Exercise Training Effects on Circulating Endothelial and Progenitor Cells in Heart Failure
Abstract
:1. Introduction
2. Circulating Endothelial and Progenitor Cells
2.1. Definition and Identification
2.2. Endothelial Progenitor Cells in Healthy Subjects and Patients with Heart Failure
3. Effects of Exercise on Circulating Endothelial and Progenitor Cells in Heart Failure
3.1. Acute Exercise
3.2. Exercise Training
4. Physiology of Exercise on Circulating Endothelial and Progenitor Cells in Heart Failure
5. Future Perspectives and Limitations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chamberlain, A.M.; Dunlay, S.M.; Gerber, Y.; Manemann, S.M.; Jiang, R.; Weston, S.A.; Roger, V.L. Burden and Timing of Hospitalizations in Heart Failure: A Community Study. Mayo Clin. Proc. 2017, 92, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Ambrosy, A.P.; Fonarow, G.C.; Butler, J.; Chioncel, O.; Greene, S.J.; Vaduganathan, M.; Nodari, S.; Lam, C.S.P.; Sato, N.; Shah, A.N.; et al. The global health and economic burden of hospitalizations for heart failure: Lessons learned from hospitalized heart failure registries. J. Am. Coll. Cardiol. 2014, 63, 1123–1133. [Google Scholar] [CrossRef] [PubMed]
- Zuckerman, R.B.; Sheingold, S.H.; Orav, E.J.; Ruhter, J.; Epstein, A.M. Readmissions, Observation, and the Hospital Readmissions Reduction Program. N. Engl. J. Med. 2016, 374, 1543–1551. [Google Scholar] [CrossRef] [PubMed]
- Seferović, P.M.; Vardas, P.; Jankowska, E.A.; Maggioni, A.P.; Timmis, A.; Milinković, I.; Polovina, M.; Gale, C.P.; Lund, L.H.; Lopatin, Y.; et al. The Heart Failure Association Atlas: Heart Failure Epidemiology and Management Statistics 2019. Eur. J. Heart Fail. 2021, 23, 906–914. [Google Scholar] [CrossRef]
- Gerber, Y.; Weston, S.A.; Redfield, M.M.; Chamberlain, A.M.; Manemann, S.M.; Jiang, R.; Killian, J.M.; Roger, V.L. A contemporary appraisal of the heart failure epidemic in Olmsted County, Minnesota, 2000 to 2010. JAMA Intern. Med. 2015, 175, 996–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Virani, S.S.; Alonso, A.; Aparicio, H.J.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Cheng, S.; Delling, F.N.; et al. Heart disease and stroke statistics-2021 update: A report from the American Heart Association. Circulation 2021, 143, e254–e743. [Google Scholar] [CrossRef]
- United States Census. 2020 Demographic Analysis. Available online: https://www.Census.Gov/ (accessed on 15 February 2021).
- Zuchi, C.; Tritto, I.; Carluccio, E.; Mattei, C.; Cattadori, G.; Ambrosio, G. Role of endothelial dysfunction in heart failure. Heart Fail. Rev. 2020, 25, 21–30. [Google Scholar] [CrossRef]
- Maréchaux, S.; Samson, R.; van Belle, E.; Breyne, J.; de Monte, J.; Dédrie, C.; Chebai, N.; Menet, A.; Banfi, C.; Bouabdallaoui, N.; et al. Vascular and Microvascular Endothelial Function in Heart Failure with Preserved Ejection Fraction. J. Card. Fail. 2016, 22, 3–11. [Google Scholar] [CrossRef]
- Franssen, C.; Chen, S.; Unger, A.; Korkmaz, H.I.; De Keulenaer, G.W.; Tschöpe, C.; Leite-Moreira, A.F.; Musters, R.; Niessen, H.W.; Linke, W.A.; et al. Myocardial microvascular inflammatory endothelial activation in heart failure with preserved ejection fraction. JACC Heart Fail. 2016, 4, 312–324. [Google Scholar] [CrossRef] [PubMed]
- Kitzman, D.W.; Brubaker, P.H.; Herrington, D.M.; Morgan, T.M.; Stewart, K.P.; Hundley, W.G.; Abdelhamed, A.; Haykowsky, M.J. Effect of endurance exercise training on endothelial function and arterial stiffness in older patients with heart failure and preserved ejection fraction: A randomized, controlled, single-blind trial. J. Am. Coll. Cardiol. 2013, 62, 584–592. [Google Scholar] [CrossRef]
- Adams, V.; Reich, B.; Uhlemann, M.; Niebauer, J. Molecular effects of exercise training in patients with cardiovascular disease: Focus on skeletal muscle, endothelium, and myocardium. Am. J. Physiol. Heart Circ. Physiol. 2017, 313, H72–H88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wisløff, U.; Støylen, A.; Loennechen, J.P.; Bruvold, M.; Rognmo, Ø.; Haram, P.M.; Tjønna, A.E.; Helgerud, J.; Slørdahl, S.A.; Lee, S.J.; et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: A randomized study. Circulation 2007, 115, 3086–3094. [Google Scholar] [CrossRef] [Green Version]
- Pearson, M.J.; Smart, N.A. Effect of exercise training on endothelial function in heart failure patients: A systematic review meta-analysis. Int. J. Cardiol. 2017, 231, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Pelliccia, A.; Sharma, S.; Gati, S.; Bäck, M.; Börjesson, M.; Caselli, S.; Collet, J.P.; Corrado, D.; Drezner, J.A.; Halle, M.; et al. ESC Scientific Document Group. 2020 ESC Guidelines on sports cardiology and exercise in patients with cardiovascular disease. Eur. Heart J. 2021, 42, 17–96. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E., Jr.; Drazner, M.H.; Fonarow, G.C.; Geraci, S.A.; Horwich, T.; Januzzi, J.L.; et al. American College of Cardiology Foundation; American Heart Association Task Force on Practice Guidelines. 2013 ACCF/AHA guideline for the management of heart failure: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2013, 62, e147–e239. [Google Scholar] [PubMed] [Green Version]
- Bozkurt, B.; Hershberger, R.E.; Butler, J.; Grady, K.L.; Heidenreich, P.A.; Isler, M.L.; Kirklin, J.K.; Weintraub, W.S. 2021 ACC/AHA Key Data Elements and Definitions for Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Data Standards (Writing Committee to Develop Clinical Data Standards for Heart Failure). Circ. Cardiovasc. Qual. Outcomes 2021, 14, e000102. [Google Scholar] [CrossRef] [PubMed]
- Morrone, D.; Felice, F.; Scatena, C.; De Martino, A.; Picoi, M.L.E.; Mancini, N.; Blasi, S.; Menicagli, M.; Di Stefano, R.; Bortolotti, U.; et al. Role of circulating endothelial progenitor cells in the reparative mechanisms of stable ischemic myocardium. Int. J. Cardiol. 2018, 257, 243–246. [Google Scholar] [CrossRef]
- Chan, K.H.; Simpson, P.J.; Yong, A.S.; Dunn, L.L.; Chawantanpipat, C.; Hsu, C.; Yu, Y.; Keech, A.C.; Celermajer, D.S.; Ng, M.K. The relationship between endothelial progenitor cell populations and epicardial and microvascular coronary disease-a cellular, angiographic and physiologic study. PLoS ONE 2014, 9, e93980. [Google Scholar] [CrossRef]
- Lopes, J.; Teixeira, M.; Cavalcante, S.; Gouveia, M.; Duarte, A.; Ferreira, M.; Simões, M.I.; Conceição, M.; Ribeiro, I.P.; Gonçalves, A.C.; et al. Reduced Levels of Circulating Endothelial Cells and Endothelial Progenitor Cells in Patients with Heart Failure with Reduced Ejection Fraction. Arch. Med. Res. 2022, 53, 289–295. [Google Scholar] [CrossRef]
- Murohara, T. Therapeutic vasculogenesis using human cord blood-derived endothelial progenitors. Trends Cardiovasc. Med. 2001, 11, 303–307. [Google Scholar] [CrossRef]
- Murohara, T.; Ikeda, H.; Duan, J.; Shintani, S.; Sasaki, K.; Eguchi, H.; Onitsuka, I.; Matsui, K.; Imaizumi, T. Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J. Clin. Investig. 2000, 105, 1527–1536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Craenenbroeck, E.M.; Conraads, V.M.; Van Bockstaele, D.R.; Haine, S.E.; Vermeulen, K.; Van Tendeloo, V.F.; Vrints, C.J.; Hoymans, V.Y. Quantification of circulating endothelial progenitor cells: A methodological comparison of six flow cytometric approaches. J. Immunol. Methods 2008, 332, 31–40. [Google Scholar] [CrossRef]
- Asahara, T.; Murohara, T.; Sullivan, A.; Silver, M.; van der Zee, R.; Li, T.; Witzenbichler, B.; Schatteman, G.; Isner, J.M. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997, 275, 964–966. [Google Scholar] [CrossRef] [PubMed]
- Gehling, U.M.; Ergün, S.; Schumacher, U.; Wagener, C.; Pantel, K.; Otte, M.; Schuch, G.; Schafhausen, P.; Mende, T.; Kilic, N.; et al. In Vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 2000, 95, 3106–3112. [Google Scholar] [CrossRef]
- Mancuso, P.; Antoniotti, P.; Quarna, J.; Calleri, A.; Rabascio, C.; Tacchetti, C.; Braidotti, P.; Wu, H.K.; Zurita, A.J.; Saronni, L.; et al. Validation of a standardized method for enumerating circulating endothelial cells and progenitors: Flow cytometry and molecular and ultrastructural analyses. Clin. Cancer Res. 2009, 15, 267–273. [Google Scholar] [CrossRef] [Green Version]
- Mancuso, P.; Burlini, A.; Pruneri, G.; Goldhirsch, A.; Martinelli, G.; Bertolini, F. Resting and activated endothelial cells are increased in the peripheral blood of cancer patients. Blood 2001, 97, 3658–3661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertolini, F.; Paul, S.; Mancuso, P.; Monestiroli, S.; Gobbi, A.; Shaked, Y.; Kerbel, R.S. Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. Cancer Res. 2003, 63, 4342–4346. [Google Scholar]
- Bertolini, F.; Shaked, Y.; Mancuso, P.; Kerbel, R.S. The multifaceted circulating endothelial cell in cancer: Towards marker and target identification. Nat. Rev. Cancer 2006, 6, 835–845. [Google Scholar] [CrossRef]
- Abdul-Salam, F.; Mansour, M.H.; Al-Shemary, T. The selective expression of distinct fucosylated glycoproteins on murine T and B lymphocyte subsets. Immunobiology 2005, 210, 695–708. [Google Scholar] [CrossRef]
- Willett, C.G.; Boucher, Y.; di Tomaso, E.; Duda, D.G.; Munn, L.L.; Tong, R.T.; Chung, D.C.; Sahani, D.V.; Kalva, S.P.; Kozin, S.V.; et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat. Med. 2004, 10, 145–147. [Google Scholar] [CrossRef]
- Willett, C.G.; Boucher, Y.; Duda, D.G.; di Tomaso, E.; Munn, L.L.; Tong, R.T.; Kozin, S.V.; Petit, L.; Jain, R.K.; Chung, D.C.; et al. Surrogate markers for antiangiogenic therapy and dose-limiting toxicities for bevacizumab with radiation and chemotherapy: Continued experience of a phase I trial in rectal cancer patients. J. Clin. Oncol. 2005, 23, 8136–8139. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.S.; Solomon, M.A.; McCoy, J.P., Jr. Detection of circulating endothelial cells and endothelial progenitor cells by flow cytometry. Cytom. B Clin. Cytom. 2005, 64, 1–8. [Google Scholar] [CrossRef]
- Goon, P.K.; Boos, C.J.; Stonelake, P.S.; Blann, A.D.; Lip, G.Y. Detection and quantification of mature circulating endothelial cells using flow cytometry and immunomagnetic beads: A methodological comparison. Thromb. Haemost. 2006, 96, 45–52. [Google Scholar] [CrossRef]
- Duda, D.G.; Cohen, K.S.; Scadden, D.T.; Jain, R.K. A protocol for phenotypic detection and enumeration of circulating endothelial cells and circulating progenitor cells in human blood. Nat. Protoc. 2007, 2, 805–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hur, J.; Yoon, C.H.; Kim, H.S.; Choi, J.H.; Kang, H.J.; Hwang, K.K.; Oh, B.H.; Lee, M.M.; Park, Y.B. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Medina, R.J.; Barber, C.L.; Sabatier, F.; Dignat-George, F.; Melero-Martin, J.M.; Khosrotehrani, K.; Ohneda, O.; Randi, A.M.; Chan, J.K.Y.; Yamaguchi, T.; et al. Endothelial progenitors: A consensus statement on nomenclature. Stem Cells Transl. Med. 2017, 6, 1316–1320. [Google Scholar] [CrossRef]
- Medina, R.J.; O’Neill, C.L.; Sweeney, M.; Guduric-Fuchs, J.; Gardiner, T.A.; Simpson, D.A.; Stitt, A.W. Molecular analysis of endothelial progenitor cell (EPC) subtypes reveals two distinct cell populations with different identities. BMC Med. Genom. 2010, 3, 18. [Google Scholar] [CrossRef] [Green Version]
- Yin, A.H.; Miraglia, S.; Zanjani, E.D.; Almeida-Porada, G.; Ogawa, M.; Leary, A.G.; Olweus, J.; Kearney, J.; Buck, D.W. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 1997, 90, 5002–5012. [Google Scholar] [CrossRef] [Green Version]
- Quirici, N.; Soligo, D.; Caneva, L.; Servida, F.; Bossolasco, P.; Deliliers, G.L. Differentiation and expansion of endothelial cells from human bone marrow CD133+ cells. Br. J. Haematol. 2001, 115, 186–194. [Google Scholar] [CrossRef]
- Hristov, M.; Erl, W.; Weber, P.C. Endothelial progenitor cells: Mobilization, differentiation, and homing. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 1185–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timmermans, F.; Plum, J.; Yoder, M.C.; Ingram, D.A.; Vandekerckhove, B.; Case, J. Endothelial progenitor cells: Identity defined? J. Cell Mol. Med. 2009, 13, 87–102. [Google Scholar] [CrossRef] [PubMed]
- Huizer, K.; Mustafa, D.A.M.; Spelt, J.C.; Kros, J.M.; Sacchetti, A. Improving the characterization of endothelial progenitor cell subsets by an optimized FACS protocol. PLoS ONE 2017, 12, e0184895. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Y.; Zhang, C.; Zhang, G.; Tao, J. Endothelial progenitor cells in cardiovascular diseases. Aging Med. 2018, 1, 204–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campioni, D.; Zauli, G.; Gambetti, S.; Campo, G.; Cuneo, A.; Ferrari, R.; Secchiero, P. In Vitro characterization of circulating endothelial progenitor cells isolated from patients with acute coronary syndrome. PLoS ONE 2013, 8, e56377. [Google Scholar] [CrossRef]
- Delorme, B.; Basire, A.; Gentile, C.; Sabatier, F.; Monsonis, F.; Desouches, C.; Blot-Chabaud, M.; Uzan, G.; Sampol, J.; Dignat-George, F. Presence of endothelial progenitor cells, distinct from mature endothelial cells, within human CD146+ blood cells. Thromb. Haemost. 2005, 94, 1270–1279. [Google Scholar] [CrossRef]
- Rapp, B.M.; Saadatzedeh, M.R.; Ofstein, R.H.; Bhavsar, J.R.; Tempel, Z.S.; Moreno, O.; Morone, P.; Booth, D.A.; Traktuev, D.O.; Dalsing, M.C.; et al. Resident endothelial progenitor cells from human placenta have greater vasculogenic potential than circulating endothelial progenitor cells from umbilical cord blood. Cell Med. 2012, 2, 85–96. [Google Scholar] [CrossRef] [Green Version]
- Farkas, S.; Simara, P.; Rehakova, D.; Veverkova, L.; Koutna, I. Endothelial progenitor cells produced from human pluripotent stem cells by a synergistic combination of cytokines, small compounds, and serum free medium. Front. Cell Dev. Biol. 2020, 8, 309. [Google Scholar] [CrossRef]
- Arta, A.; Eriksen, A.Z.; Melander, F.; Kempen, P.; Larsen, M.; Andresen, T.L.; Urquhart, A.J. Endothelial protein C-targeting liposomes show enhanced uptake and improved therapeutic efficacy in human retinal endothelial cells. Investig. Ophthalmol. Vis. Sci. 2018, 59, 2119–2132. [Google Scholar] [CrossRef] [Green Version]
- Chambers, S.E.J.; Pathak, V.; Pedrini, E.; Soret, L.; Gendron, N.; Guerin, C.L.; Stitt, A.W.; Smadja, D.M.; Medina, R.J. Current concepts on endothelial stem cells definition, location, and markers. Stem Cells Transl. Med. 2021, 10, S54–S61. [Google Scholar] [CrossRef]
- Adamcic, U.; Yurkiewich, A.; Coomber, B.L. Differential expression of Tie2 receptor and VEGFR2 by endothelial clones derived from isolated bovine mononuclear cells. PLoS ONE 2012, 7, e53385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kutikhin, A.G.; Sinitsky, M.Y.; Yuzhalin, A.E.; Velikanova, E.A. Shear stress: An essential driver of endothelial progenitor cells. J. Mol. Cell. Cardiol. 2018, 118, 46–69. [Google Scholar] [CrossRef] [PubMed]
- Jacques, N.; Vimond, N.; Conforti, R.; Griscelli, F.; Lecluse, Y.; Laplanche, A.; Malka, D.; Vielh, P.; Farace, F. Quantification of circulating mature endothelial cells using a whole blood four-color flow cytometric assay. J. Immunol. Methods 2008, 337, 132–143. [Google Scholar] [CrossRef] [PubMed]
- Hendrickx, A.; Bossuyt, X. Quantification of the leukocyte common antigen (CD45) in mature B-cell malignancies. Cytometry 2001, 46, 336–339. [Google Scholar] [CrossRef] [Green Version]
- Elshal, M.F.; Khan, S.S.; Takahashi, Y.; Solomon, M.A.; McCoy, J.P., Jr. CD146 (Mel-CAM), an adhesion marker of endothelial cells, is a novel marker of lymphocyte subset activation in normal peripheral blood. Blood 2005, 106, 2923–2924. [Google Scholar] [CrossRef] [PubMed]
- Dignat-George, F.; Sampol, J. Circulating endothelial cells in vascular disorders: New insights into an old concept. Eur. J. Haematol. 2000, 65, 215–220. [Google Scholar] [CrossRef]
- Chen, C.H.; Cheng, B.C.; Leu, S.; Sun, C.K.; Chua, S.; Yen, C.H.; Kung, C.; Chen, Y.T.; Chang, L.T.; Yip, H. Circulating level of endothelial progenitor cells in healthy Taiwanese. Acta Cardiol. Sin. 2010, 26, 94–101. [Google Scholar]
- Sen, S.; McDonald, S.P.; Coates, P.T.; Bonder, C.S. Endothelial progenitor cells: Novel biomarker and promising cell therapy for cardiovascular disease. Clin. Sci. 2011, 120, 263–283. [Google Scholar] [CrossRef] [Green Version]
- Asahara, T.; Kawamoto, A.; Masuda, H. Concise review: Circulating endothelial progenitor cells for vascular medicine. Stem Cells 2011, 29, 1650–1655. [Google Scholar] [CrossRef]
- Schmidt-Lucke, C.; Rössig, L.; Fichtlscherer, S.; Vasa, M.; Britten, M.; Kämper, U.; Dimmeler, S.; Zeiher, A.M. Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: Proof of concept for the clinical importance of endogenous vascular repair. Circulation 2005, 111, 2981–2987. [Google Scholar] [CrossRef] [Green Version]
- Fujisue, K.; Sugiyama, S.; Matsuzawa, Y.; Akiyama, E.; Sugamura, K.; Matsubara, J.; Kurokawa, H.; Maeda, H.; Hirata, Y.; Kusaka, H.; et al. Prognostic Significance of Peripheral Microvascular Endothelial Dysfunction in Heart Failure with Reduced Left Ventricular Ejection Fraction. Circ. J. 2015, 79, 2623–2631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.C.; Ho, C.W.; Tsai, H.H.; Wang, J.S. Interval and continuous exercise regimens suppress neutrophilderived microparticle formation and neutrophil-promoted thrombin generation under hypoxic stress. Clin. Sci. 2015, 128, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Vasa, M.; Fichtlscherer, S.; Aicher, A.; Adler, K.; Urbich, C.; Martin, H.; Zeiher, A.M.; Dimmeler, S. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ. Res. 2001, 89, E1–E7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imanishi, T.; Moriwaki, C.; Hano, T.; Nishio, I. Endothelial progenitor cell senescence is accelerated in both experimental hypertensive rats and patients with essential hypertension. J. Hypertens. 2005, 23, 1831–1837. [Google Scholar] [CrossRef] [PubMed]
- Eizawa, T.; Ikeda, U.; Murakami, Y.; Matsui, K.; Yoshioka, T.; Takahashi, M.; Muroi, K.; Shimada, K. Decrease in circulating endothelial progenitor cells in patients with stable coronary artery disease. Heart 2004, 90, 685–686. [Google Scholar] [CrossRef] [Green Version]
- Briguori, C.; Testa, U.; Riccioni, R.; Colombo, A.; Petrucci, E.; Condorelli, G.; Mariani, G.; D’Andrea, D.; De Micco, F.; Rivera, N.V.; et al. Correlations between progression of coronary artery disease and circulating endothelial progenitor cells. FASEB J. 2010, 24, 1981–1988. [Google Scholar] [CrossRef]
- Tao, J.; Liu, D.H.; Wang, L.C.; Wang, J.M.; Wang, Y.; Yang, Z.; Lou, Z.F.; Tang, A.L. Arterial elasticity identified by pulse wave analysis and its relation to endothelial function in patients with coronary artery disease. J. Hum. Hypertens. 2007, 21, 149–153. [Google Scholar] [CrossRef] [Green Version]
- Hare, J.M.; Stamler, J.S. NO/redox disequilibrium in the failing heart and cardiovascular system. J. Clin. Investig. 2005, 115, 509–517. [Google Scholar] [CrossRef] [Green Version]
- Kakzanov, Y.; Sevilya, Z.; Veturi, M.; Goldman, A.; Lev, E.I. Circulating Endothelial Progenitor Cells in Patients with Heart Failure with Preserved versus Reduced Ejection Fraction. Isr. Med. Assoc. J. 2021, 23, 364–368. [Google Scholar]
- Samman Tahhan, A.; Hammadah, M.; Sandesara, P.B.; Hayek, S.S.; Kalogeropoulos, A.P.; Alkhoder, A.; Mohamed Kelli, H.; Topel, M.; Ghasemzadeh, N.; Chivukula, K.; et al. Progenitor cells and clinical outcomes in patients with heart failure. Circ. Heart Fail. 2017, 10, e004106. [Google Scholar] [CrossRef]
- Chiang, C.H.; Huang, P.H.; Leu, H.B.; Hsu, C.Y.; Wang, K.F.; Chen, J.W.; Lin, S.J. Decreased circulating endothelial progenitor cell levels in patients with heart failure with preserved ejection fraction. Cardiology 2013, 126, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Koller, L.; Hohensinner, P.; Sulzgruber, P.; Blum, S.; Maurer, G.; Wojta, J.; Hülsmann, M.; Niessner, A. Prognostic relevance of circulating endothelial progenitor cells in patients with chronic heart failure. Thromb. Haemost. 2016, 116, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Berezin, A.E.; Kremzer, A.A.; Martovitskaya, Y.V.; Samura, T.A.; Berezina, T.A.; Zulli, A.; Klimas, J.; Kruzliak, P. The utility of biomarker risk prediction score in patients with chronic heart failure. Int. J. Clin. Exp. Med. 2015, 8, 18255–18264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michowitz, Y.; Goldstein, E.; Wexler, D.; Sheps, D.; Keren, G.; George, J. Circulating endothelial progenitor cells and clinical outcome in patients with congestive heart failure. Heart 2007, 93, 1046–1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kissel, C.K.; Lehmann, R.; Assmus, B.; Aicher, A.; Honold, J.; Fischer-Rasokat, U.; Heeschen, C.; Spyridopoulos, I.; Dimmeler, S.; Zeiher, A.M. Selective functional exhaustion of hematopoietic progenitor cells in the bone marrow of patients with postinfarction heart failure. J. Am. Coll. Cardiol. 2007, 49, 2341–2349. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.H.; Lin, C.P.; Lin, Y.H.; Hsu, C.C.; Wang, J.S. High-intensity Interval training enhances mobilization/functionality of endothelial progenitor cells and depressed shedding of vascular endothelial cells undergoing hypoxia. Eur. J. Appl. Physiol. 2016, 116, 2375–2388. [Google Scholar] [CrossRef]
- Wang, J.S.; Lee, M.Y.; Lien, H.Y.; Weng, T.P. Hypoxic exercise training improves cardiac/muscular hemodynamics and is associated with modulated circulating progenitor cells in sedentary men. Int. J. Cardiol. 2014, 170, 315–323. [Google Scholar] [CrossRef]
- Ribeiro, F.; Ribeiro, I.P.; Alves, A.J.; do Céu Monteiro, M.; Oliveira, N.L.; Oliveira, J.; Amado, F.; Remião, F.; Duarte, J.A. Effects of exercise training on endothelial progenitor cells in cardiovascular disease: A systematic review. Am. J. Phys. Med. Rehabil. 2013, 92, 1020–1030. [Google Scholar] [CrossRef]
- Scalone, G.; De Caterina, A.; Leone, A.M.; Tritarelli, A.; Mollo, R.; Pinnacchio, G.; D’Amario, D.; Lanza, G.A.; Crea, F. Effect of exercise on circulating endothelial progenitor cells in microvascular angina. Circ. J. 2013, 77, 1777–1782. [Google Scholar] [CrossRef] [Green Version]
- De Biase, C.; De Rosa, R.; Luciano, R.; De Luca, S.; Capuano, E.; Trimarco, B.; Galasso, G. Effects of physical activity on endothelial progenitor cells (EPCs). Front. Physiol. 2013, 4, 414. [Google Scholar] [CrossRef] [Green Version]
- Waclawovsky, G.; Boll, L.F.C.; Eibel, B.; Alegretti, A.P.; Spagnol, F.; De Paoli, J.; Wajner, S.; Marschner, R.A.; Schaun, M.I.; Lehnen, A.M. Individuals with controlled hypertension show endothelial integrity following a bout of moderate-intensity exercise: Randomized clinical trial. Sci. Rep. 2021, 11, 8528. [Google Scholar] [CrossRef] [PubMed]
- Jo, E.A.; Cho, K.I.; Park, J.J.; Im, D.S.; Choi, J.H.; Kim, B.J. Effects of High-Intensity Interval Training Versus Moderate-Intensity Continuous Training on Epicardial Fat Thickness and Endothelial Function in Hypertensive Metabolic Syndrome. Metab. Syndr. Relat. Disord. 2020, 18, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Kourek, C.; Karatzanos, E.; Psarra, K.; Ntalianis, A.; Mitsiou, G.; Delis, D.; Linardatou, V.; Pittaras, T.; Vasileiadis, I.; Dimopoulos, S.; et al. Endothelial progenitor cells mobilization after maximal exercise in patients with chronic heart failure. Hell. J. Cardiol. 2021, 62, 70–72. [Google Scholar] [CrossRef] [PubMed]
- Kourek, C.; Alshamari, M.; Mitsiou, G.; Psarra, K.; Delis, D.; Linardatou, V.; Pittaras, T.; Ntalianis, A.; Papadopoulos, C.; Panagopoulou, N.; et al. The acute and long-term effects of a cardiac rehabilitation program on endothelial progenitor cells in chronic heart failure patients: Comparing two different exercise training protocols. Int. J. Cardiol. Heart. Vasc. 2020, 32, 100702. [Google Scholar] [CrossRef] [PubMed]
- Kourek, C.; Karatzanos, E.; Psarra, K.; Georgiopoulos, G.; Delis, D.; Linardatou, V.; Gavrielatos, G.; Papadopoulos, C.; Nanas, S.; Dimopoulos, S. Endothelial progenitor cells mobilization after maximal exercise according to heart failure severity. World J. Cardiol. 2020, 12, 526–539. [Google Scholar] [CrossRef]
- Van Craenenbroeck, E.M.; Beckers, P.J.; Possemiers, N.M.; Wuyts, K.; Frederix, G.; Hoymans, V.Y.; Wuyts, F.; Paelinck, B.P.; Vrints, C.J.; Conraads, V.M. Exercise acutely reverses dysfunction of circulating angiogenic cells in chronic heart failure. Eur. Heart J. 2010, 31, 1924–1934. [Google Scholar] [CrossRef] [Green Version]
- Van Craenenbroeck, E.M.; Bruyndonckx, L.; Van Berckelaer, C.; Hoymans, V.Y.; Vrints, C.J.; Conraads, V.M. The effect of acute exercise on endothelial progenitor cells is attenuated in chronic heart failure. Eur. J. Appl. Physiol. 2011, 111, 2375–2379. [Google Scholar] [CrossRef]
- Van Craenenbroeck, E.M.; Denollet, J.; Paelinck, B.P.; Beckers, P.; Possemiers, N.; Hoymans, V.Y.; Vrints, C.J.; Conraads, V.M. Circulating CD34+/KDR+ endothelial progenitor cells are reduced in chronic heart failure patients as a function of Type D personality. Clin. Sci. 2009, 117, 165–172. [Google Scholar] [CrossRef] [Green Version]
- Sarto, P.; Balducci, E.; Balconi, G.; Fiordaliso, F.; Merlo, L.; Tuzzato, G.; Pappagallo, G.L.; Frigato, N.; Zanocco, A.; Forestieri, C.; et al. Effects of exercise training on endothelial progenitor cells in patients with chronic heart failure. J. Card. Fail. 2007, 13, 701–708. [Google Scholar] [CrossRef]
- Erbs, S.; Höllriegel, R.; Linke, A.; Beck, E.B.; Adams, V.; Gielen, S.; Möbius-Winkler, S.; Sandri, M.; Kränkel, N.; Hambrecht, R.; et al. Exercise training in patients with advanced chronic heart failure (NYHA IIIb) promotes restoration of peripheral vasomotor function, induction of endogenous regeneration, and improvement of left ventricular function. Circ. Heart Fail. 2010, 3, 486–494. [Google Scholar] [CrossRef] [Green Version]
- Van Craenenbroeck, E.M.; Hoymans, V.Y.; Beckers, P.J.; Possemiers, N.M.; Wuyts, K.; Paelinck, B.P.; Vrints, C.J.; Conraads, V.M. Exercise training improves function of circulating angiogenic cells in patients with chronic heart failure. Basic Res. Cardiol. 2010, 105, 665–676. [Google Scholar] [CrossRef] [PubMed]
- Gatta, L.; Armani, A.; Iellamo, F.; Consoli, C.; Molinari, F.; Caminiti, G.; Volterrani, M.; Rosano, G.M. Effects of a short-term exercise training on serum factors involved in ventricular remodelling in chronic heart failure patients. Int. J. Cardiol. 2012, 155, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Eleuteri, E.; Mezzani, A.; Di Stefano, A.; Vallese, D.; Gnemmi, I.; Delle Donne, L.; Taddeo, A.; Della Bella, S.; Giannuzzi, P. Aerobic training and angiogenesis activation in patients with stable chronic heart failure: A preliminary report. Biomarkers 2013, 18, 418–424. [Google Scholar] [CrossRef] [Green Version]
- Mezzani, A.; Grassi, B.; Jones, A.M.; Giordano, A.; Corrà, U.; Porcelli, S.; Della Bella, S.; Taddeo, A.; Giannuzzi, P. Speeding of pulmonary VO2 on-kinetics by light-to-moderate-intensity aerobic exercise training in chronic heart failure: Clinical and pathophysiological correlates. Int. J. Cardiol. 2013, 167, 2189–2195. [Google Scholar] [CrossRef] [PubMed]
- Sandri, M.; Viehmann, M.; Adams, V.; Rabald, K.; Mangner, N.; Höllriegel, R.; Lurz, P.; Erbs, S.; Linke, A.; Kirsch, K.; et al. Chronic heart failure and aging—Effects of exercise training on endothelial function and mechanisms of endothelial regeneration: Results from the Leipzig Exercise Intervention in Chronic heart failure and Aging (LEICA) study. Eur. J. Prev. Cardiol. 2016, 23, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Gu, S.; Song, Y.; Ji, X.; Zeng, W.; Wang, X.; Wang, Y.; Feng, Q. The impact of cardiomotor rehabilitation on endothelial function in elderly patients with chronic heart failure. BMC Cardiovasc. Disord. 2021, 21, 524. [Google Scholar] [CrossRef] [PubMed]
- Van Craenenbroeck, E.M.; Conraads, V.M. Mending injured endothelium in chronic heart failure: A new target for exercise training. Int. J. Cardiol. 2013, 166, 310–314. [Google Scholar] [CrossRef]
- Minhajat, R.; Nilasari, D.; Bakri, S. The Role of Endothelial Progenitor Cell in Cardiovascular Disease Risk Factors. Acta Med. Indones. 2015, 47, 340–347. [Google Scholar]
- Reriani, M.K.; Flammer, A.J.; Jama, A.; Lerman, L.O.; Lerman, A. Novel functional risk factors for the prediction of cardiovascular events in vulnerable patients following acute coronary syndrome. Circ. J. 2012, 76, 778–783. [Google Scholar] [CrossRef] [Green Version]
- Marcelo, K.L.; Sills, T.M.; Coskun, S.; Vasavada, H.; Sanglikar, S.; Goldie, L.C.; Hirschi, K.K. Hemogenic endothelial cell specification requires c-Kit, Notch signaling, and p27-mediated cell-cycle control. Dev. Cell 2013, 27, 504–515. [Google Scholar] [CrossRef] [Green Version]
- Herbert, S.P.; Stainier, D.Y. Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat. Rev. Mol. Cell Biol. 2011, 12, 551–564. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.Y.; Lee, Y.K.; Wang, Y.; Tse, H.F. Therapeutic application of endothelial progenitor cells for treatment of cardiovascular diseases. Curr. Stem Cell Res. Ther. 2014, 9, 401–414. [Google Scholar] [CrossRef]
- Pober, J.S.; Min, W.; Bradley, J.R. Mechanisms of endothelial dysfunction, injury, and death. Annu. Rev. Pathol. 2009, 4, 71–95. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Song, J.; Yu, L.; Zheng, H.; Zhou, B.; Weng, S.; Fu, G. Safety and efficacy of autologous thymosin beta4 pre-treated endothelial progenitor cell transplantation in patients with acute ST segment elevation myocardial infarction: A pilot study. Cytotherapy 2016, 18, 1037–1042. [Google Scholar] [CrossRef]
- Chong, M.S.; Ng, W.K.; Chan, J.K. Concise review: Endothelial progenitor cells in regenerative medicine: Applications and challenges. Stem Cells Transl. Med. 2016, 5, 530–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assmus, B.; Honold, J.; Schächinger, V.; Britten, M.B.; Fischer-Rasokat, U.; Lehmann, R.; Teupe, C.; Pistorius, K.; Martin, H.; Abolmaali, N.D.; et al. Transcoronary transplantation of progenitor cells after myocardial infarction. N. Engl. J. Med. 2006, 355, 1222–1232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quyyumi, A.A.; Vasquez, A.; Kereiakes, D.J.; Klapholz, M.; Schaer, G.L.; Abdel-Latif, A.; Frohwein, S.; Henry, T.D.; Schatz, R.A.; Dib, N.; et al. PreSERVE-AMI: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial of Intracoronary Administration of Autologous CD34+ Cells in Patients with Left Ventricular Dysfunction Post STEMI. Circ. Res. 2017, 120, 324–331. [Google Scholar] [CrossRef] [Green Version]
- Oikonomou, E.; Siasos, G.; Zaromitidou, M.; Hatzis, G.; Mourouzis, K.; Chrysohoou, C.; Zisimos, K.; Mazaris, S.; Tourikis, P.; Athanasiou, D.; et al. Atorvastatin treatment improves endothelial function through endothelial progenitor cells mobilization in ischemic heart failure patients. Atherosclerosis 2015, 238, 159–164. [Google Scholar] [CrossRef] [PubMed]
Study | Sample Size | EPCs Phenotypes | Primary Outcomes | Results |
---|---|---|---|---|
Koller et al. [73] | 185 chronic HF (87 ischemic; 98 non-ischemic) | CD34+/CD45dim/KDR+ | All-cause mortality and combined cardiovascular endpoint (death due to cardiovascular events and heart transplantation) | Inverse correlation between EPCs and all-cause mortality. No difference in predictive value between ischemic and non-ischemic chronic HF. |
Tahhan et al. [71] | 1467 subjects (514 chronic HF; 953 controls) | CD34+ CD34+/CD133+ CD34+/VEGFR-2+ CD34+/CXCR4+ | Adverse cardiovascular outcomes:
| 3 out of 4 EPCs populations inversely related to rates of all-cause and cardiovascular death. No correlation between EPCs levels and hospitalization. |
Berezin et al. [74] | 388 chronic HF | CD14+/CD309+ CD14+/CD309+/Tie-2+ | Utility of biomarkers in assessment of 3-year fatal and non-fatal cardio-vascular events | CD14+/CD309+/Tie-2+ independently predicted cumulative cardiovascular events in chronic HF patients. |
Michowitz et al. [75] | 107 chronic HF (ischemic and non-ischemic) | CD31+/Tie-2+ | Relationship between circulating EPCs levels and chronic HF outcomes:
| EPCs independently predicted HF mortality. No correlation with hospitalizations due to chronic HF. |
Chiang et al. [72] | 153 subjects [84 chronic HF (44 HFpEF patients and 40 HFrEF patients) and 69 controls] | CD34+/CD45low CD34+/KDR+/CD45low CD34+/KDR+/CD133+/CD45 low | Relationship between EPCs levels, HFpEF and HFrEF: hs CRP, LVEF, left atrium diameter and the ratio of medial early filling to early diastolic mitral annular velocity. | Decreased circulating EPC numbers in HFpEF and HFrEF patients indicates impaired endothelial turnover. |
Kissel et al. [76] | 62 subjects [45 chronic HF (25 ischemic and 20 dilated cardiomyopathy) and 17 controls] | CD34+/CD45+ | Relationship between EPCs levels and LV remoddeling process. | Selective impairment of EPCs function in ischemic cardiomyopathy contributes to an unfavorable LV remodeling process. |
Study | Type of Exercise | Study Design | Exercise Prescription | EPCs Phenotypes | Time Points of Blood Samples | Results |
---|---|---|---|---|---|---|
Van Craenenbroeck E.M. et al. [89] | Acute | 35 sedentary men with chronic HF with EF ≤ 45% (2 groups; Type D and non-Type D patients).
| Symptom-limited CPET on a graded bicycle ergometer | CD34+/KDR+ | 2 time points: Immediately before and 10 min after peak exercise (CPET) |
|
Van Craenenbroeck E.M. et al. [87] | Acute | 41 chronic HF patients with EF ≤ 40% (2 groups; 22 mild HF and 19 severe HF) 13 healthy subjects
| Symptom-limited CPET on a graded bicycle ergometer | CD34+/CD3− CD34+/KDR+/CD3− | 2 time points: Immediately before and 10 min after peak exercise (CPET) |
|
Van Craenenbroeck E.M. et al. [88] | Acute | 7 chronic HF patients with EF ≤ 40% and 8 healthy subjects (HS: 4 young and 4 age-matched subjects) | Symptom-limited graded exercise testing (GXT) on a graded bicycle ergometer | CD34+/KDR+/CD3− CD34+/CD3− | 2 time points: Immediately before and subsequently 10, 30, and 60 min, 2, 4, 8, 12, 24 and 48 h after peak exercise (GXT) |
|
Kourek C. et al. [84] | Acute | 49 consecutive patients with stable chronic HF and EF ≤ 49% | Ramp incremental symptom-limited maximal CPET on a cycle ergometer | EPCs (3 subgroups)
| 2 time points: Immediately before and within 10 min after peak exercise (CPET) | Increase in the mobilizations in all EPCs and CECs populations after maximal exercise (p < 0.01). |
Kourek C. et al. [86] | Acute | 49 consecutive patients with stable chronic HF and EF ≤ 49% [2 groups of HF severity each time according to the median value of peak VO2, predicted peak VO2, VE/VCO2 slope and EF (reduced and mid-ranged)]
| Ramp incremental symptom-limited maximal CPET on a cycle ergometer | EPCs (3 subgroups)
| 2 time points: Immediately before and within 10 min after peak exercise (CPET) |
|
Kourek C. et al. [85] | Acute | 44 patients with stable chronic HF and EF ≤ 49% | Ramp incremental symptom-limited maximal CPET on a cycle ergometer | EPCs (3 subgroups)
| 2 time points: Immediately before and within 10 min after peak exercise (CPET) | Increase in the mobilizations in all EPCs and CECs populations after maximal exercise (p < 0.01). |
Sarto P. et al. [90] | Exercise training | 22 stable patients with symptomatic chronic HF with EF ≤ 40% and peak VO2 ≤ 25 mL/kg/min.
|
| CD34+/KDR+ | 3 time points: At baseline and after 8 weeks of SAT. At least 48 h after the last exercise session. |
|
Erbs S. et al. [91] | Exercise training | 37 patients with chronic HF and EF ≤ 30% [2 groups; exercise training (ET) group and control group].
| ET group: In-hospital during the first 3 weeks, exercise 3 to 6 times daily for 5 to 20 min on a bicycle ergometer at 50% of peak VO2. Then on discharge, 20 to 30 min for 12 weeks at home and 60 min of supervised exercise each week consisting of walking, calisthenics and noncompetitive ball games. Control group: 12 weeks sedentary life | CD34+/KDR+ | 2 time points: At the beginning of the study and after 12 weeks | ET improved:
|
Van Craenenbroeck E.M. et al. [92] | Exercise training | 21 sedentary chronic HF patients with EF ≤ 40% underwent 6-month exercise training and were compared to a sedentary control group (n = 17) and 10 healthy age-matched subjects.
| 60 min per session, 3 times/week for 6 months. Endurance training intensity: 90% of heart rate CXT: CPET on a graded bicycle ergometer with exercise load at 20 or 40 W, with incremental steps of 10 or 20 W/min. | CD34+/KDR+/CD3− CD34+/CD3− | 4 time points: Before and 10 min after peak exercise (GXT) at baseline and after 6 months |
|
Gatta L. et al. [93] | Exercise training | Training group: 14 patients with chronic HF due to coronary artery disease with EF < 40% Control group: 15 matched patients with chronic HF and EF 55 ± 3% (only baseline measurements)
| Training group: 2 daily sessions for 6 days a week for 3 weeks. Session: calisthenics, 30 min of aerobic exercise on a bicycle ergometer with incremental, workload. Intensity at 85% of HRmax, or at 75% of HRmax for >65 years old. Initial CPET on an electrically braked bicycle ergometer (1 min of unloading pedaling and increased by 10 W every minute until pedaling rate <60 rpm). | CD34/KDR+ | 2 time points: At admission and at least 24 h after the last exercise session. | After exercise training:
|
Eleuteri E. et al. [94] | Exercise training | 21 male patients with chronic HF and EF ≤ 40% were randomized in either a 3-month aerobic training (CHF-TR) performed at home, or control group (CHF-C).
| CHF-TR: 5 sessions a week of 30-min cycle ergometry (60 rev/min) at a power and heart rate corresponding to VAT, preceded and followed by a 5-min warm-up and cool-down unloaded period. Controls: normal lifestyle activities. | CD45dim/CD34+/KDR+ | 2 time points: At baseline before and after the 3-month exercise training program. |
|
Mezzani A. et al. [95] | Exercise training | 30 chronic HF patients with EF ≤ 40% were randomized to 3 months of light-to-moderate-intensity AET (CHF-AET) or control (CHF-C or normal volunteers).
AET program in HF. | CHF-AET: 5 sessions a week of 30-min cycling (60 rpm) for 3 months followed by 5-min warm-up and cool-down periods of unloaded cycling. An incremental CPET was repeated 6 weeks after protocol start to adjust training stimulus intensity. CHF-C: daily lifestyle and activities without undergoing any formal training protocol. | CD45dim/CD34+/KDR+ | 2 time points: At baseline and after the end of the exercise training program | After exercise training:
|
Sandri M. et al. [96] | Exercise training | 60 patients with stable chronic HF with EF ≤ 40% and 60 referent controls (RC) to a training or a control group. In total, 4 groups; RC ≤ 55 years, RC ≥ 65 years, CHF ≤ 55 years, CHF ≥ 65 years.
| Training group: aerobic exercise 4 times daily for 15–20 min on a bicycle ergometer at 60% to 70% of VO2max for 4 weeks under supervision. | CD34+/KDR+ | 2 time points: At baseline and after the 4-week exercise training program | At baseline:
|
Kourek C. et al. [85] | Exercise training | 44 patients with stable chronic HF with EF ≤49% randomized in either high-intensity interval training (HIIT) or HIIT combined with muscle strength (COM), and subsequently divided in 2 groups according to NYHA status (NYHA II or III).
| 36-session exercise training program, 3 times per week. HIIT: Cycling for 7 min warm-up at 45% peak VO2 on a stationary bike, followed by 3 min at 50% peak VO2. Four 4-min intervals at 80% peak VO2 were alternated with 3-min repetitions at 50% peak VO2. Workload intensity gradually increased to reach + 25% by the end. Total duration of each session 31 min. In the end, narrow corridor walking, backward narrow corridor walking and side walking in both sides. COM: HIIT including strength training of 2–3 sets, 10–12 repetitions, 60–75% of 1RM (knee extension, knee flexion and chest press exercises with 1-min rest between sets) | EPCs (3 subgroups)
| 4 time points: Immediately before and within 10 min after maximal exercise (CPET), at baseline before and after the exercise training program |
|
Chen J. et al. [97] | Exercise training | 80 elderly patients (between 65 and 80) with chronic HF of grade II or III randomly divided in training and control group.
| Training group: exercise training for 12 weeks, 3–5 times a week and free walk for 30–60 min a day. Control group: treated routinely and walked freely for 30–60 min every day, simple exercises at the bedside or indoors. | CD34+/KDR+ | 2 time points: At baseline before and immediately after the exercise training program | At baseline:
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kourek, C.; Briasoulis, A.; Zouganeli, V.; Karatzanos, E.; Nanas, S.; Dimopoulos, S. Exercise Training Effects on Circulating Endothelial and Progenitor Cells in Heart Failure. J. Cardiovasc. Dev. Dis. 2022, 9, 222. https://doi.org/10.3390/jcdd9070222
Kourek C, Briasoulis A, Zouganeli V, Karatzanos E, Nanas S, Dimopoulos S. Exercise Training Effects on Circulating Endothelial and Progenitor Cells in Heart Failure. Journal of Cardiovascular Development and Disease. 2022; 9(7):222. https://doi.org/10.3390/jcdd9070222
Chicago/Turabian StyleKourek, Christos, Alexandros Briasoulis, Virginia Zouganeli, Eleftherios Karatzanos, Serafim Nanas, and Stavros Dimopoulos. 2022. "Exercise Training Effects on Circulating Endothelial and Progenitor Cells in Heart Failure" Journal of Cardiovascular Development and Disease 9, no. 7: 222. https://doi.org/10.3390/jcdd9070222
APA StyleKourek, C., Briasoulis, A., Zouganeli, V., Karatzanos, E., Nanas, S., & Dimopoulos, S. (2022). Exercise Training Effects on Circulating Endothelial and Progenitor Cells in Heart Failure. Journal of Cardiovascular Development and Disease, 9(7), 222. https://doi.org/10.3390/jcdd9070222