Tight Blood Pressure Control in Chronic Kidney Disease
Abstract
:1. Introduction
2. Current Guidelines on BP Targets in Non-Dialysis CKD Patients
2.1. Hypertension Guidelines
2.2. Renal Guidelines
3. Benefits and Harms of Specific Antihypertensive Drugs in CKD Patients
3.1. Non-Diabetic Kidney Disease
3.2. Diabetic Kidney Disease
4. Blood Pressure Targets in Special Populations
4.1. Children
4.2. Elderly
4.3. Dialysis Patients
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mills, K.T.; Stefanescu, A.; He, J. The global epidemiology of hypertension. Nat. Rev. Nephrol. 2020, 16, 223–237. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Health Risks. Mortality and Burden of Disease Attributable To selected Major Risks. 2009. Available online: http://www.who.int/healthinfo/global_burden_disease/GlobalHealthRisks_report_full.pdf (accessed on 7 April 2022).
- Foreman, K.J.; Marquez, N.; Dolgert, A.; Fukutaki, K.; Fullman, N.; McGaughey, M.; Pletcher, M.A.; Smith, A.E.; Tang, K.; Yuan, C.-W.; et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: Reference and alternative scenarios for 2016–40 for 195 countries and territories. Lancet 2018, 392, 2052–2090. [Google Scholar] [CrossRef] [Green Version]
- Pugh, D.; Gallacher, P.J.; Dhaun, N. Management of Hypertension in Chronic Kidney Disease. Drugs 2019, 79, 365–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakris, G.L.; Ritz, E. The message for World Kidney Day 2009: Hypertension and kidney disease--a marriage that should be prevented. J. Hypertens. 2009, 27, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Gansevoort, R.T.; Correa-Rotter, R.; Hemmelgarn, B.R.; Jafar, T.H.; Heerspink, H.J.; Mann, J.F.; Matsushita, K.; Wen, C.P. Chronic kidney disease and cardiovascular risk: Epidemiology, mechanisms, and prevention. Lancet 2013, 382, 339–352. [Google Scholar] [CrossRef]
- Stevens, P.E.; Levin, A. Evaluation and management of chronic kidney disease: Synopsis of the kidney disease: Improving global outcomes 2012 clinical practice guideline. Ann. Intern. Med. 2013, 158, 825–830. [Google Scholar] [CrossRef] [Green Version]
- Foley, R.N.; Murray, A.M.; Li, S.; Herzog, C.A.; McBean, A.M.; Eggers, P.W.; Collins, A.J. Chronic kidney disease and the risk for cardiovascular disease, renal replacement, and death in the United States Medicare population, 1998 to 1999. J. Am. Soc. Nephrol. 2005, 16, 489–495. [Google Scholar] [CrossRef]
- Lee, J.Y.; Park, J.T.; Joo, Y.S.; Lee, C.; Yun, H.R.; Yoo, T.H.; Kang, S.W.; Choi, K.H.; Ahn, C.; Oh, K.H.; et al. Association of Blood Pressure With the Progression of CKD: Findings From KNOW-CKD Study. Am. J. Kidney Dis. 2021, 78, 236–245. [Google Scholar] [CrossRef]
- Lee, Y.B.; Lee, J.S.; Hong, S.H.; Kim, J.A.; Roh, E.; Yoo, H.J.; Baik, S.H.; Choi, K.M. Optimal blood pressure for patients with chronic kidney disease: A nationwide population-based cohort study. Sci. Rep. 2021, 11, 1538. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence (NICE). Chronic Kidney Disease: Assessment and Management. 2021. Available online: https://www.nice.org.uk/guidance/ng203/resources/chronic-kidney-disease-assessment-and-management-pdf-66143713055173 (accessed on 7 April 2022).
- Taler, S.J.; Agarwal, R.; Bakris, G.L.; Flynn, J.T.; Nilsson, P.M.; Rahman, M.; Sanders, P.W.; Textor, S.C.; Weir, M.R.; Townsend, R.R. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for management of blood pressure in CKD. Am. J. Kidney Dis. 2013, 62, 201–213. [Google Scholar] [CrossRef] [Green Version]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E., Jr.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2018, 71, e127–e248. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J. Hypertens. 2018, 36, 1953–2041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, P.A.; Oparil, S.; Carter, B.L.; Cushman, W.C.; Dennison-Himmelfarb, C.; Handler, J.; Lackland, D.T.; LeFevre, M.L.; MacKenzie, T.D.; Ogedegbe, O.; et al. 2014 Evidence-Based Guideline for the Management of High Blood Pressure in Adults: Report From the Panel Members Appointed to the Eighth Joint National Committee (JNC 8). JAMA 2014, 311, 507–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verbeke, F.; Lindley, E.; Van Bortel, L.; Vanholder, R.; London, G.; Cochat, P.; Wiecek, A.; Fouque, D.; Van Biesen, W. A European Renal Best Practice (ERBP) position statement on the Kidney Disease: Improving Global Outcomes (KDIGO) Clinical Practice Guideline for the Management of Blood Pressure in Non-dialysis-dependent Chronic Kidney Disease: An endorsement with some caveats for real-life application. Nephrol. Dial. Transplant. 2013, 29, 490–496. [Google Scholar] [CrossRef] [Green Version]
- Del Vecchio, L.; Boero, R.; Losito, A.; Minutolo, R.; Pontremoli, R.; Zuccala’, A.; Ravani, P.; Cagnoli, B.; Quintaliani, G.; Strippoli, G.F.; et al. Ipertensione arteriosa in CKD: Suggerimenti di pratica clinica e di applicazione delle linee guida. G Italy Nefrol. 2013, 30, 1–17. [Google Scholar]
- Pilmore, H.; Dogra, G.; Roberts, M.; Lambers Heerspink, H.J.; Ninomiya, T.; Huxley, R.; Perkovic, V. Cardiovascular disease in patients with chronic kidney disease. Nephrology 2014, 19, 3–10. [Google Scholar] [CrossRef]
- Akbari, A.; Clase, C.M.; Acott, P.; Battistella, M.; Bello, A.; Feltmate, P.; Grill, A.; Karsanji, M.; Komenda, P.; Madore, F.; et al. Canadian Society of Nephrology Commentary on the KDIGO Clinical Practice Guideline for CKD Evaluation and Management. Am. J. Kidney Dis. 2015, 65, 177–205. [Google Scholar] [CrossRef] [Green Version]
- Fish, R.; Chitalia, N.; Doulton, T.; Durman, K.; Lamerton, E.; Lioudaki, E.; MacDiarmaid-Gordon, A.; Mark, P.; Ratcliffe, L.; Tomson, C.; et al. Commentary on NICE Guideline (NG136) ‘Hypertension in Adults: Diagnosis and Management’ Including Proposals for Blood Pressure Management in Patients with Chronic Kidney Disease. 2021. Available online: https://ukkidney.org/sites/renal.org/files/Commentary%20on%20NICE%20guideline%20%28NG136%29%20HypertensionFINAL.pdf (accessed on 5 April 2022).
- The Kidney Disease: Improving Kidney Outcomes (KDIGO). KDIGO 2021 Clinical Practice Guideline for the Management of Blood Pressure in Chronic Kidney Disease. Kidney Int. 2021, 99, S1–S87. [Google Scholar] [CrossRef]
- Klahr, S.; Levey, A.S.; Beck, G.J.; Caggiula, A.W.; Hunsicker, L.; Kusek, J.W.; Striker, G. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of Diet in Renal Disease Study Group. N. Engl. J. Med. 1994, 330, 877–884. [Google Scholar] [CrossRef]
- Wright, J.T., Jr.; Bakris, G.; Greene, T.; Agodoa, L.Y.; Appel, L.J.; Charleston, J.; Cheek, D.; Douglas-Baltimore, J.G.; Gassman, J.; Glassock, R.; et al. Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: Results from the AASK trial. JAMA 2002, 288, 2421–2431. [Google Scholar] [CrossRef] [Green Version]
- Ruggenenti, P.; Perna, A.; Loriga, G.; Ganeva, M.; Ene-Iordache, B.; Turturro, M.; Lesti, M.; Perticucci, E.; Chakarski, I.N.; Leonardis, D.; et al. Blood-pressure control for renoprotection in patients with non-diabetic chronic renal disease (REIN-2): Multicentre, randomised controlled trial. Lancet 2005, 365, 939–946. [Google Scholar] [CrossRef]
- Beck, G.J.; Berg, R.L.; Coggins, C.H.; Gassman, J.J.; Hunsicker, L.G.; Schluchter, M.D.; Williams, G.W. Design and statistical issues of the Modification of Diet in Renal Disease Trial. The Modification of Diet in Renal Disease Study Group. Control Clin. Trials 1991, 12, 566–586. [Google Scholar] [CrossRef]
- Peterson, J.C.; Adler, S.; Burkart, J.M.; Greene, T.; Hebert, L.A.; Hunsicker, L.G.; King, A.J.; Klahr, S.; Massry, S.G.; Seifter, J.L. Blood pressure control, proteinuria, and the progression of renal disease. The Modification of Diet in Renal Disease Study. Ann. Intern. Med. 1995, 123, 754–762. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.T., Jr.; Williamson, J.D.; Whelton, P.K.; Snyder, J.K.; Sink, K.M.; Rocco, M.V.; Reboussin, D.M.; Rahman, M.; Oparil, S.; Lewis, C.E.; et al. A Randomized Trial of Intensive versus Standard Blood-Pressure Control. N. Engl. J. Med. 2015, 373, 2103–2116. [Google Scholar] [CrossRef] [PubMed]
- Jafar, T.H.; Stark, P.C.; Schmid, C.H.; Landa, M.; Maschio, G.; de Jong, P.E.; de Zeeuw, D.; Shahinfar, S.; Toto, R.; Levey, A.S. Progression of chronic kidney disease: The role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition: A patient-level meta-analysis. Ann. Intern. Med. 2003, 139, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Sim, J.J.; Shi, J.; Kovesdy, C.P.; Kalantar-Zadeh, K.; Jacobsen, S.J. Impact of achieved blood pressures on mortality risk and end-stage renal disease among a large, diverse hypertension population. J. Am. Coll. Cardiol. 2014, 64, 588–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, W.C.; Wu, H.Y.; Peng, Y.S.; Yang, J.Y.; Chen, H.Y.; Chiu, Y.L.; Hsu, S.P.; Ko, M.J.; Pai, M.F.; Tu, Y.K.; et al. Association of Intensive Blood Pressure Control and Kidney Disease Progression in Nondiabetic Patients With Chronic Kidney Disease: A Systematic Review and Meta-analysis. JAMA Intern. Med. 2017, 177, 792–799. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, R.; Nguyen, H.A.; Benavente, O.; Mete, M.; Howard, B.V.; Mant, J.; Odden, M.C.; Peralta, C.A.; Cheung, A.K.; Nadkarni, G.N.; et al. Association Between More Intensive vs Less Intensive Blood Pressure Lowering and Risk of Mortality in Chronic Kidney Disease Stages 3 to 5: A Systematic Review and Meta-analysis. JAMA Intern. Med. 2017, 177, 1498–1505. [Google Scholar] [CrossRef]
- Upadhyay, A.; Earley, A.; Haynes, S.M.; Uhlig, K. Systematic review: Blood pressure target in chronic kidney disease and proteinuria as an effect modifier. Ann. Intern. Med. 2011, 154, 541–548. [Google Scholar] [CrossRef] [Green Version]
- Mancia, G.; Grassi, G. Aggressive Blood Pressure Lowering Is Dangerous: The J-Curve. Hypertension 2014, 63, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Reboldi, G.; Gentile, G.; Angeli, F.; Ambrosio, G.; Mancia, G.; Verdecchia, P. Blood pressure lowering in diabetic patients. J. Hypertens. 2012, 30, 438–439. [Google Scholar] [CrossRef] [PubMed]
- Klag, M.J.; Whelton, P.K.; Randall, B.L.; Neaton, J.D.; Brancati, F.L.; Ford, C.E.; Shulman, N.B.; Stamler, J. Blood pressure and end-stage renal disease in men. N. Engl. J. Med. 1996, 334, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Tozawa, M.; Iseki, K.; Iseki, C.; Kinjo, K.; Ikemiya, Y.; Takishita, S. Blood pressure predicts risk of developing end-stage renal disease in men and women. Hypertension 2003, 41, 1341–1345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arguedas, J.A.; Perez, M.I.; Wright, J.M. Treatment blood pressure targets for hypertension. Cochrane Database Syst. Rev. 2009. Art. No.: CD0043. [Google Scholar] [CrossRef] [PubMed]
- Toto, R.D.; Mitchell, H.C.; Smith, R.D.; Lee, H.C.; McIntire, D.; Pettinger, W.A. “Strict” blood pressure control and progression of renal disease in hypertensive nephrosclerosis. Kidney Int. 1995, 48, 851–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Institute for Health and Care Excellence (NICE). Hypertension in Adults: Diagnosis and Management. 2019. Available online: https://www.nice.org.uk/guidance/ng136/resources/hypertension-in-adults-diagnosis-and-management-pdf-66141722710213 (accessed on 6 April 2022).
- National Institute for Health and Care Excellence (NICE). Chronic Kidney Disease in Adults: Assessment and Management. 2014. Available online: https://www.nice.org.uk/guidance/cg182 (accessed on 7 April 2022).
- Drawz, P.E.; Beddhu, S.; Bignall, O.N.R., 2nd; Cohen, J.B.; Flynn, J.T.; Ku, E.; Rahman, M.; Thomas, G.; Weir, M.R.; Whelton, P.K. KDOQI US Commentary on the 2021 KDIGO Clinical Practice Guideline for the Management of Blood Pressure in CKD. Am. J. Kidney Dis. 2022, 79, 311–327. [Google Scholar] [CrossRef]
- Cheung, A.K.; Rahman, M.; Reboussin, D.M.; Craven, T.E.; Greene, T.; Kimmel, P.L.; Cushman, W.C.; Hawfield, A.T.; Johnson, K.C.; Lewis, C.E.; et al. Effects of Intensive BP Control in CKD. J. Am. Soc. Nephrol. 2017, 28, 2812–2823. [Google Scholar] [CrossRef]
- Williamson, J.D.; Pajewski, N.M.; Auchus, A.P.; Bryan, R.N.; Chelune, G.; Cheung, A.K.; Cleveland, M.L.; Coker, L.H.; Crowe, M.G.; Cushman, W.C.; et al. Effect of Intensive vs Standard Blood Pressure Control on Probable Dementia: A Randomized Clinical Trial. JAMA 2019, 321, 553–561. [Google Scholar] [CrossRef]
- Gansevoort, R.T.; Sluiter, W.J.; Hemmelder, M.H.; de Zeeuw, D.; de Jong, P.E. Antiproteinuric effect of blood-pressure-lowering agents: A meta-analysis of comparative trials. Nephrol. Dial. Transpl. 1995, 10, 1963–1974. [Google Scholar]
- Jafar, T.H.; Schmid, C.H.; Landa, M.; Giatras, I.; Toto, R.; Remuzzi, G.; Maschio, G.; Brenner, B.M.; Kamper, A.; Zucchelli, P.; et al. Angiotensin-converting enzyme inhibitors and progression of nondiabetic renal disease. A meta-analysis of patient-level data. Ann. Intern. Med. 2001, 135, 73–87. [Google Scholar] [CrossRef]
- Maschio, G.; Alberti, D.; Janin, G.; Locatelli, F.; Mann, J.F.; Motolese, M.; Ponticelli, C.; Ritz, E.; Zucchelli, P. Effect of the angiotensin-converting-enzyme inhibitor benazepril on the progression of chronic renal insufficiency. The Angiotensin-Converting-Enzyme Inhibition in Progressive Renal Insufficiency Study Group. N. Engl. J. Med. 1996, 334, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Gisen, S.G. Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. The GISEN Group (Gruppo Italiano di Studi Epidemiologici in Nefrologia). Lancet 1997, 349, 1857–1863. [Google Scholar]
- Kshirsagar, A.V.; Joy, M.S.; Hogan, S.L.; Falk, R.J.; Colindres, R.E. Effect of ACE inhibitors in diabetic and nondiabetic chronic renal disease: A systematic overview of randomized placebo-controlled trials. Am. J. Kidney Dis. 2000, 35, 695–707. [Google Scholar] [CrossRef]
- Hou, F.F.; Zhang, X.; Zhang, G.H.; Xie, D.; Chen, P.Y.; Zhang, W.R.; Jiang, J.P.; Liang, M.; Wang, G.B.; Liu, Z.R.; et al. Efficacy and safety of benazepril for advanced chronic renal insufficiency. N. Engl. J. Med. 2006, 354, 131–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mann, J.F.; Gerstein, H.C.; Pogue, J.; Bosch, J.; Yusuf, S. Renal insufficiency as a predictor of cardiovascular outcomes and the impact of ramipril: The HOPE randomized trial. Ann. Intern. Med. 2001, 134, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Asselbergs, F.W.; Diercks, G.F.; Hillege, H.L.; van Boven, A.J.; Janssen, W.M.; Voors, A.A.; de Zeeuw, D.; de Jong, P.E.; van Veldhuisen, D.J.; van Gilst, W.H. Effects of fosinopril and pravastatin on cardiovascular events in subjects with microalbuminuria. Circulation 2004, 110, 2809–2816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, M.; Pressel, S.; Davis, B.R.; Nwachuku, C.; Wright, J.T., Jr.; Whelton, P.K.; Barzilay, J.; Batuman, V.; Eckfeldt, J.H.; Farber, M.; et al. Renal outcomes in high-risk hypertensive patients treated with an angiotensin-converting enzyme inhibitor or a calcium channel blocker vs a diuretic: A report from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Arch. Intern. Med. 2005, 165, 936–946. [Google Scholar] [CrossRef] [Green Version]
- Maki, D.D.; Ma, J.Z.; Louis, T.A.; Kasiske, B.L. Long-term effects of antihypertensive agents on proteinuria and renal function. Arch. Intern. Med. 1995, 155, 1073–1080. [Google Scholar] [CrossRef]
- Jafar, T.H.; Stark, P.C.; Schmid, C.H.; Landa, M.; Maschio, G.; Marcantoni, C.; de Jong, P.E.; de Zeeuw, D.; Shahinfar, S.; Ruggenenti, P.; et al. Proteinuria as a modifiable risk factor for the progression of non-diabetic renal disease. Kidney Int. 2001, 60, 1131–1140. [Google Scholar] [CrossRef] [Green Version]
- Ruggenenti, P.; Schieppati, A.; Remuzzi, G. Progression, remission, regression of chronic renal diseases. Lancet 2001, 357, 1601–1608. [Google Scholar] [CrossRef]
- Kunz, R.; Friedrich, C.; Wolbers, M.; Mann, J.F. Meta-analysis: Effect of monotherapy and combination therapy with inhibitors of the renin angiotensin system on proteinuria in renal disease. Ann. Intern. Med. 2008, 148, 30–48. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Zhang, X.; Tian, J.; Li, Q.; Chen, J. Combination therapy an ACE inhibitor and an angiotensin receptor blocker for IgA nephropathy: A meta-analysis. Int. J. Clin. Pract. 2012, 66, 917–923. [Google Scholar] [CrossRef] [PubMed]
- Balamuthusamy, S.; Srinivasan, L.; Verma, M.; Adigopula, S.; Jalandhara, N.; Hathiwala, S.; Smith, E. Renin angiotensin system blockade and cardiovascular outcomes in patients with chronic kidney disease and proteinuria: A meta-analysis. Am. Heart J. 2008, 155, 791–805. [Google Scholar] [CrossRef] [PubMed]
- Dcct, S.G. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N. Engl. J. Med. 1993, 329, 977–986. [Google Scholar]
- Ukpds, S.G. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998, 352, 837–853. [Google Scholar] [CrossRef]
- Edic, S.G. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. N. Engl. J. Med. 2000, 342, 381–389. [Google Scholar]
- Strippoli, G.F.; Craig, M.C.; Schena, F.P.; Craig, J.C. Role of blood pressure targets and specific antihypertensive agents used to prevent diabetic nephropathy and delay its progression. J. Am. Soc. Nephrol. 2006, 17, S153–S155. [Google Scholar] [CrossRef] [Green Version]
- Sarafidis, P.A.; Stafylas, P.C.; Kanaki, A.I.; Lasaridis, A.N. Effects of renin-angiotensin system blockers on renal outcomes and all-cause mortality in patients with diabetic nephropathy: An updated meta-analysis. Am. J. Hypertens. 2008, 21, 922–929. [Google Scholar] [CrossRef] [Green Version]
- Marre, M.; Lievre, M.; Chatellier, G.; Mann, J.F.; Passa, P.; Menard, J. Effects of low dose ramipril on cardiovascular and renal outcomes in patients with type 2 diabetes and raised excretion of urinary albumin: Randomised, double blind, placebo controlled trial (the DIABHYCAR study). BMJ 2004, 328, 495. [Google Scholar] [CrossRef] [Green Version]
- Hope, S.G. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: Results of the HOPE study and MICRO-HOPE substudy. Heart Outcomes Prevention Evaluation Study Investigators. Lancet 2000, 355, 253–259. [Google Scholar] [CrossRef]
- Xie, X.; Liu, Y.; Perkovic, V.; Li, X.; Ninomiya, T.; Hou, W.; Zhao, N.; Liu, L.; Lv, J.; Zhang, H.; et al. Renin-Angiotensin System Inhibitors and Kidney and Cardiovascular Outcomes in Patients With CKD: A Bayesian Network Meta-analysis of Randomized Clinical Trials. Am. J. Kidney Dis. 2016, 67, 728–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blacklock, C.L.; Hirst, J.A.; Taylor, K.S.; Stevens, R.J.; Roberts, N.W.; Farmer, A.J. Evidence for a dose effect of renin-angiotensin system inhibition on progression of microalbuminuria in Type 2 diabetes: A meta-analysis. Diabet. Med. 2011, 28, 1182–1187. [Google Scholar] [CrossRef] [PubMed]
- Mann, J.F.; Schmieder, R.E.; McQueen, M.; Dyal, L.; Schumacher, H.; Pogue, J.; Wang, X.; Maggioni, A.; Budaj, A.; Chaithiraphan, S.; et al. Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): A multicentre, randomised, double-blind, controlled trial. Lancet 2008, 372, 547–553. [Google Scholar] [CrossRef]
- Wuhl, E.; Trivelli, A.; Picca, S.; Litwin, M.; Peco-Antic, A.; Zurowska, A.; Testa, S.; Jankauskiene, A.; Emre, S.; Caldas-Afonso, A.; et al. Strict blood-pressure control and progression of renal failure in children. N. Engl. J. Med. 2009, 361, 1639–1650. [Google Scholar] [CrossRef] [PubMed]
- National Institute for Health and Care Excellence (NICE). Evidence Review for Optimal Blood Pressure Targets for Adults, Children and Young People with CKD. 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK574726/ (accessed on 6 April 2022).
- Pajewski, N.M.; Williamson, J.D.; Applegate, W.B.; Berlowitz, D.R.; Bolin, L.P.; Chertow, G.M.; Krousel-Wood, M.A.; Lopez-Barrera, N.; Powell, J.R.; Roumie, C.L.; et al. Characterizing Frailty Status in the Systolic Blood Pressure Intervention Trial. J. Gerontol. Ser. A 2016, 71, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Coppolino, G.; Lucisano, G.; Bolignano, D.; Buemi, M. Acute cardiovascular complications of hemodialysis. Minerva Urol. Nefrol. 2010, 62, 67–80. [Google Scholar]
- Bucharles, S.G.E.; Wallbach, K.K.S.; Moraes, T.P.d.; Pecoits-Filho, R. Hypertension in patients on dialysis: Diagnosis, mechanisms, and management. J. Bras Nefrol. 2019, 41, 400–411. [Google Scholar] [CrossRef]
- Heerspink, H.J.; Ninomiya, T.; Zoungas, S.; de Zeeuw, D.; Grobbee, D.E.; Jardine, M.J.; Gallagher, M.; Roberts, M.A.; Cass, A.; Neal, B.; et al. Effect of lowering blood pressure on cardiovascular events and mortality in patients on dialysis: A systematic review and meta-analysis of randomised controlled trials. Lancet 2009, 373, 1009–1015. [Google Scholar] [CrossRef] [Green Version]
- Gul, A.; Miskulin, D.; Gassman, J.; Harford, A.; Horowitz, B.; Chen, J.; Paine, S.; Bedrick, E.; Kusek, J.W.; Unruh, M.; et al. Design of the Blood Pressure Goals in Dialysis pilot study. Am. J. Med. Sci. 2014, 347, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Miskulin, D.C.; Gassman, J.; Schrader, R.; Gul, A.; Jhamb, M.; Ploth, D.W.; Negrea, L.; Kwong, R.Y.; Levey, A.S.; Singh, A.K.; et al. BP in Dialysis: Results of a Pilot Study. J. Am. Soc. Nephrol. 2018, 29, 307–316. [Google Scholar] [CrossRef]
- McCallum, W.; Sarnak, M.J. Blood pressure target for the dialysis patient. Semin. Dial. 2019, 32, 35–40. [Google Scholar] [CrossRef] [PubMed]
- National Kidney Foundation, S.G. K/DOQI clinical practice guidelines for cardiovascular disease in dialysis patients. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2005, 45, S1–S153. [Google Scholar]
- Jindal, K.; Chan, C.T.; Deziel, C.; Hirsch, D.; Soroka, S.D.; Tonelli, M.; Culleton, B.F. Hemodialysis clinical practice guidelines for the Canadian Society of Nephrology. J. Am. Soc. Nephrol. 2006, 17, S1–S27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirakata, H.; Nitta, K.; Inaba, M.; Shoji, T.; Fujii, H.; Kobayashi, S.; Tabei, K.; Joki, N.; Hase, H.; Nishimura, M.; et al. Japanese Society for Dialysis Therapy guidelines for management of cardiovascular diseases in patients on chronic hemodialysis. Ther. Apher. Dial. 2012, 16, 387–435. [Google Scholar] [CrossRef] [PubMed]
- Port, F.K.; Hulbert-Shearon, T.E.; Wolfe, R.A.; Bloembergen, W.E.; Golper, T.A.; Agodoa, L.Y.; Young, E.W. Predialysis blood pressure and mortality risk in a national sample of maintenance hemodialysis patients. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 1999, 33, 507–517. [Google Scholar] [CrossRef]
- Mazzuchi, N.; Carbonell, E.; Fernandez-Cean, J. Importance of blood pressure control in hemodialysis patient survival. Kidney Int. 2000, 58, 2147–2154. [Google Scholar] [CrossRef]
- Foley, R.N.; Herzog, C.A.; Collins, A.J. Blood pressure and long-term mortality in United States hemodialysis patients: USRDS Waves 3 and 4 Study. Kidney Int. 2002, 62, 1784–1790. [Google Scholar] [CrossRef] [Green Version]
- Klassen, P.S.; Lowrie, E.G.; Reddan, D.N.; DeLong, E.R.; Coladonato, J.A.; Szczech, L.A.; Lazarus, J.M.; Owen, W.F., Jr. Association between pulse pressure and mortality in patients undergoing maintenance hemodialysis. JAMA J. Am. Med. Assoc. 2002, 287, 1548–1555. [Google Scholar] [CrossRef] [Green Version]
- Stidley, C.A.; Hunt, W.C.; Tentori, F.; Schmidt, D.; Rohrscheib, M.; Paine, S.; Bedrick, E.J.; Meyer, K.B.; Johnson, H.K.; Zager, P.G. Changing relationship of blood pressure with mortality over time among hemodialysis patients. J. Am. Soc. Nephrol. JASN 2006, 17, 513–520. [Google Scholar] [CrossRef] [Green Version]
- Myers, O.B.; Adams, C.; Rohrscheib, M.R.; Servilla, K.S.; Miskulin, D.; Bedrick, E.J.; Zager, P.G. Age, race, diabetes, blood pressure, and mortality among hemodialysis patients. J. Am. Soc. Nephrol. JASN 2010, 21, 1970–1978. [Google Scholar] [CrossRef] [Green Version]
- Jhee, J.H.; Park, J.; Kim, H.; Kee, Y.K.; Park, J.T.; Han, S.H.; Yang, C.W.; Kim, N.-H.; Kim, Y.S.; Kang, S.-W.; et al. The Optimal Blood Pressure Target in Different Dialysis Populations. Sci. Rep. 2018, 8, 14123. [Google Scholar] [CrossRef] [PubMed]
- Crews, D.C.; Powe, N.R. Blood pressure and mortality among ESRD patients: All patients are not created equal. J. Am. Soc. Nephrol. JASN 2010, 21, 1816–1818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, M.; Ford, C.E.; Cutler, J.A.; Davis, B.R.; Piller, L.B.; Whelton, P.K.; Wright, J.T., Jr.; Barzilay, J.I.; Brown, C.D.; Colon, P.J., Sr.; et al. Long-term renal and cardiovascular outcomes in Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) participants by baseline estimated GFR. Clin. J. Am. Soc. Nephrol. 2012, 7, 989–1002. [Google Scholar] [CrossRef] [PubMed]
- Reboldi, G.; Angeli, F.; Gentile, G.; Verdecchia, P. Benefits of more intensive versus less intensive blood pressure control. Updated trial sequential analysis. Eur. J. Intern. Med. 2022. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Wetterslev, J.; Thorlund, K.; Brok, J.; Gluud, C. Trial sequential analysis may establish when firm evidence is reached in cumulative meta-analysis. J. Clin. Epidemiol. 2008, 61, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Wetterslev, J.; Thorlund, K.; Brok, J.; Gluud, C. Estimating required information size by quantifying diversity in random-effects model meta-analyses. BMC Med. Res. Methodol. 2009, 9, 86. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhang, S.; Deng, Y.; Wu, S.; Ren, J.; Sun, G.; Yang, J.; Jiang, Y.; Xu, X.; Wang, T.D.; et al. Trial of Intensive Blood-Pressure Control in Older Patients with Hypertension. N. Engl. J. Med. 2021, 385, 1268–1279. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.J.; Wang, A.J.; Wang, B.; Hu, S.L.; Zhang, H.; Li, T.; Tuo, Y.H. Effects of intensive blood pressure control on mortality and cardiorenal function in chronic kidney disease patients. Ren. Fail 2021, 43, 811–820. [Google Scholar] [CrossRef]
- Blood Pressure Lowering Treatment Triallists’ Collaboration. Age-stratified and blood-pressure-stratified effects of blood-pressure-lowering pharmacotherapy for the prevention of cardiovascular disease and death: An individual participant-level data meta-analysis. Lancet 2021, 398, 1053–1064. [Google Scholar] [CrossRef]
- Volpe, M.; Patrono, C. Age-independent benefits of blood pressure lowering: Are they applicable to all patients? Eur. Heart J. 2021, 43, 448–449. [Google Scholar] [CrossRef]
- Aronow, W.S. Blood Pressure Goals and Targets in the Elderly. Curr. Treat. Options Cardiovasc. Med. 2015, 17, 394. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.A.; Schiffrin, E.L.; White, W.B.; Mann, S.; Lindholm, L.H.; Kenerson, J.G.; Flack, J.M.; Carter, B.L.; Materson, B.J.; Ram, C.V.; et al. Clinical practice guidelines for the management of hypertension in the community a statement by the American Society of Hypertension and the International Society of Hypertension. J. Hypertens. 2014, 32, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.M.; Stedman, M.R.; Chertow, G.M.; Chang, T.I. Factors Associated With Failure to Achieve the Intensive Blood Pressure Target in the Systolic Blood Pressure Intervention Trial (SPRINT). Hypertension 2020, 76, 1725–1733. [Google Scholar] [CrossRef] [PubMed]
- Verdecchia, P.; Reboldi, G.; Angeli, F.; Trimarco, B.; Mancia, G.; Pogue, J.; Gao, P.; Sleight, P.; Teo, K.; Yusuf, S. Systolic and diastolic blood pressure changes in relation with myocardial infarction and stroke in patients with coronary artery disease. Hypertension 2015, 65, 108–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kjeldsen, S.E.; Berge, E.; Bangalore, S.; Messerli, F.H.; Mancia, G.; Holzhauer, B.; Hua, T.A.; Zappe, D.; Zanchetti, A.; Weber, M.A.; et al. No evidence for a J-shaped curve in treated hypertensive patients with increased cardiovascular risk: The VALUE trial. Blood Press. 2016, 25, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Maione, A.; Navaneethan, S.D.; Graziano, G.; Mitchell, R.; Johnson, D.; Mann, J.F.; Gao, P.; Craig, J.C.; Tognoni, G.; Perkovic, V.; et al. Angiotensin-converting enzyme inhibitors, angiotensin receptor blockers and combined therapy in patients with micro- and macroalbuminuria and other cardiovascular risk factors: A systematic review of randomized controlled trials. Nephrol. Dial. Transpl. 2011, 26, 2827–2847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjorck, S.; Mulec, H.; Johnsen, S.A.; Norden, G.; Aurell, M. Renal protective effect of enalapril in diabetic nephropathy. BMJ 1992, 304, 339–343. [Google Scholar] [CrossRef] [Green Version]
- Lewis, E.J.; Hunsicker, L.G.; Bain, R.P.; Rohde, R.D. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N. Engl. J. Med. 1993, 329, 1456–1462. [Google Scholar] [CrossRef]
- Brenner, B.M.; Cooper, M.E.; de Zeeuw, D.; Keane, W.F.; Mitch, W.E.; Parving, H.H.; Remuzzi, G.; Snapinn, S.M.; Zhang, Z.; Shahinfar, S. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 2001, 345, 861–869. [Google Scholar] [CrossRef] [Green Version]
- Lewis, E.J.; Hunsicker, L.G.; Clarke, W.R.; Berl, T.; Pohl, M.A.; Lewis, J.B.; Ritz, E.; Atkins, R.C.; Rohde, R.; Raz, I. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N. Engl. J. Med. 2001, 345, 851–860. [Google Scholar] [CrossRef] [Green Version]
- Parving, H.H.; Lehnert, H.; Brochner-Mortensen, J.; Gomis, R.; Andersen, S.; Arner, P. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N. Engl. J. Med. 2001, 345, 870–878. [Google Scholar] [CrossRef] [PubMed]
- Reboldi, G.; Gentile, G.; Angeli, F.; Verdecchia, P. Optimal therapy in hypertensive subjects with diabetes mellitus. Curr. Atheroscler. Rep. 2011, 13, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Reboldi, G.; Gentile, G.; Angeli, F.; Verdecchia, P. Exploring the optimal combination therapy in hypertensive patients with diabetes mellitus. Expert Rev. Cardiovasc. Ther. 2009, 7, 1349–1361. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, E.B.; Chonchol, M.B.; Shetterly, S.; Powers, J.D.; Adams, J.L.; Schmittdiel, J.A.; Nichols, G.A.; o Connor, P.J.; Steiner, J.F. Add-On Antihypertensive Medications to Angiotensin-Aldosterone System Blockers in Diabetes: A Comparative Effectiveness Study. Clin. J. Am. Soc. Nephrol. 2018, 13, 727–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsika, E.P.; Poulimenos, L.E.; Boudoulas, K.D.; Manolis, A.J. The J-Curve in Arterial Hypertension: Fact or Fallacy? Cardiology 2014, 129, 126–135. [Google Scholar] [CrossRef] [PubMed]
Guideline Agency | Country | Year | Target Recommendation (mmHg) | First-Line Agents Recommended |
---|---|---|---|---|
Hypertension societies | ||||
Joint National Commission on Prevention, Detection, Assessment and Treatment of Hypertension (JNC-VIII) [15] | United States | 2014 | <140/90 (people aged 18–69 with CKD or diabetes) No recommendation for CKD patients aged 70 or above (“treatment should be individualized taking into consideration factors such as frailty, comorbidities, and albuminuria”) | ACEi or ARB (regardless of ethnicity or diabetic status) |
American College of Cardiology (ACC) [13] | United States | 2017 | <130/80 in all adults with hypertension and CKD, regardless of proteinuria | ACEi (ARB if the ACEi is not tolerated) |
European Society of Hypertension/European Society of Cardiology (ESH/ESC) [14] | Europe | 2018 | Systolic BP between 130 and 139 | ACEi or ARB (regardless of diabetic status) |
Renal societies | ||||
European Best Practice Guidelines (EBPG) [16] | Europe | 2013 | <140/90 (no albuminuria/proteinuria) <130/80 (ACR ≥ 30 mg/g, i.e., at least moderately increased albuminuria, or UPCR ≥ 150) | ACEi or ARB |
Italian Society of Nephrology [17] | Italy | 2013 | <140/90 (normoalbuminuria) <130/80 (albuminuria >30 mg/24 h, i.e., at least moderately increased albuminuria) | ACEi or ARB |
Kidney Health Australia- Caring for Australasians with Renal Impairment (KHA-CARI) [18] | Australia | 2014 | <140/90 (normoalbuminuria or moderately increased albuminuria) <130/80 (severely increased albuminuria) | ACEi or ARB |
Canadian Society of Nephrology (CSN) [19] | Canada | 2015 | <140/90 (regardless of diabetes or proteinuria) | ACEi or ARB |
UK Kidney Association (UKKA) [20] | UK | 2021 | <130/80 (if, following a shared decision-making discussion, it is tolerated by the individual) | No explicit recommendation |
National Institute for Health and Care Excellence (NICE) [11] | UK | 2021 | <140/90 (if ACR < 70 mg/mmol) <130/80 (if ACR ≥ 70 mg/mmol; target range 120 to 129 mmHg) | ACEi or ARB (titrated at the highest tolerated dose, for any patient with ACR > 30 mg/mmol) |
Kidney Disease: Improving Global Outcomes (KDIGO) [21] | Global (International Society of Nephrology) | 2021 | Systolic BP <120 (if tolerated) | ACEi or ARB (for any patient with moderately or severely increased albuminuria) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gentile, G.; Mckinney, K.; Reboldi, G. Tight Blood Pressure Control in Chronic Kidney Disease. J. Cardiovasc. Dev. Dis. 2022, 9, 139. https://doi.org/10.3390/jcdd9050139
Gentile G, Mckinney K, Reboldi G. Tight Blood Pressure Control in Chronic Kidney Disease. Journal of Cardiovascular Development and Disease. 2022; 9(5):139. https://doi.org/10.3390/jcdd9050139
Chicago/Turabian StyleGentile, Giorgio, Kathryn Mckinney, and Gianpaolo Reboldi. 2022. "Tight Blood Pressure Control in Chronic Kidney Disease" Journal of Cardiovascular Development and Disease 9, no. 5: 139. https://doi.org/10.3390/jcdd9050139
APA StyleGentile, G., Mckinney, K., & Reboldi, G. (2022). Tight Blood Pressure Control in Chronic Kidney Disease. Journal of Cardiovascular Development and Disease, 9(5), 139. https://doi.org/10.3390/jcdd9050139