D.; Mehta, S.; et al. One-year outcomes in survivors of the acute respiratory distress syndrome. N. Engl. J. Med. 2003, 348, 683–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eden, A.; Purkiss, C.; Cork, G.; Baddeley, A.; Morris, K.; Carey, L.; Brown, M.; McGarrigle, L.; Kennedy, S. In-patient physiotherapy for adults on veno-venous extracorporeal membrane—United Kingdom ECMO Physiotherapy Network: A consensus agreement for best practice. J. Intensive Care Soc. 2017, 18, 212–220. [Google Scholar] [CrossRef] [Green Version]
- Tipping, C.J.; Harrold, M.; Holland, A.; Romero, L.; Nisbet, T.; Hodgson, C.L. The effects of active mobilisation and rehabilitation in ICU on mortality and function: A systematic review. Intensive Care Med. 2017, 43, 171–183. [Google Scholar] [CrossRef]
- Hayes, K.; Hodgson, C.L.; Pellegrino, V.A.; Snell, G.; Tarrant, B.; Fuller, L.M.; Holland, A.E. Physical Function in Subjects Requiring Extracorporeal Membrane Oxygenation Before or after Lung Transplantation. Respir. Care 2018, 63, 194–202. [Google Scholar] [CrossRef] [Green Version]
- Polastri, M.; Loforte, A.; Dell’Amore, A.; Nava, S. Physiotherapy for Patients on Awake Extracorporeal Membrane Oxygenation: A Systematic Review. Physiother. Res. Int. 2016, 21, 203–209. [Google Scholar] [CrossRef]
- Boling, B.; Dennis, D.R.; Tribble, T.A.; Rajagopalan, N.; Hoopes, C.W. Safety of Nurse-Led Ambulation for Patients on Venovenous Extracorporeal Membrane Oxygenation. Prog. Transplant. 2016, 26, 112–116. [Google Scholar] [CrossRef]
- Turner, D.A.; Cheifetz, I.M.; Rehder, K.J.; Williford, W.L.; Bonadonna, D.; Banuelos, S.J.; Peterson-Carmichael, S.; Lin, S.S.; Davis, R.D.; Zaas, D. Active rehabilitation and physical therapy during extracorporeal membrane oxygenation while awaiting lung transplantation: A practical approach. Crit. Care Med. 2011, 39, 2593–2598. [Google Scholar] [CrossRef] [Green Version]
- Lowman, J.D.; Kirk, T.K.; Clark, D.E. Physical therapy management of a patient on portable extracorporeal membrane oxygenation as a bridge to lung transplantation: A case report. Cardiopulm. Phys. Ther. J. 2012, 23, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, R.A.; Skrzat, J.; Reddy, D.R.; Zanni, J.M.; Fan, E.; Stephens, R.S.; Needham, D.M. Physical rehabilitation of patients in the intensive care unit requiring extracorporeal membrane oxygenation: A small case series. Phys. Ther. 2013, 93, 248–255. [Google Scholar] [CrossRef]
- Rehder, K.J.; Turner, D.A.; Hartwig, M.G.; Williford, W.L.; Bonadonna, D.; Walczak, R.J., Jr.; Davis, R.D.; Zaas, D.; Cheifetz, I.M. Active rehabilitation during extracorporeal membrane oxygenation as a bridge to lung transplantation. Respir. Care 2013, 58, 1291–1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abrams, D.; Javidfar, J.; Farrand, E.; Mongero, L.B.; Agerstrand, C.L.; Ryan, P.; Zemmel, D.; Galuskin, K.; Morrone, T.M.; Boerem, P.; et al. Early mobilization of patients receiving extracorporeal membrane oxygenation: A retrospective cohort study. Crit. Care 2014, 18, R38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cork, G.; Barrett, N.; Ntoumenopoulos, G. Justification for chest physiotherapy during ultra-protective lung ventilation and extra-corporeal membrane oxygenation: A case study. Physiother. Res. Int. 2014, 19, 126–128. [Google Scholar] [CrossRef]
- Morris, K.; Curtis, A. Exercise on ECMO: An evolving science. J. Intensive Care Soc. 2014, 15, S60–S61. [Google Scholar]
- Pruijsten, R.; van Thiel, R.; Hool, S.; Saeijs, M.; Verbiest, M.; Reis Miranda, D. Mobilization of patients on venovenous extracorporeal membrane oxygenation support using an ECMO helmet. Intensive Care Med. 2014, 40, 1595–1597. [Google Scholar] [CrossRef]
- Hermens, J.A.J.M.; Braithwaite, S.A.; Heijnen, G.; van Dijk, D.; Donker, D.W. Awake’ extracorporeal membrane oxygenation requires adequate lower body muscle training and mobilisation as sucessful bridge to lung transplant. Intensive Care Med. Exp. 2015, 3, A510. [Google Scholar] [CrossRef] [Green Version]
- Kikukawa, T.; Ogura, T.; Harasawa, T.; Suzuki, H.; Nakano, M. H1N1 influenza-associated pneumonia with severe obesity: Successful management with awake veno-venous extracorporeal membrane oxygenation and early respiratory physical therapy. Acute Med. Surg. 2015, 3, 186–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, Y.; Cho, Y.H.; Park, Y.H.; Lee, H.; Suh, G.Y.; Yang, J.H.; Park, C.M.; Jeon, K.; Chung, C.R. Feasibility and Safety of Early Physical Therapy and Active Mobilization for Patients on Extracorporeal Membrane Oxygenation. ASAIO J. 2015, 61, 564–568. [Google Scholar] [CrossRef]
- Kulkarni, T.; Teerapuncharoen, K.; Trevor, J.; Wille, K.; Diaz-Guzman, E. Ambulatory low blood flow extracorporeal membrane oxygenation in a patient with refractory status asthmaticus. Am. J. Respir. Crit. Care Med. 2015, 191, A4564. [Google Scholar]
- Pastva, A.; Kirk, T.; Parry, S.M. Functional electrical stimulation cycling pre-and post-bilateral orthotopic lung transplantation: A case report. Am. J. Respir. Crit. Care Med. 2015, 191, A1643. [Google Scholar]
- Bain, J.C.; Turner, D.A.; Rehder, K.J.; Eisenstein, E.L.; Davis, R.D.; Cheifetz, I.M.; Zaas, D.W. Economic Outcomes of Extracorporeal Membrane Oxygenation with and without Ambulation as a Bridge to Lung Transplantation. Respir. Care 2016, 61, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Keibun, R. Awake ECMO and active rehabilitation strategies for venovenous ECMO as a bridge to recovery. Crit. Care Med. 2016, 44, 321. [Google Scholar] [CrossRef]
- Norrenberg, M.; Gleize, A.; Preiser, J.C. Impact of restricted hip moviment during ECMO on later joint mobility. Intensive Care Med. Exp. 2016, 4, A579. [Google Scholar]
- Munshi, L.; Kobayashi, T.; DeBacker, J.; Doobay, R.; Telesnicki, T.; Lo, V.; Cote, N.; Cypel, M.; Keshavjee, S.; Ferguson, N.D.; et al. Intensive Care Physiotherapy during Extracorporeal Membrane Oxygenation for Acute Respiratory Distress Syndrome. Ann. Am. Thorac. Soc. 2017, 14, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Salam, S.; Kotloff, R.; Garcha, P.; Krishnan, S.; Joshi, D.; Grady, P.; Duggal, A. Lung Transplantation after 125 Days on ECMO for Severe Refractory Hypoxemia with No Prior Lung Disease. ASAIO J. 2017, 63, e66–e68. [Google Scholar] [CrossRef]
- Shudo, Y.; Kasinpila, P.; Lee, A.M.; Rao, V.K.; Woo, Y.J. Ambulating femoral venoarterial extracorporeal membrane oxygenation bridge to heart-lung transplant. J. Thorac. Cardiovasc. Surg. 2018, 156, e135–e137. [Google Scholar] [CrossRef]
- Wells, C.L.; Forrester, J.; Vogel, J.; Rector, R.; Tabatabai, A.; Herr, D. Safety and Feasibility of Early Physical Therapy for Patients on Extracorporeal Membrane Oxygenator: University of Maryland Medical Center Experience. Crit. Care Med. 2018, 46, 53–59. [Google Scholar] [CrossRef]
- Pasrija, C.; Mackowick, K.M.; Raithel, M.; Tran, D.; Boulos, F.M.; Deatrick, K.B.; Mazzeffi, M.A.; Rector, R.; Pham, S.M.; Griffith, B.P.; et al. Ambulation with Femoral Arterial Cannulation Can Be Safely Performed on Venoarterial Extracorporeal Membrane Oxygenation. Ann. Thorac. Surg. 2019, 107, 1389–1394. [Google Scholar] [CrossRef]
- Braune, S.; Bojes, P.; Mecklenburg, A.; Angriman, F.; Soeffker, G.; Warnke, K.; Westermann, D.; Blankenberg, S.; Kubik, M.; Reichenspurner, H.; et al. Feasibility, safety, and resource utilisation of active mobilisation of patients on extracorporeal life support: A prospective observational study. Ann. Intensive Care 2020, 10, 161. [Google Scholar] [CrossRef]
- Mark, A.; Crumley, J.P.; Rudolph, K.L.; Doerschug, K.; Krupp, A. Maintaining Mobility in a Patient Who Is Pregnant and Has COVID-19 Requiring Extracorporeal Membrane Oxygenation: A Case Report. Phys. Ther. 2021, 101, pzaa189. [Google Scholar] [CrossRef] [PubMed]
- McCormack, P.F.; Tronstad, O.; Walsh, J.R. Does exercising the quadriceps muscle of patients on extracorporeal membrane oxygenation (ECMO) with electrical stimulation affect the blood flow to their feet? A feasibility study. J. Intensive Care Soc. 2020, 1751143720970373. [Google Scholar] [CrossRef]
- Mao, L.; Luo, L.; Wang, D.; Yu, Y.; Dong, S.; Zhang, P.; Sun, Y.; Chen, Z. Early rehabilitation after lung transplantation with extracorporeal membrane oxygenation (ECMO) of COVID-19 patient: A case report. Ann Transl Med. 2021, 9, 512. [Google Scholar] [CrossRef] [PubMed]
- Nydahl, P.; Sricharoenchai, T.; Chandra, S.; Kundt, F.S.; Huang, M.; Fischill, M.; Needham, D.M. Safety of Patient Mobilization and Rehabilitation in the Intensive Care Unit. Systematic Review with Meta-Analysis. Ann. Am. Thorac. Soc. 2017, 14, 766–777. [Google Scholar] [CrossRef] [PubMed]
- Sommers, J.; Engelbert, R.H.; Dettling-Ihnenfeldt, D.; Gosselink, R.; Spronk, P.E.; Nollet, F.; van der Schaaf, M. Physiotherapy in the intensive care unit: An evidence-based, expert driven, practical statement and rehabilitation recommendations. Clin. Rehabil. 2015, 29, 1051–1063. [Google Scholar] [CrossRef]
- Takeda, K.; Garan, A.R.; Topkara, V.K.; Kirtane, A.J.; Karmpaliotis, D.; Kurlansky, P.; Yuzefpolskaya, M.; Colombo, P.C.; Naka, Y.; Takayama, H. Novel minimally invasive surgical approach using an external ventricular assist device and extracorporeal membrane oxygenation in refractory cardiogenic shock. Eur. J. Cardiothorac. Surg. 2017, 51, 591–596. [Google Scholar] [CrossRef]
- Takeda, K.; Garan, A.R.; Ando, M.; Han, J.; Topkara, V.K.; Kurlansky, P.; Yuzefpolskaya, M.; Farr, M.A.; Colombo, P.C.; Naka, Y.; et al. Minimally invasive CentriMag ventricular assist device support integrated with extracorporeal membrane oxygenation in cardiogenic shock patients: A comparison with conventional CentriMag biventricular support configuration. Eur. J. Cardiothorac. Surg. 2017, 52, 1055–1061. [Google Scholar] [CrossRef]
- Shudo, Y.; Wang, H.; Ha, R.V.; Hayes, A.D.; Woo, Y.J. Heart transplant after profoundly extended ambulatory central venoarterial extracorporeal membrane oxygenation. J. Thorac. Cardiovasc. Surg. 2018, 156, e7–e9. [Google Scholar] [CrossRef] [PubMed]
- McGarrigle, L.; Caunt, J. Physical Therapist-Led Ambulatory Rehabilitation for Patients Receiving CentriMag Short-Term Ventricular Assist Device Support: Retrospective Case Series. Phys. Ther. 2016, 96, 1865–1873. [Google Scholar] [CrossRef] [PubMed]
- Biscotti, M.; Gannon, W.D.; Agerstrand, C.; Abrams, D.; Sonett, J.; Brodie, D.; Bacchetta, M. Awake Extracorporeal Membrane Oxygenation as Bridge to Lung Transplantation: A 9-Year Experience. Ann. Thorac. Surg. 2017, 104, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Fuehner, T.; Kuehn, C.; Hadem, J.; Wiesner, O.; Gottlieb, J.; Tudorache, I.; Olsson, K.M.; Greer, M.; Sommer, W.; Welte, T.; et al. Extracorporeal membrane oxygenation in awake patients as bridge to lung transplantation. Am. J. Respir. Crit. Care Med. 2012, 185, 763–768. [Google Scholar] [CrossRef] [PubMed]
- Hoopes, C.W.; Kukreja, J.; Golden, J.; Davenport, D.L.; Diaz-Guzman, E.; Zwischenberger, J.B. Extracorporeal membrane oxygenation as a bridge to pulmonary transplantation. J. Thorac. Cardiovasc. Surg. 2013, 145, 862–867. [Google Scholar] [CrossRef] [Green Version]
- Weill, D.; Benden, C.; Corris, P.A.; Dark, J.H.; Davis, R.D.; Keshavjee, S.; Lederer, D.J.; Mulligan, M.J.; Patterson, G.A.; Singer, L.G.; et al. A consensus document for the selection of lung transplant candidates: 2014—An update from the Pulmonary Transplantation Council of the International Society for Heart and Lung Transplantation. J. Heart Lung Transplant. 2015, 34, 1–15. [Google Scholar] [CrossRef]
- Abrams, D.; Brodie, D.; Arcasoy, S.M. Extracorporeal Life Support in Lung Transplantation. Clin. Chest Med. 2017, 38, 655–666. [Google Scholar] [CrossRef] [PubMed]
- Abrams, D.; Garan, A.R.; Brodie, D. Awake and fully mobile patients on cardiac extracorporeal life support. Ann. Cardiothorac. Surg. 2019, 8, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, D.D.C.; Marcolino, M.A.Z.; Macagnan, F.E.; Plentz, R.D.M.; Kessler, A. Safety and potential benefits of physical therapy in adult patients on extracorporeal membrane oxygenation support: A systematic review. Rev. Bras. Ter. Intensiva 2019, 31, 227–239. [Google Scholar] [CrossRef]
- Hanekom, S.; Gosselink, R.; Dean, E.; van Aswegen, H.; Roos, R.; Ambrosino, N.; Louw, Q. The development of a clinical management algorithm for early physical activity and mobilization of critically ill patients: Synthesis of evidence and expert opinion and its translation into practice. Clin. Rehabil. 2011, 25, 771–787. [Google Scholar] [CrossRef] [Green Version]
- Gosselink, R.; Bott, J.; Johnson, M.; Dean, E.; Nava, S.; Norrenberg, M.; Schönhofer, B.; Stiller, K.; van de Leur, H.; Vincent, J.L. Physiotherapy for adult patients with critical illness: Recommendations of the European Respiratory Society and European Society of Intensive Care Medicine Task Force on Physiotherapy for Critically Ill Patients. Intensive Care Med. 2008, 34, 1188–1199. [Google Scholar] [CrossRef] [PubMed]
- Winkelman, C.; Johnson, K.D.; Hejal, R.; Gordon, N.H.; Rowbottom, J.; Daly, J.; Peereboom, K.; Levine, A.D. Examining the positive effects of exercise in intubated adults in ICU: A prospective repeated measures clinical study. Intensive Crit. Care Nurs. 2012, 28, 307–318. [Google Scholar] [CrossRef] [Green Version]
- Kraemer, W.J.; Adams, K.; Cafarelli, E.; Dudley, G.A.; Dooly, C.; Feigenbaum, M.S.; Fleck, S.J.; Franklin, B.; Fry, A.C.; Hoffman, J.R.; et al. Progression models in resistance training for healthy adults. Med. Sci. Sports Exerc. 2002, 34, 364–380. [Google Scholar] [CrossRef]
- Burtin, C.; Clerckx, B.; Robbeets, C.; Ferdinande, P.; Langer, D.; Troosters, T.; Hermans, G.; Decramer, M.; Gosselink, R. Early exercise in critically ill patients enhances short-term functional recovery. Crit. Care Med. 2009, 37, 2499–2505. [Google Scholar] [CrossRef]
- Chang, M.Y.; Chang, L.Y.; Huang, Y.C.; Lin, K.M.; Cheng, C.H. Chair-sitting exercise intervention does not improve respiratory muscle function in mechanically ventilated intensive care unit patients. Respir. Care 2011, 56, 1533–1538. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Lin, H.L.; Hsiao, H.F.; Chou, L.T.; Kao, K.C.; Huang, C.C.; Tsai, Y.H. Effects of exercise training on pulmonary mechanics and functional status in patients with prolonged mechanical ventilation. Respir. Care 2012, 57, 727–734. [Google Scholar] [CrossRef] [Green Version]
- Clavet, H.; Hébert, P.C.; Fergusson, D.A.; Doucette, S.; Trudel, G. Joint contractures in the intensive care unit: Association with resource utilization and ambulatory status at discharge. Disabil. Rehabil. 2011, 33, 105–112. [Google Scholar] [CrossRef]
- Amidei, C.; Sole, M.L. Physiological responses to passive exercise in adults receiving mechanical ventilation, American journal of critical care: An official publication. Am. J. Crit. Care 2013, 22, 337–348. [Google Scholar] [CrossRef]
- Karatzanos, E.; Gerovasili, V.; Zervakis, D.; Tripodaki, E.S.; Apostolou, K.; Vasileiadis, I.; Papadopoulos, E.; Mitsiou, G.; Tsimpouki, D.; Routsi, C.; et al. Electrical muscle stimulation: An effective form of exercise and early mobilization to preserve muscle strength in critically ill patients. Crit. Care Res. Pract. 2012, 2012, 432752. [Google Scholar] [CrossRef] [Green Version]
- Hirose, T.; Shiozaki, T.; Shimizu, K.; Mouri, T.; Noguchi, K.; Ohnishi, M.; Shimazu, T. The effect of electrical muscle stimulation on the prevention of disuse muscle atrophy in patients with consciousness disturbance in the intensive care unit. J. Crit. Care 2013, 28, 536.e1. [Google Scholar] [CrossRef] [PubMed]
- Parry, S.M.; Berney, S.; Granger, C.L.; Koopman, R.; El-Ansary, D.; Denehy, L. Electrical muscle stimulation in the intensive care setting: A systematic review. Crit. Care Med. 2013, 41, 2406–2418. [Google Scholar] [CrossRef] [PubMed]
- Haji, J.Y.; Mehra, S.; Doraiswamy, P. Awake ECMO and mobilizing patients on ECMO. Indian J. Thorac. Cardiovasc. Surg. 2021, 37, 1–10. [Google Scholar] [CrossRef]
- Gruther, W.; Kainberger, F.; Fialka-Moser, V.; Paternostro-Sluga, T.; Quittan, M.; Spiss, C.; Crevenna, R. Effects of neuromuscular electrical stimulation on muscle layer thickness of knee extensor muscles in intensive care unit patients: A pilot study. J. Rehabil. Med. 2010, 42, 593–597. [Google Scholar] [CrossRef] [Green Version]
- Gerovasili, V.; Stefanidis, K.; Vitzilaios, K.; Karatzanos, E.; Politis, P.; Koroneos, A.; Chatzimichail, A.; Routsi, C.; Roussos, C.; Nanas, S. Electrical muscle stimulation preserves the muscle mass of critically ill patients: A randomized study. Crit. Care 2009, 13, R161. [Google Scholar] [CrossRef] [Green Version]
- Meesen, R.L.; Dendale, P.; Cuypers, K.; Berger, J.; Hermans, A.; Thijs, H.; Levin, O. Neuromuscular electrical stimulation as a possible means to prevent muscle tissue wasting in artificially ventilated and sedated patients in the intensive care unit: A pilot study. Neuromodulation 2010, 13, 315–320. [Google Scholar] [CrossRef]
- Routsi, C.; Gerovasili, V.; Vasileiadis, I.; Karatzanos, E.; Pitsolis, T.; Tripodaki, E.; Markaki, V.; Zervakis, D.; Nanas, S. Electrical muscle stimulation prevents critical illness polyneuromyopathy: A randomized parallel intervention trial. Crit. Care 2010, 14, R74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, N.; Flynn, M. A review of the efficacy of neuromuscular electrical stimulation in critically ill patients. Physiother. Theory Pract. 2014, 30, 6–11. [Google Scholar] [CrossRef] [PubMed]
Study | Sample | Intervention | Frequency and Duration | Outcomes | Main results | Complications |
---|---|---|---|---|---|---|
Turner DA et al., 2011, (Case series report) | Patient 1: with respiratory failure (cystic fibrosis) on VV-ECMO as a bridge to lung transplantation Patient 2: with end-stage cystic fibrosis and respiratory failure on VV-ECMO as a bridge to lung transplantation. Patient 3: with cystic fibrosis and respiratory failure due to influenza B infection on VV-ECMO as a bridge to lung transplantation | In all patients:
| Patient 1 → 1 week Patient 2 → 1 week Patient 3 → 8 days | Lung transplantation | Successful bilateral orthotopic lung transplantation and weaning from ECMO | No rehabilitation-related complications |
Lowman GD et al., 2012 (Case report) | 1 patient with severe acute respiratory failure due to a cystic fibrosis exacerbation on VV-ECMO as a bridge to lung transplantation |
| 9 days | Survival to lung transplantation | Successful bilateral orthotopic lung transplantation | No rehabilitation-related complications |
Rahimi RA et al., 2013 (Case report study) | Patient 1: respiratory failure (worsening dyspnea and persistent right pneumothorax) on VV-ECMO as a bridge to lung transplantation Patient 2: respiratory failure (multidrug-resistant pneumonia) on VV-ECMO as a bridge to lung transplantation |
| 12 days 3 days | Lung transplantation Lung transplantation | Successful right orthotopic lung transplantation Successful bilateral orthotopic lung transplantation | No rehabilitation-related complications No rehabilitation-related complications |
Rehder KJ et al., 2013 (Retrospective case series) | 4 out of 9 patients with end-stage lung disease on VV-ECMO as a bridge to lung transplantation | Stretching and resisted exercises, sitting, standing, and ambulation (mean distance of 780 m) | 5 days | Unknown |
| No rehabilitation-related complications |
Abrams D et al., 2014 (Retrospective cohort study) | 35 out of 100 consecutive patients on ECMO underwent active physical therapy →
|
| 7.2 ± 6.5 sessions in total per patient 2.8 sessions per patient per week |
|
| No rehabilitation-related complications |
Cork G et al., 2014 (Case report) | 1 patient with severe respiratory failure due to Influenza A (H1N1) on VV-ECMO | Chest physiotherapy (positioning, ventilator hyperinflation, expiratory chest wall shaking and suctioning) | 2 to 3 times daily for 13 days | Unknown |
| Unknown |
Morris K et al., 2014 (Case report) | A 46-year-old woman with acute viral interstitial pneumonia on VV-ECMO |
| Unknown | Unknown |
| |
Pruijsten R et al., 2014 (Case report series study). | 6 patients with respiratory failure on VV-ECMO | Exercises ranging room exercising in bed to walking outside the room | 4–17 days | Unknown |
| No rehabilitation-related complications |
Hermens JAJM et al., 2015 (Retrospective analysis) | 9 awake, non-intubated patients with end-stage lung disease on VV-ECMO as a bridge to lung transplantation |
| Unknown | Muscle strength (Medical Research Council -MRC) |
|
|
Kikukawa T et al., 2015 (Case report) | A 54-year-old man with H1N1 influenza-associated respiratory failure and severe obesity on VV-ECMO | Respiratory therapy and bedside sitting | 3 days | Unknown |
| No rehabilitation-related complications |
Ko Y et al., 2015 (Retrospective study) | 8 patients on ECMO:
|
| 62 sessions | Safety events during physical therapy and interruptions due to unstable vital signs |
| |
Kulkarni T et al., 2015 (Case report) | A 36-year-old man with status asthmaticus on VV-ECMO | Active rehabilitation and ambulation (800 feet/day) | 2 days | Unknown |
| No rehabilitation-related complications |
Pastva A et al., 2015 (Case report) | A 30-year-old woman with cystic fibrosis and respiratory failure due to severe pneumonia on VV-ECMO as a bridge to lung transplantation |
| 7 functional electrical stimulation sessions (2 pre and 5 post transplantation) for over 18 days | Efficacy of functional electrical stimulation before and after bilateral orthotopic lung transplantation |
| No rehabilitation-related complications |
Bain JC et al., 2016 (Retrospective cohort analysis) | 5 out of 9 patients with respiratory failure on VV-ECMO as a bridge to lung transplantation | Active physical rehabilitation and ambulation | Unknown | Economic impact of ambulatory versus non-ambulatory ECMO strategies |
| Unknown |
Boling B et al., 2016 (Retrospective case series study) | 18 patients with severe respiratory failure on VV-ECMO |
| Unknown | Unknown |
| No rehabilitation-related complications |
Keibun R. 2016 (Prospective observational study) | 10 awake and 13 non-awake patients with refractory acute respiratory failure on VV-ECMO as a bridge to recovery (23 patients out of 31 who survived to ICU discharge) | Active rehabilitation | Unknown | Unknown |
| Unknown |
Norrenberg M et al., 2016 (Case series study) | 10 patients with respiratory or cardiac failure on ECMO (5 on VV-ECMO and 5 on VA-ECMO) | Mobilization of all joints except for the limb used for ECMO cannulation | Unknown | Unknown | 4 deaths (40%) | No rehabilitation-related complications |
Munshi L et al., 2017 (Retrospective cohort study) | 61 ARDS patients on ECMO out of 107 as a bridge to recovery (57 on VV-ECMO and 4 on VA-ECMO) → 50 patients of them underwent physiotherapy while 11 did not (47 on VV-ECMO and 3 on VA-ECMO) |
| Unknown |
|
| No rehabilitation-related complications Only complications related to ECMO (such as barotrauma, limb ischemia, intracerebral hemorrhage, HIT, air embolism) |
Salam S et al., 2017 (Case report) | A 50-year-old man with severe ARDS on VV-ECMO as a bridge to lung transplantation |
| 125 days | Lung transplantation |
| Cannula fracture during ambulation |
Shudo Y et al., 2018 (Case report) | 1 patient on VA-ECMO while awaiting en-bloc heart-lung transplantation |
| 19 days | Unknown |
| No rehabilitation-related complications |
Wells CL et al., 2018 (Retrospective cohort study) | 167 out of 254 patients on ECMO (98 on VV-ECMO and 69 on VA-ECMO) |
| 268 interventions 170 interventions 100 interventions 106 interventions 39 interventions 98 interventions 37 interventions |
| 109 survivors out of 167 patients (65%) VA ECMO: 41 out of 69 (59%) patients with hospital discharge VV ECMO: 68 out of 98 (69%) patients with hospital discharge | 3 minor events (< 0.5%) → 2 episodes of arrhythmias (non-sustained ventricular tachycardia) and 1 hypotension event |
Pasrija C et al., 2019 (Retrospective study) | 15 out of 104 patients with decompensated heart failure and pulmonary embolism on VA-ECMO |
| Unknown | Safety and feasibility of ambulation (absence of major bleeding, vascular, or decannulation events) |
| |
Braune S et al., 2020 (Prospective observational study) | 43 out of 115 critically ill patients on ECLS with IMS ≥ 3 (12 on VV-ECMO, 17 on VA-ECMO, 7 on VV-ECCO2R, 3 on AV-ECCO2R and 4 on RVAD) |
| 332 mobilizations (100 on VV-ECMO, 72 on VA-ECMO, 48 on VV-ECCO2R, 63 on AV-ECCO2R and 49 on RVAD) 130 min (IQR 44–215) median duration of all mobilization activities | Complications during mobilization |
| |
Mark A et al., 2020 (Case report) | 1 pregnant woman with acute respiratory failure due to COVID-19 on VV-ECMO |
| 6 days | Unknown | Successful hospital discharge | 1 episode of hypotension (mild dyspnea with activity and lightheadedness) |
McCormack PF et al., 2020 (Randomised crossover trial) | 3 patients on VV-ECMO | 30-min active NMES session delivered to the quadriceps (biphasic, symmetric impulses of 45 Hz, with 400 μs pulse duration, 12 s on and 6 s off) and 30-min sham session (intensity at the minimum value of 1–5 mA, without palpable contractions) | 30 min/session | Pedal perfusion assessed via a combination of laser speckle contrast imaging (LSCI), non-imaging laser doppler (NILD) flowmetry, and transcutaneous oximetry (PtcO2) |
| No rehabilitation-related complications |
Mao L et al., 2021 (Case report) | 1 patient with severe COVID-19 after bilateral lung transplantation on VV-ECMO |
| 2 days on ECMO (then ECMO was removed and the patient continued rehabilitation without ECMO) | Discharge from ECMO | Successfully removal of ECMO one day after rehabilitation | No rehabilitation-related complications |
Modality of Exercise | Proposed Exercise Protocol * | Suggested Candidates |
---|---|---|
Prehabilitation |
Proposed duration: 60 min per session, daily while on ECMO. |
|
Early mobilization | Awake patients with level of consciousness
Proposed duration: 60 min per session, 5 times per week while on ECMO. |
|
NMES |
| All patients on ECMO support, especially patients with lower level of consciousness. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kourek, C.; Nanas, S.; Kotanidou, A.; Raidou, V.; Dimopoulou, M.; Adamopoulos, S.; Karabinis, A.; Dimopoulos, S. Modalities of Exercise Training in Patients with Extracorporeal Membrane Oxygenation Support. J. Cardiovasc. Dev. Dis. 2022, 9, 34. https://doi.org/10.3390/jcdd9020034
Kourek C, Nanas S, Kotanidou A, Raidou V, Dimopoulou M, Adamopoulos S, Karabinis A, Dimopoulos S. Modalities of Exercise Training in Patients with Extracorporeal Membrane Oxygenation Support. Journal of Cardiovascular Development and Disease. 2022; 9(2):34. https://doi.org/10.3390/jcdd9020034
Chicago/Turabian StyleKourek, Christos, Serafim Nanas, Anastasia Kotanidou, Vasiliki Raidou, Maria Dimopoulou, Stamatis Adamopoulos, Andreas Karabinis, and Stavros Dimopoulos. 2022. "Modalities of Exercise Training in Patients with Extracorporeal Membrane Oxygenation Support" Journal of Cardiovascular Development and Disease 9, no. 2: 34. https://doi.org/10.3390/jcdd9020034
APA StyleKourek, C., Nanas, S., Kotanidou, A., Raidou, V., Dimopoulou, M., Adamopoulos, S., Karabinis, A., & Dimopoulos, S. (2022). Modalities of Exercise Training in Patients with Extracorporeal Membrane Oxygenation Support. Journal of Cardiovascular Development and Disease, 9(2), 34. https://doi.org/10.3390/jcdd9020034