Flow-Mediated Factors in the Pathogenesis of Hypoplastic Left Heart Syndrome
Abstract
:1. Introduction
2. The Flow Theory of Hypoplastic Left Heart Syndrome
3. Flow-Mediated Mechanisms of Left Heart Development
4. Surgical Interventions to Treat Hypoplastic Left Heart Syndrome
5. What Causes Flow Disturbances in Hypoplastic Left Heart Syndrome?
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tchervenkov, C.I.; Jacobs, J.P.; Weinberg, P.M.; Aiello, V.D.; Béland, M.J.; Colan, S.D.; Elliott, M.J.; Franklin, R.C.G.; Gaynor, J.W.; Krogmann, O.N.; et al. The Nomenclature, Definition and Classification of Hypoplastic Left Heart Syndrome. Cardiol. Young 2006, 16, 339–368. [Google Scholar] [CrossRef] [Green Version]
- Anderson, R.H.; Spicer, D.E.; Crucean, A. Clarification of the Definition of Hypoplastic Left Heart Syndrome. Nat. Rev. Cardiol. 2021, 18, 147–148. [Google Scholar] [CrossRef] [PubMed]
- Stephens, E.H.; Gupta, D.; Bleiweis, M.; Backer, C.L.; Anderson, R.H.; Spicer, D.E. Pathologic Characteristics of 119 Archived Specimens Showing the Phenotypic Features of Hypoplastic Left Heart Syndrome. Semin. Thorac. Cardiovasc. Surg. 2020, 32, 895–903. [Google Scholar] [CrossRef] [PubMed]
- Noonan, J.A.; Nadas, A.S. The Hypoplastic Left Heart Syndrome; an Analysis of 101 Cases. Pediatr. Clin. N. Am. 1958, 5, 1029–1056. [Google Scholar] [CrossRef]
- Feinstein, J.A.; Benson, D.W.; Dubin, A.M.; Cohen, M.S.; Maxey, D.M.; Mahle, W.T.; Pahl, E.; Villafañe, J.; Bhatt, A.B.; Peng, L.F.; et al. Hypoplastic Left Heart Syndrome: Current Considerations and Expectations. J. Am. Coll. Cardiol. 2012, 59, S1–S42. [Google Scholar] [CrossRef] [Green Version]
- Siffel, C.; Riehle-Colarusso, T.; Oster, M.E.; Correa, A. Survival of Children With Hypoplastic Left Heart Syndrome. Pediatrics 2015, 136, e864–e870. [Google Scholar] [CrossRef] [Green Version]
- Best, K.E.; Miller, N.; Draper, E.; Tucker, D.; Luyt, K.; Rankin, J. The Improved Prognosis of Hypoplastic Left Heart: A Population-Based Register Study of 343 Cases in England and Wales. Front. Pediatr. 2021, 9, 635776. [Google Scholar] [CrossRef]
- Mahle, W.T.; Spray, T.L.; Wernovsky, G.; Gaynor, J.W.; Clark, B.J., 3rd. Survival after Reconstructive Surgery for Hypoplastic Left Heart Syndrome: A 15-Year Experience from a Single Institution. Circulation 2000, 102, III136–III141. [Google Scholar] [CrossRef]
- Dean, P.N.; Hillman, D.G.; McHugh, K.E.; Gutgesell, H.P. Inpatient Costs and Charges for Surgical Treatment of Hypoplastic Left Heart Syndrome. Pediatrics 2011, 128, e1181–e1186. [Google Scholar] [CrossRef]
- Axt-Fliedner, R.; Kreiselmaier, P.; Schwarze, A.; Krapp, M.; Gembruch, U. Development of Hypoplastic Left Heart Syndrome after Diagnosis of Aortic Stenosis in the First Trimester by Early Echocardiography. Ultrasound Obstet. Gynecol. 2006, 28, 106–109. [Google Scholar] [CrossRef]
- Allan, L.D.; Sharland, G.; Tynan, M.J. The Natural History of the Hypoplastic Left Heart Syndrome. Int. J. Cardiol. 1989, 25, 341–343. [Google Scholar] [CrossRef]
- Danford, D.A.; Cronican, P. Hypoplastic Left Heart Syndrome: Progression of Left Ventricular Dilation and Dysfunction to Left Ventricular Hypoplasia in Utero. Am. Heart J. 1992, 123, 1712–1713. [Google Scholar] [CrossRef]
- Anderson, N.G.; Brown, J. Normal Size Left Ventricle on Antenatal Scan in Lethal Hypoplastic Left Heart Syndrome. Pediatr. Radiol. 1991, 21, 436–437. [Google Scholar] [CrossRef] [PubMed]
- Sharland, G.K.; Chita, S.K.; Fagg, N.L.; Anderson, R.H.; Tynan, M.; Cook, A.C.; Allan, L.D. Left Ventricular Dysfunction in the Fetus: Relation to Aortic Valve Anomalies and Endocardial Fibroelastosis. Br. Heart J. 1991, 66, 419–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCaffrey, F.M.; Sherman, F.S. Prenatal Diagnosis of Severe Aortic Stenosis. Pediatric Cardiol. 1997, 18, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Harh, J.Y.; Paul, M.H.; Gallen, W.J.; Friedberg, D.Z.; Kaplan, S. Experimental Production of Hypoplastic Left Heart Syndrome in the Chick Embryo. Am. J. Cardiol. 1973, 31, 51–56. [Google Scholar] [CrossRef]
- Pesevski, Z.; Kvasilova, A.; Stopkova, T.; Nanka, O.; Drobna Krejci, E.; Buffinton, C.; Kockova, R.; Eckhardt, A.; Sedmera, D. Endocardial Fibroelastosis Is Secondary to Hemodynamic Alterations in the Chick Embryonic Model of Hypoplastic Left Heart Syndrome. Dev. Dyn. 2018, 247, 509–520. [Google Scholar] [CrossRef] [Green Version]
- Sedmera, D.; Pexieder, T.; Rychterova, V.; Hu, N.; Clark, E.B. Remodeling of Chick Embryonic Ventricular Myoarchitecture under Experimentally Changed Loading Conditions. Anat. Rec. 1999, 254, 238–252. [Google Scholar] [CrossRef]
- Fishman, N.H.; Hof, R.B.; Rudolph, A.M.; Heymann, M.A. Models of Congenital Heart Disease in Fetal Lambs. Circulation 1978, 58, 354–364. [Google Scholar] [CrossRef] [Green Version]
- Chaturvedi, R.R.; Keunen, J.; de Vrijer, B.; Ryan, G.; Jaeggi, E.T. A severe sustained decrease in left heart flow results in left ventricular hypoplasia in mid-gestation fetal lambs. Circulation 2019, 140, A15729. [Google Scholar]
- Rychik, J.; Rome, J.J.; Collins, M.H.; DeCampli, W.M.; Spray, T.L. The Hypoplastic Left Heart Syndrome with Intact Atrial Septum: Atrial Morphology, Pulmonary Vascular Histopathology and Outcome. J. Am. Coll. Cardiol. 1999, 34, 554–560. [Google Scholar] [CrossRef] [Green Version]
- Forbess, J.M.; Cook, N.; Roth, S.J.; Serraf, A.; Mayer, J.E.; Jonas, R.A. Ten-Year Institutional Experience with Palliative Surgery for Hypoplastic Left Heart Syndrome. Circulation 1995, 92, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, A. Aortic Atresia, Mitral Atresia, and Hypoplastic Left Ventricle. In Congenital Diseases of the Heart, 3rd ed.; Wiley-Blackwell: Oxford, UK, 2009; pp. 257–288. [Google Scholar]
- Schall, S.A.; Dalldorf, F.G. Premature Closure of the Foramen Ovale and Hypoplasia of the Left Heart. Int. J. Cardiol. 1984, 5, 103–107. [Google Scholar] [CrossRef]
- Kim, M.-S.; Fleres, B.; Lovett, J.; Anfinson, M.; Samudrala, S.S.K.; Kelly, L.J.; Teigen, L.E.; Cavanaugh, M.; Marquez, M.; Geurts, A.M.; et al. Contractility of Induced Pluripotent Stem Cell-Cardiomyocytes With an MYH6 Head Domain Variant Associated With Hypoplastic Left Heart Syndrome. Front. Cell Dev. Biol. 2020, 8, 440. [Google Scholar] [CrossRef] [PubMed]
- Friedman, K.G.; Sleeper, L.A.; Freud, L.R.; Marshall, A.C.; Godfrey, M.E.; Drogosz, M.; Lafranchi, T.; Benson, C.B.; Wilkins-Haug, L.E.; Tworetzky, W. Improved Technical Success, Postnatal Outcome and Refined Predictors of Outcome for Fetal Aortic Valvuloplasty. Ultrasound Obstet. Gynecol. 2018, 52, 212–220. [Google Scholar] [CrossRef] [Green Version]
- Hornberger, L.K.; Sanders, S.P.; Rein, A.J.; Spevak, P.J.; Parness, I.A.; Colan, S.D. Left Heart Obstructive Lesions and Left Ventricular Growth in the Midtrimester Fetus. A Longitudinal Study. Circulation 1995, 92, 1531–1538. [Google Scholar] [CrossRef]
- Cohen, M.S.; Rychik, J. The Small Left Ventricle: How Small Is Too Small for Biventricular Repair? Semin. Thorac. Cardiovasc. Surg. Pediatric Card. Surg. Annu. 1999, 2, 189–202. [Google Scholar] [CrossRef]
- Weber, R.W.; Ayala-Arnez, R.; Atiyah, M.; Etoom, Y.; Manlhiot, C.; McCrindle, B.W.; Hickey, E.J.; Jaeggi, E.T.; Nield, L.E. Foetal Echocardiographic Assessment of Borderline Small Left Ventricles Can Predict the Need for Postnatal Intervention. Cardiol. Young 2013, 23, 99–107. [Google Scholar] [CrossRef] [Green Version]
- van Velzen, C.L.; Clur, S.A.; Rijlaarsdam, M.E.B.; Bax, C.J.; Pajkrt, E.; Heymans, M.W.; Bekker, M.N.; Hruda, J.; de Groot, C.J.M.; Blom, N.A.; et al. Prenatal Detection of Congenital Heart Disease--Results of a National Screening Programme. BJOG 2016, 123, 400–407. [Google Scholar] [CrossRef]
- Rahman, A.; DeYoung, T.; Cahill, L.S.; Yee, Y.; Debebe, S.K.; Botelho, O.; Seed, M.; Chaturvedi, R.R.; Sled, J.G. A Mouse Model of Hypoplastic Left Heart Syndrome Demonstrating Left Heart Hypoplasia and Retrograde Aortic Arch Flow. Dis. Model. Mech. 2021, 14, dmm049077. [Google Scholar] [CrossRef]
- Midgett, M.; Rugonyi, S. Congenital Heart Malformations Induced by Hemodynamic Altering Surgical Interventions. Front. Physiol. 2014, 5, 287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhanantwari, P.; Lee, E.; Krishnan, A.; Samtani, R.; Yamada, S.; Anderson, S.; Lockett, E.; Donofrio, M.; Shiota, K.; Leatherbury, L.; et al. Human Cardiac Development in the First Trimester: A High-Resolution Magnetic Resonance Imaging and Episcopic Fluorescence Image Capture Atlas. Circulation 2009, 120, 343–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hikspoors, J.P.J.M.; Kruepunga, N.; Mommen, G.M.C.; Köhler, S.E.; Anderson, R.H.; Lamers, W.H. A Pictorial Account of the Human Embryonic Heart between 3.5 and 8 Weeks of Development. Commun. Biol. 2022, 5, 226. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, A.; Samtani, R.; Dhanantwari, P.; Lee, E.; Yamada, S.; Shiota, K.; Donofrio, M.T.; Leatherbury, L.; Lo, C.W. A Detailed Comparison of Mouse and Human Cardiac Development. Pediatr. Res. 2014, 76, 500–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansen, F.A.R.; Calkoen, E.E.; Jongbloed, M.R.M.; Bartelings, M.M.; Haak, M.C. Imaging the First Trimester Heart: Ultrasound Correlation with Morphology. Cardiol. Young 2014, 24 (Suppl. S2), 3–12. [Google Scholar] [CrossRef]
- Pham, D.H.; Dai, C.R.; Lin, B.Y.; Butcher, J.T. Local Fluid Shear Stress Operates a Molecular Switch to Drive Fetal Semilunar Valve Extension. Dev. Dyn. 2021, 251, 481–497. [Google Scholar] [CrossRef] [PubMed]
- Bassen, D.; Wang, M.; Pham, D.; Sun, S.; Rao, R.; Singh, R.; Butcher, J. Hydrostatic Mechanical Stress Regulates Growth and Maturation of the Atrioventricular Valve. Development 2021, 148, dev196519. [Google Scholar] [CrossRef]
- Gould, R.A.; Yalcin, H.C.; MacKay, J.L.; Sauls, K.; Norris, R.; Kumar, S.; Butcher, J.T. Cyclic Mechanical Loading Is Essential for Rac1-Mediated Elongation and Remodeling of the Embryonic Mitral Valve. Curr. Biol. 2016, 26, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Geng, X.; Cha, B.; Mahamud, M.R.; Srinivasan, R.S. Intraluminal Valves: Development, Function and Disease. Dis. Model. Mech. 2017, 10, 1273–1287. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.-P.D.; Hutcheson, J.D.; Ramaswamy, S. Oscillatory Fluid-Induced Mechanobiology in Heart Valves with Parallels to the Vasculature. Vasc. Biol. 2020, 2, R59–R71. [Google Scholar] [CrossRef] [Green Version]
- deAlmeida, A.; McQuinn, T.; Sedmera, D. Increased Ventricular Preload Is Compensated by Myocyte Proliferation in Normal and Hypoplastic Fetal Chick Left Ventricle. Circ. Res. 2007, 100, 1363–1370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowalski, W.J.; Teslovich, N.C.; Menon, P.G.; Tinney, J.P.; Keller, B.B.; Pekkan, K. Left Atrial Ligation Alters Intracardiac Flow Patterns and the Biomechanical Landscape in the Chick Embryo. Dev. Dyn. 2014, 243, 652–662. [Google Scholar] [CrossRef] [PubMed]
- Salman, H.E.; Alser, M.; Shekhar, A.; Gould, R.A.; Benslimane, F.M.; Butcher, J.T.; Yalcin, H.C. Effect of Left Atrial Ligation-Driven Altered Inflow Hemodynamics on Embryonic Heart Development: Clues for Prenatal Progression of Hypoplastic Left Heart Syndrome. Biomech. Model. Mechanobiol. 2021, 20, 733–750. [Google Scholar] [CrossRef] [PubMed]
- Gaber, N.; Gagliardi, M.; Patel, P.; Kinnear, C.; Zhang, C.; Chitayat, D.; Shannon, P.; Jaeggi, E.; Tabori, U.; Keller, G.; et al. Fetal Reprogramming and Senescence in Hypoplastic Left Heart Syndrome and in Human Pluripotent Stem Cells during Cardiac Differentiation. Am. J. Pathol. 2013, 183, 720–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon-Grady, A.J.; Morris, S.A.; Belfort, M.; Chmait, R.; Dangel, J.; Devlieger, R.; Emery, S.; Frommelt, M.; Galindo, A.; Gelehrter, S.; et al. International Fetal Cardiac Intervention Registry: A Worldwide Collaborative Description and Preliminary Outcomes. J. Am. Coll. Cardiol. 2015, 66, 388–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tulzer, A.; Arzt, W.; Gitter, R.; Sames-Dolzer, E.; Kreuzer, M.; Mair, R.; Tulzer, G. Valvuloplasty in 103 fetuses with critical aortic stenosis: Outcome and new predictors for postnatal circulation. Ultrasound Obstet. Gynecol. 2022, 59, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Pickard, S.S.; Wong, J.B.; Bucholz, E.M.; Newburger, J.W.; Tworetzky, W.; Lafranchi, T.; Benson, C.B.; Wilkins-Haug, L.E.; Porras, D.; Callahan, R.; et al. Fetal Aortic Valvuloplasty for Evolving Hypoplastic Left Heart Syndrome: A Decision Analysis. Circ. Cardiovasc. Qual. Outcomes 2020, 13, e006127. [Google Scholar] [CrossRef]
- Cluzeaut, F.; Maurer-Schultze, B. Proliferation of Cardiomyocytes and Interstitial Cells In the Cardiac Muscle of the Mouse during Pre- and Postnatal Development. Cell Prolif. 1986, 19, 267–274. [Google Scholar] [CrossRef]
- Soonpaa, M.H.; Kim, K.K.; Pajak, L.; Franklin, M.; Field, L.J. Cardiomyocyte DNA Synthesis and Binucleation during Murine Development. Am. J. Physiol. 1996, 271, H2183–H2189. [Google Scholar] [CrossRef]
- Crucean, A.; Alqahtani, A.; Barron, D.J.; Brawn, W.J.; Richardson, R.V.; O’Sullivan, J.; Anderson, R.H.; Henderson, D.J.; Chaudhry, B. Re-Evaluation of Hypoplastic Left Heart Syndrome from a Developmental and Morphological Perspective. Orphanet J. Rare Dis. 2017, 12, 138. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Yagi, H.; Saeed, S.; Bais, A.S.; Gabriel, G.C.; Chen, Z.; Peterson, K.A.; Li, Y.; Schwartz, M.C.; Reynolds, W.T.; et al. The Complex Genetics of Hypoplastic Left Heart Syndrome. Nat. Genet. 2017, 49, 1152–1159. [Google Scholar] [CrossRef]
- Yagi, H.; Liu, X.; Gabriel, G.C.; Wu, Y.; Peterson, K.; Murray, S.A.; Aronow, B.J.; Martin, L.J.; Benson, D.W.; Lo, C.W. The Genetic Landscape of Hypoplastic Left Heart Syndrome. Pediatr. Cardiol. 2018, 39, 1069–1081. [Google Scholar] [CrossRef] [PubMed]
- Grossfeld, P.; Nie, S.; Lin, L.; Wang, L.; Anderson, R.H. Hypoplastic Left Heart Syndrome: A New Paradigm for an Old Disease? J. Cardiovasc. Dev. Dis. 2019, 6, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borik, S.; Macgowan, C.K.; Seed, M. Maternal Hyperoxygenation and Foetal Cardiac MRI in the Assessment of the Borderline Left Ventricle. Cardiol. Young 2015, 25, 1214–1217. [Google Scholar] [CrossRef] [PubMed]
- Kohl, T. Chronic Intermittent Materno-Fetal Hyperoxygenation in Late Gestation May Improve on Hypoplastic Cardiovascular Structures Associated with Cardiac Malformations in Human Fetuses. Pediatr. Cardiol. 2010, 31, 250–263. [Google Scholar] [CrossRef] [Green Version]
- Lara, D.A.; Morris, S.A.; Maskatia, S.A.; Challman, M.; Nguyen, M.; Feagin, D.K.; Schoppe, L.; Zhang, J.; Bhatt, A.; Sexson-Tejtel, S.K.; et al. Pilot Study of Chronic Maternal Hyperoxygenation and Effect on Aortic and Mitral Valve Annular Dimensions in Fetuses with Left Heart Hypoplasia. Ultrasound Obstet. Gynecol. 2016, 48, 365–372. [Google Scholar] [CrossRef]
- Cox, K.L.; Morris, S.A.; Tacy, T.; Long, J.; Becker, J.; Schoppe, L.; Zhang, J.; Maskatia, S.A. Impact of Maternal Hyperoxygenation on Myocardial Deformation and Loading Conditions in Fetuses with and without Left Heart Hypoplasia. J. Am. Soc. Echocardiogr. 2022, in press. [Google Scholar] [CrossRef]
- Krane, M.; Dreßen, M.; Santamaria, G.; My, I.; Schneider, C.M.; Dorn, T.; Laue, S.; Mastantuono, E.; Berutti, R.; Rawat, H.; et al. Sequential Defects in Cardiac Lineage Commitment and Maturation Cause Hypoplastic Left Heart Syndrome. Circulation 2021, 144, 1409–1428. [Google Scholar] [CrossRef]
- Miao, Y.; Tian, L.; Martin, M.; Paige, S.L.; Galdos, F.X.; Li, J.; Klein, A.; Zhang, H.; Ma, N.; Wei, Y.; et al. Intrinsic Endocardial Defects Contribute to Hypoplastic Left Heart Syndrome. Cell Stem Cell 2020, 27, 574–589.e8. [Google Scholar] [CrossRef]
- Yang, C.; Xu, Y.; Yu, M.; Lee, D.; Alharti, S.; Hellen, N.; Ahmad Shaik, N.; Banaganapalli, B.; Sheikh Ali Mohamoud, H.; Elango, R.; et al. Induced Pluripotent Stem Cell Modelling of HLHS Underlines the Contribution of Dysfunctional NOTCH Signalling to Impaired Cardiogenesis. Hum. Mol. Genet. 2017, 26, 3031–3045. [Google Scholar] [CrossRef]
- Rugonyi, S. Genetic and Flow Anomalies in Congenital Heart Disease. AIMS Genet. 2016, 3, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Courchaine, K.; Rykiel, G.; Rugonyi, S. Influence of Blood Flow on Cardiac Development. Prog. Biophys. Mol. Biol. 2018, 137, 95–110. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, A.; Chaturvedi, R.R.; Sled, J.G. Flow-Mediated Factors in the Pathogenesis of Hypoplastic Left Heart Syndrome. J. Cardiovasc. Dev. Dis. 2022, 9, 154. https://doi.org/10.3390/jcdd9050154
Rahman A, Chaturvedi RR, Sled JG. Flow-Mediated Factors in the Pathogenesis of Hypoplastic Left Heart Syndrome. Journal of Cardiovascular Development and Disease. 2022; 9(5):154. https://doi.org/10.3390/jcdd9050154
Chicago/Turabian StyleRahman, Anum, Rajiv R. Chaturvedi, and John G. Sled. 2022. "Flow-Mediated Factors in the Pathogenesis of Hypoplastic Left Heart Syndrome" Journal of Cardiovascular Development and Disease 9, no. 5: 154. https://doi.org/10.3390/jcdd9050154
APA StyleRahman, A., Chaturvedi, R. R., & Sled, J. G. (2022). Flow-Mediated Factors in the Pathogenesis of Hypoplastic Left Heart Syndrome. Journal of Cardiovascular Development and Disease, 9(5), 154. https://doi.org/10.3390/jcdd9050154