Effectiveness of Mild to Moderate Hypothermic Cardiopulmonary Bypass on Early Clinical Outcomes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. Basal Characteristics of Patients
2.3. Intraoperative and Postoperative Data
2.4. Study Endpoints
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grigore, A.M.; Grocott, H.P.; Mathew, J.P.; Phillips-Bute, B.; Stanley, T.O.; Butler, A.; Landolfo, K.P.; Reves, J.G.; Blumenthal, J.A.; Newman, M.F. The rewarming rate and increased peak temperature alter neurocognitive outcome after cardiac surgery. Anesth. Analg. 2002, 94, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Salameh, A.; Dhein, S.; Dähnert, I.; Klein, N. Neuroprotective strategies during cardiac surgery with cardiopulmonary bypass. Int. J. Mol. Sci. 2016, 17, 1945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grocott, H.P. PRO: Temperature regimens and neuroprotection during cardiopulmonary bypass: Does rewarming rate matter? Anesth. Analgaesia 2009, 109, 1738–1740. [Google Scholar] [CrossRef] [PubMed]
- Gutsche, J.; Feinman, J.; Silvay, G.; Patel, P.; Ghadimi, K.; Landoni, G.; Yue, Y.; Augoustides, J. Practice variations in the conduct of hypothermic circulatory arrest for adult aortic arch repair: Focus on an emerging European paradigm. Heart Lung Vessel. 2014, 6, 43. [Google Scholar]
- Reyad, A.R.; Elgamal, M.A.F. Neurological outcome of normothermic versus hypothermic cardiopulmonary bypass in simple congenital heart diseases. Ain-Shams J. Anaesthesiol. 2014, 7, 491. [Google Scholar] [CrossRef]
- Ali Aydemir, N.; Harmandar, B.; Riza Karaci, A.; Erdem, A.; Yurtseven, N.; Sasmazel, A.; Yekeler, I. Randomized comparison between mild and moderate hypothermic cardiopulmonary bypass for neonatal arterial switch operation. Eur. J. Cardio-Thorac. Surg. 2012, 41, 581–586. [Google Scholar] [CrossRef] [Green Version]
- Insler, S.R.; Sessler, D.I. Perioperative thermoregulation and temperature monitoring. Anesthesiol. Clin. 2006, 24, 823–837. [Google Scholar] [CrossRef]
- Mills, G.; Khan, Z.; Moxham, J.; Desai, J.; Forsyth, A.; Ponte, J. Effects of temperature on phrenic nerve and diaphragmatic function during cardiac surgery. Br. J. Anaesth. 1997, 79, 726–732. [Google Scholar] [CrossRef]
- Rajagopalan, S.; Mascha, E.; Na, J.; Sessler, D.I. The effects of mild perioperative hypothermia on blood loss and transfusion requirement. J. Am. Soc. Anesthesiol. 2008, 108, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Boldt, J.; Knothe, C.; Zickmann, B.; Bill, S.; Dapper, F.; Hempelmann, G. Platelet function in cardiac surgery: Influence of temperature and aprotinin. Ann. Thorac. Surg. 1993, 55, 652–658. [Google Scholar] [CrossRef]
- Nathan, H.J.; Parlea, L.; Dupuis, J.-Y.; Hendry, P.; Williams, K.A.; Rubens, F.D.; Wells, G.A. Safety of deliberate intraoperative and postoperative hypothermia for patients undergoing coronary artery surgery: A randomized trial. J. Thorac. Cardiovasc. Surg. 2004, 127, 1270–1275. [Google Scholar] [CrossRef] [Green Version]
- Bianco, V.; Kilic, A.; Aranda-Michel, E.; Dunn-Lewis, C.; Serna-Gallegos, D.; Chen, S.; Navid, F.; Sultan, I. Mild hypothermia versus normothermia in patients undergoing cardiac surgery. JTCVS Open 2021, 7, 230–242. [Google Scholar] [CrossRef]
- Boodhwani, M.; Rubens, F.; Wozny, D.; Rodriguez, R.; Nathan, H.J. Effects of sustained mild hypothermia on neurocognitive function after coronary artery bypass surgery: A randomized, double-blind study. J. Thorac. Cardiovasc. Surg. 2007, 134, 1443–1452.e1441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, K.M.; Tan, J.A. Benefits and risks of maintaining normothermia during cardiopulmonary bypass in adult cardiac surgery: A systematic review. Cardiovasc. Ther. 2011, 29, 260–279. [Google Scholar] [CrossRef] [PubMed]
- Stocker, C.F.; Shekerdemian, L.S.; Horton, S.B.; Lee, K.J.; Eyres, R.; D’Udekem, Y.; Brizard, C.P. The influence of bypass temperature on the systemic inflammatory response and organ injury after pediatric open surgery: A randomized trial. J. Thorac. Cardiovasc. Surg. 2011, 142, 174–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engelman, R.M.; Pleet, A.B.; Hicks, R.; Rousou, J.A.; Flack, J.E., III; Deaton, D.W.; Pekow, P.S.; Gregory, C.A. Is there a relationship between systemic perfusion temperature during coronary artery bypass grafting and extent of intraoperative ischemic central nervous system injury? J. Thorac. Cardiovasc. Surg. 2000, 119, 230–232. [Google Scholar] [CrossRef] [Green Version]
- James, T.M.; Stamou, S.C.; Faber, C.; Nores, M.A. Whole Blood del Nido versus Cold Blood Microplegia in Adult Cardiac Surgery: A Propensity-Matched Analysis. Int. J. Angiol. 2019. [Google Scholar] [CrossRef]
- Haider, A.; Khwaja, I.A.; Khan, A.H.; Yousaf, M.S.; Zaneb, H.; Qureshi, A.B.; Rehman, H. Efficacy of Whole-Blood Del Nido Cardioplegia Compared with Diluted Del Nido Cardioplegia in Coronary Artery Bypass Grafting: A Retrospective Monocentric Analysis of Pakistan. Medicina 2021, 57, 918. [Google Scholar] [CrossRef]
- Campos, J.-M.; Paniagua, P. Hypothermia during cardiac surgery. Best Pract. Res. Clin. Anaesthesiol. 2008, 22, 695–709. [Google Scholar] [CrossRef]
- Rosenthal, L.-M.; Tong, G.; Wowro, S.; Walker, C.; Pfitzer, C.; Böttcher, W.; Miera, O.; Berger, F.; Schmitt, K.R.L. A prospective clinical trial measuring the effects of cardiopulmonary bypass under mild hypothermia on the inflammatory response and regulation of cold-shock protein RNA-binding motif 3. Ther. Hypothermia Temp. Manag. 2020, 10, 60–70. [Google Scholar] [CrossRef]
- Caputo, M.; Pike, K.; Baos, S.; Sheehan, K.; Selway, K.; Ellis, L.; Stoica, S.; Parry, A.; Clayton, G.; Culliford, L. Normothermic versus hypothermic cardiopulmonary bypass in low-risk paediatric heart surgery: A randomised controlled trial. Heart 2019, 105, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, Y.; Oba, K.; Matsui, Y.; Morimoto, Y. Vasoactive-inotropic score as a predictor of morbidity and mortality in adults after cardiac surgery with cardiopulmonary bypass. J. Anesth. 2018, 32, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Bernard, S.A.; Smith, K.; Finn, J.; Hein, C.; Grantham, H.; Bray, J.E.; Deasy, C.; Stephenson, M.; Williams, T.A.; Straney, L.D. Induction of therapeutic hypothermia during out-of-hospital cardiac arrest using a rapid infusion of cold saline: The RINSE trial (rapid infusion of cold normal saline). Circulation 2016, 134, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Walther, T.; Dhein, S.; Ullmann, C.; Schneider, K.; Bilz, T.; Rastan, A.; Garbade, J.; Falk, V.; Emrich, F.C.; Muth, P. Cerebral protection during controlled hypoperfusion in a piglet model: Comparison of moderate (25 C) versus deep (18 C) hypothermia at various flow rates using intraoperative measurements and ex vivo investigation. Thorac. Cardiovasc. Surg. 2013, 61, 546–552. [Google Scholar]
- Howes, D.; Gray, S.H.; Brooks, S.C.; Boyd, J.G.; Djogovic, D.; Golan, E.; Green, R.S.; Jacka, M.J.; Sinuff, T.; Chaplin, T. Canadian Guidelines for the use of targeted temperature management (therapeutic hypothermia) after cardiac arrest: A joint statement from The Canadian Critical Care Society (CCCS), Canadian Neurocritical Care Society (CNCCS), and the Canadian Critical Care Trials Group (CCCTG). Resuscitation 2016, 98, 48–63. [Google Scholar]
- Van Poucke, S.; Stevens, K.; Marcus, A.E.; Lancé, M. Hypothermia: Effects on platelet function and hemostasis. Thromb. J. 2014, 12, 31. [Google Scholar] [CrossRef] [Green Version]
- Hewlett, L.; Zupančič, G.; Mashanov, G.; Knipe, L.; Ogden, D.; Hannah, M.J.; Carter, T. Temperature-dependence of Weibel-Palade body exocytosis and cell surface dispersal of von Willebrand factor and its propolypeptide. PLoS ONE 2011, 6, e27314. [Google Scholar] [CrossRef] [Green Version]
- Scharbert, G.; Kalb, M.; Essmeister, R.; Kozek-Langenecker, S. Mild and moderate hypothermia increases platelet aggregation induced by various agonists: A whole blood in vitro study. Platelets 2010, 21, 44–48. [Google Scholar] [CrossRef]
- Ruzicka, J.; Stengl, M.; Bolek, L.; Benes, J.; Matejovic, M.; Krouzecky, A. Hypothermic anticoagulation: Testing individual responses to graded severe hypothermia with thromboelastography. Blood Coagul. Fibrinolysis 2012, 23, 285–289. [Google Scholar] [CrossRef]
- Reed, R., 2nd; Bracey, A., Jr.; Hudson, J.; Miller, T.; Fischer, R. Hypothermia and blood coagulation: Dissociation between enzyme activity and clotting factor levels. Circ. Shock 1990, 32, 141–152. [Google Scholar]
- Staikou, C.; Paraskeva, A.; Drakos, E.; Anastassopoulou, I.; Papaioannou, E.; Donta, I.; Kontos, M. Impact of graded hypothermia on coagulation and fibrinolysis. J. Surg. Res. 2011, 167, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Amer, G.F.; Elawady, M.S.; ElDerie, A.; Sanad, M. Normothermia versus hypothermia during cardiopulmonary bypass in cases of repair of atrioventricular septal defect. Anesth. Essays Res. 2020, 14, 112. [Google Scholar] [CrossRef] [PubMed]
- Patt, A.; McCroskey, B.L.; Moore, E.E. Hypothermia-induced coagulopathies in trauma. Surg. Clin. N. Am. 1988, 68, 775–785. [Google Scholar] [CrossRef]
- Danzl, D.F.; Pozos, R.S. Accidental hypothermia. N. Engl. J. Med. 1994, 331, 1756–1760. [Google Scholar] [CrossRef]
- Wang, C.-H.; Chen, N.-C.; Tsai, M.-S.; Yu, P.-H.; Wang, A.-Y.; Chang, W.-T.; Huang, C.-H.; Chen, W.-J. Therapeutic hypothermia and the risk of hemorrhage: A systematic review and meta-analysis of randomized controlled trials. Medicine 2015, 94, e2152. [Google Scholar] [CrossRef]
- Mahla, E.; Prueller, F.; Farzi, S.; Pregartner, G.; Raggam, R.B.; Beran, E.; Toller, W.; Berghold, A.; Tantry, U.S.; Gurbel, P.A. Does platelet reactivity predict bleeding in patients needing urgent coronary artery bypass grafting during dual antiplatelet therapy? Ann. Thorac. Surg. 2016, 102, 2010–2017. [Google Scholar] [CrossRef] [Green Version]
- Welsby, I.J.; Bennett-Guerrero, E.; Atwell, D.; White, W.D.; Newman, M.F.; Smith, P.K.; Mythen, M.G. The Association of Complication Type with Mortality and Prolonged Stay After Cardiac Surgery with Cardiopulmonary Bypass. Anesth. Analg. 2002, 94, 1072–1078. [Google Scholar] [CrossRef] [Green Version]
- Dupuis, J.-Y.; Wang, F.; Nathan, H.; Lam, M.; Grimes, S.; Bourke, M. The cardiac anesthesia risk evaluation score: A clinically useful predictor of mortality and morbidity after cardiac surgery. J. Am. Soc. Anesthesiol. 2001, 94, 194–204. [Google Scholar] [CrossRef] [Green Version]
- Pouard, P.; Mauriat, P.; Ek, F.; Haydar, A.; Gioanni, S.; Laquay, N.; Vaccaroni, L.; Vouhé, P.R. Normothermic cardiopulmonary bypass and myocardial cardioplegic protection for neonatal arterial switch operation. Eur. J. Cardio-Thorac. Surg. 2006, 30, 695–699. [Google Scholar] [CrossRef]
- Hauser, G.; Ben-Ari, J.; Colvin, M.; Dalton, H.; Hertzog, J.; Bearb, M.; Hopkins, R.; Walker, S. Interleukin-6 levels in serum and lung lavage fluid of children undergoing open heart surgery correlate with postoperative morbidity. Intensive Care Med. 1998, 24, 481–486. [Google Scholar] [CrossRef]
- Kotani, N.; Hashimoto, H.; Sessler, D.I.; Muraoka, M.; Wang, J.-S.; O’Connor, M.F.; Matsuki, A. Cardiopulmonary bypass produces greater pulmonary than systemic proinflammatory cytokines. Anesth. Analg. 2000, 90, 1039–1045. [Google Scholar] [CrossRef] [PubMed]
- Deschamps, A.; Hall, R.; Grocott, H.; Mazer, C.D.; Choi, P.T.; Turgeon, A.F.; de Medicis, E.; Bussières, J.S.; Hudson, C.; Syed, S. Cerebral Oximetry Monitoring to Maintain Normal Cerebral Oxygen Saturation during High-risk Cardiac SurgeryA Randomized Controlled Feasibility Trial. Anesthesiology 2016, 124, 826–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vranken, N.P.; Weerwind, P.W.; Sutedja, N.A.; Ševerdija, E.E.; Barenbrug, P.J.; Maessen, J.G. Cerebral oximetry and autoregulation during cardiopulmonary bypass: A review. J. Extra-Corpor. Technol. 2017, 49, 182. [Google Scholar]
- Reeves, B. Principles of research: Limitations of non-randomized studies. Surgery 2008, 26, 120–124. [Google Scholar]
Surgical Procedure | Type of Hypothermia | Total n (%) | p-Value | ||
---|---|---|---|---|---|
Moderate n (%) | Intermediate n (%) | Mild n (%) | |||
Atrial septal defect | 1 (1.23) | 1 (1.12) | 1 (1.33) | 3 (1.22) | 0.993 |
Aortic valve replacement | 2 (2.46) | 9 (10.11) | 4 (5.33) | 15 (6.12) | 0.109 |
Coronary artery bypass grafting (CABG) | 62(76.54) | 60 (67.41) | 56 (74.66) | 178 (72.65) | 0.368 |
CABG (1 graft) | 12 (19.35) | 08 (13.33) | 11 (19.64) | 31 (17.41) | 0.428 |
CABG (2 grafts) | 20 (32.25) | 29 (48.33) | 28 (50.00) | 77 (43.25) | 0.164 |
CABG (3 grafts) | 30 (48.38) | 23 (38.33) | 18 (32.14) | 71 (39.88) | 0.214 |
CABG + Mitral valve replacement | 0 (0.00) | 2 (2.24) | 0 (0.00) | 2 (0.81) | 0.171 |
CABG + Aortic valve replacement | 1 (1.23) | 1 (1.12) | 0 (0.00) | 2 (0.81) | 0.639 |
Double valve replacement | 3 (3.70) | 1 (1.12) | 4 (5.33) | 8 (3.26) | 0.308 |
Mitral valve replacement | 11 (13.58) | 13 (14.60) | 8 (10.66) | 32 (13.06) | 0.746 |
Triple valve replacement | 1 (1.23) | 2 (2.24) | 2 (2.66) | 5 (2.04) | 0.807 |
Total | 81 (33.07) | 89 (36.32) | 75 (30.61) | 245 (100.00) | 0.581 |
Parameter | Types of Hypothermia; Median (Range) | p-Value | ||
---|---|---|---|---|
Moderate (n = 81) | Intermediate (n = 89) | Mild (n = 75) | ||
Age (years) | 55 (24–75) | 54 (19–70) | 55 (20–73) | 0.777 |
Gender; male; n (%) † | 66 (81.00) | 73 (82.02) | 58 (77.33) | 0.720 |
History of diabetes mellitus; n (%) | 32 (39.50) | 26 (29.21) | 21 (28.00%) | 0.275 |
History of smoking; n (%) | 20 (24.69) | 23 (25.84) | 17 (22.66) | 0.894 |
Weight (kg) | 71.10 (51.90–126.10) | 71.70 (50.80– 127.40) | 72.40 (50.90–96.50) | 0.216 |
Height (cm) | 165 (143–190) | 169 (146–195) | 164 (140–193) | 0.599 |
Body mass index (kg/m2) ‡ | 27.12 ± 4.30 | 26.60 ± 5.00 | 26.06 ± 4.35 | 0.361 |
Ejection fraction (%) | 55 (30–57) | 52 (32–57) | 57 (30–58) | 0.444 |
EuroSCORE-II | 1.40 (1.10–3.60) | 1.50 (1.00–4.00) | 1.40 (1.20–3.80) | 0.870 |
Blood urea (mg/dL) | 32 (16–83) | 30 (11–73) | 29 (17–56) | 0.621 |
Bilirubin (mg/dL) | 0.70 (0.30–2.60) | 0.60 (0.20–2.00) | 0.80 (0.40–2.40) | 0.040 |
SGPT (U/L) | 28 (12–181) | 29 (7–121) | 25 (15–156) | 0.559 |
SGOT (U/L) | 35 (13–297) | 34 (12–159) | 35 (16–151) | 0.412 |
Leukocyte count (103/μL) | 9.25 (4.90–19.50) | 9.37 (4.20–19.60) | 9.50 (5.20–19.80) | 0.575 |
Platelets count (103/μL) | 202 (68–662) | 242 (87–661) | 235 (130–591) | 0.182 |
Reference Group * | Incidence Rate Ratios/Odds Ratio (95% CI) | R2 Nagelkerke | ||
---|---|---|---|---|
Mild | Intermediate | Moderate | ||
Primary endpoints: | ||||
Adrenaline infusion rate p-value | 0.06 (0.05–0.06) mcg/kg/min - | 0.96 (0.81–1.14) 0.652 | 1.29 (1.09–1.52) 0.003 | 0.066 |
Dopamine infusion rate p-value | 3.88 (3.70–4.06) mcg/kg/min - | 1.09 (1.02–1.16) 0.006 | 1.00 (0.94–1.07) 0.944 | 0.05 |
Total Blood loss p-value | 383.87 (352.09–417.50) mL - | 1.75 (1.58–1.95) <0.001 | 1.73 (1.56–1.93) <0.001 | 1.00 |
Blood transfusion ** p-value | Reference - | 4.50 (1.59–16.17) 0.009 | 5.82 (2.07–20.84) 0.002 | 0.046 |
Platelet count p-value | 270.4 (265.0–275.9) × 103/μL - | 0.95 (0.93–0.97) <0.001 | 0.88 (0.86–0.90) <0.001 | 0.82 |
Secondary endpoints: | ||||
Ventilation time p-value | 126.8 (109.8–145.4) minutes - | 1.27 (1.06–1.52) 0.010 | 1.80 (1.51–2.14) <0.001 | 1.00 |
In-hospital stay p-value | 7.05 (6.47–7.67) days - | 1.12 (1.00–1.26) 0.046 | 1.13 (1.01–1.27) 0.034 | 0.108 |
Parameter | Types of Hypothermia; Median (Range) | p-Value | ||
---|---|---|---|---|
Moderate (n = 81) | Intermediate (n = 89) | Mild (n = 75) | ||
Intraoperative Phase: | ||||
CPB time (minutes) | 106 (61–264) | 110 (52–225) | 100 (57–191) | 0.058 |
ACC (minutes) | 68 (29–148) | 72 (28–169) | 55 (34–171) | 0.009 |
Blood sugar random (mg/dL) † | 207.30 ± 71.03 | 224.21 ± 65.70 | 218.11 ± 70.03 | 0.274 |
CeO2 at 30 min (%) | 23 (20–25) | 24 (20–27) | 32 (30–34) | <0.001 |
CeO2 at rewarming (%) | 35 (26–40) | 32 (28–35) | 34 (28–37) | <0.001 |
Hemoglobin (g/dL) † | 8.61 ± 1.39 | 8.79 ± 1.78 | 8.90 ± 1.74 | 0.540 |
Postoperative Phase: | ||||
Hemoglobin (g/dL) † | 9.80 ± 1.462 | 9.76 ± 1.546 | 9.93 ± 1.467 | 0.761 |
SGPT (U/L) | 31 (14–617) | 33 (15–256) | 34 (11–359) | 0.728 |
SGOT (U/L) | 62 (19–310) | 61 (22–327) | 51 (21–384) | 0.047 |
Leukocyte count (103/μL) | 18.90 (7.80–48.00) | 17.90 (5.90–30.70) | 18.70 (9.30–48.80) | 0.422 |
ICU stay (days) | 5 (3–10) | 5 (1–9) | 5 (1–10) | 0.636 |
Mortality; n (%) ‡ | 1 (1.23) | 1 (1.12) | 0 (0.00) | 0.639 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haider, A.; Khwaja, I.A.; Qureshi, A.B.; Khan, I.; Majeed, K.A.; Yousaf, M.S.; Zaneb, H.; Rehman, A.; Rabbani, I.; Tahir, S.K.; et al. Effectiveness of Mild to Moderate Hypothermic Cardiopulmonary Bypass on Early Clinical Outcomes. J. Cardiovasc. Dev. Dis. 2022, 9, 151. https://doi.org/10.3390/jcdd9050151
Haider A, Khwaja IA, Qureshi AB, Khan I, Majeed KA, Yousaf MS, Zaneb H, Rehman A, Rabbani I, Tahir SK, et al. Effectiveness of Mild to Moderate Hypothermic Cardiopulmonary Bypass on Early Clinical Outcomes. Journal of Cardiovascular Development and Disease. 2022; 9(5):151. https://doi.org/10.3390/jcdd9050151
Chicago/Turabian StyleHaider, Adnan, Irfan Azmatullah Khwaja, Abdul Basit Qureshi, Imran Khan, Khalid Abdul Majeed, Muhammad Shahbaz Yousaf, Hafsa Zaneb, Abdul Rehman, Imtiaz Rabbani, Sajid Khan Tahir, and et al. 2022. "Effectiveness of Mild to Moderate Hypothermic Cardiopulmonary Bypass on Early Clinical Outcomes" Journal of Cardiovascular Development and Disease 9, no. 5: 151. https://doi.org/10.3390/jcdd9050151
APA StyleHaider, A., Khwaja, I. A., Qureshi, A. B., Khan, I., Majeed, K. A., Yousaf, M. S., Zaneb, H., Rehman, A., Rabbani, I., Tahir, S. K., & Rehman, H. (2022). Effectiveness of Mild to Moderate Hypothermic Cardiopulmonary Bypass on Early Clinical Outcomes. Journal of Cardiovascular Development and Disease, 9(5), 151. https://doi.org/10.3390/jcdd9050151