Obesity and Body Mass Components Influence Exercise Tolerance and the Course of Hypertension in Perimenopausal Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Basic Characteristics
- (a)
- Diagnosis of heart failure—left ventricular ejection fraction (LVEF) ≤ 50% and signs and symptoms of heart failure or LVEF ≥ 50% with signs and symptoms and raised natriuretic peptides;
- (b)
- Uncontrollable arterial hypertension—systolic blood pressure ≥150 mmHg and/or diastolic blood pressure ≥100 mmHg;
- (c)
- Diagnosis of cardiomyopathy in medical history;
- (d)
- Intracerebral hemorrhage, stroke, transient ischemic attack in medical history;
- (e)
- Past myocardial infarction;
- (f)
- Active systemic infection;
- (g)
- Pregnancy and lactation;
- (h)
- Registered hyperandrogenism, hyperestrogenism, insulin resistance, premature ovarian failure or polycystic ovary syndrome;
- (i)
- Critical hypo- or hyperthyroidism;
- (j)
- Lysosomal storage diseases;
- (k)
- Active autoimmune disorder;
- (l)
- Documented neoplastic process;
- (m)
- Chronic kidney disease (stage IV and V according to the National Kidney Foundation);
- (n)
- Treatment with antiretroviral and cytostatic drugs, glucocorticosteroids or immunosuppressants;
- (o)
- Registered treatment with blood products within the last 6 months, bone marrow transplant or other organ transplant;
- (p)
- Human immunodeficiency virus (HIV), hepatitis B virus (HBV) or hepatitis C virus (HCV) carrier or positive for hepatitis B surface antigen (HBsAg) or antibodies to HCV;
- (q)
- Alcohol and drug abuse;
- (r)
- Surgery or severe trauma within the last month;
- (s)
- Inability of the patient to collaborate and/or provide informed consent to participate in the study;
- (t)
- Patients who did not express their informed consent to participate in the research.
2.2. Echocardiography
2.3. Laboratory Tests
2.4. Spiroergometry
2.5. Sphygmocor
2.6. Body Mass Analysis
2.7. Statistical Analysis
3. Results
3.1. Evaluation of Basic Characteristics
3.2. Evaluation of Echocardiographic and Hemodynamic Parameters
3.3. Evaluation of Spiroergometry
3.4. Evaluation of Body Mass Analysis
3.5. Obese Patients and Clinical Parameters: Results of Logistic Regression Analysis
3.6. Significant Correlations with VO2 AT
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- NCD Risk Factor Collaboration. Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet 2016, 387, 1377–1396. [Google Scholar] [CrossRef] [Green Version]
- An, R. Health care expenses in relation to obesity and smoking among U.S. adults by gender, race/ethnicity, and age group: 1998–2011. Public Health 2015, 129, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Chuda, A.; Banach, M.; Maciejewski, M.; Bielecka-Dabrowa, A. Role of confirmed and potential predictors of an unfavorable outcome in heart failure in everyday clinical practice. Ir. J. Med. Sci. 2022, 191, 213–227. [Google Scholar] [CrossRef] [PubMed]
- Paduszyńska, A.; Banach, M.; Maciejewski, M.; Dąbrowa, M.; Bielecka-Dąbrowa, A. The outcomes of hypertension treatment depending on gender in patients over 40 years of age. Prz. Menopauzalny 2020, 19, 174–178. [Google Scholar] [CrossRef]
- Milner, T.A.; Contoreggi, N.H.; Yu, F.; Johnson, M.A.; Wang, G.; Woods, C.; Mazid, S.; Van Kempen, T.A.; Waters, E.M.; McEwen, B.S.; et al. Estrogen Receptor β Contributes to Both Hypertension and Hypothalamic Plasticity in a Mouse Model of Peri-Menopause. J. Neurosci. 2021, 41, 5190–5205. [Google Scholar] [CrossRef] [PubMed]
- Marcus, Y.; Shefer, G.; Stern, N. Adipose tissue renin-angiotensin-aldosterone system (RAAS) and progression of insulin resistance. Mol. Cell. Endocrinol. 2013, 378, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Bielecka-Dabrowa, A.; Bartlomiejczyk, M.A.; Sakowicz, A.; Maciejewski, M.; Banach, M. The Role of Adipokines in the Development of Arterial Stiffness and Hypertension. Angiology 2020, 71, 754–761. [Google Scholar] [CrossRef]
- Paduszyńska, A.; Sakowicz, A.; Banach, M.; Maciejewski, M.; Dąbrowa, M.; Bielecka-Dąbrowa, A. Cardioprotective properties of leptin in patients with excessive body mass. Ir. J. Med. Sci. 2020, 189, 1259–1265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, A.; Becerril, S.; Ezquerro, S.; Mendez-Gimenez, L.; Fruhbeck, G. Cross-Talk between Adipokines and Myokines in Fat Browning. Acta Physiol. 2017, 219, 362–381. [Google Scholar] [CrossRef]
- Manna, P.; Jain, S.K. Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. Metab. Syndr. Relat. Disord. 2015, 13, 423–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caprio, S.; Pierpont, B.; Kursawe, R. The “adipose tissue expandability” hypothesis: A potential mechanism for insulin resistance in obese youth. Horm. Mol. Biol. Clin. Investig. 2018, 33. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, D.J.; Erskine, R.M.; Morse, C.I.; Winwood, K.; Onambélé-Pearson, G. The impact of obesity on skeletal muscle strength and structure through adolescence to old age. Biogerontology 2016, 17, 467–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, H.L.; Willius, F.A. Adiposity of the heart. Arch. Intern. Med. 1933, 52, 929–931. [Google Scholar] [CrossRef]
- Alpert, M.A. Obesity cardiomyopathy: Pathophysiology and evolution of the clinical syndrome. Am. J. Med. Sci. 2001, 321, 225. [Google Scholar] [CrossRef] [PubMed]
- Norton, G.R.; Majane, O.H.; Libhaber, E.; Maseko, M.J.; Makaula, S.; Libhaber, C.; Woodiwiss, A.J. The relationship between blood pressure and left ventricular mass index depends on an excess adiposity. J. Hypertens. 2009, 27, 1873. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.H.; Wheatley, C.M.; Behnia, M.; Johnson, B.D. The Effect of Aging on Relationships between Lean Body Mass and VO2max in Rowers. PLoS ONE 2016, 11, e0160275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blümel, J.E.; Fica, J.; Chedraui, P.; Mezones-Holguin, E.; Zuñiga, M.C.; Witis, S.; Vallejo, M.S.; Tserotas, K.; Sánchez, H.; Onatra, W.; et al. Sedentary lifestyle in middle-aged women is associated with severe menopausal symptoms and obesity. Menopause 2016, 23, 488–493. [Google Scholar] [CrossRef]
- Tojal, L.; Alonso-Gómez, A.; Alberich, S.; Wärnberg, J.; Sorto, C.; Portillo, M.P.; Schröder, H.; Salas-Salvadó, J.; Arós, F. Association between maximal oxygen consumption and physical activity and sedentary lifestyle in metabolic syndrome. Usefulness of questionnaires. Rev. Esp. Cardiol. 2020, 73, 145–152. [Google Scholar] [CrossRef] [PubMed]
- WHO. Consultation on Obesity: Preventing and Managing the Global Epidemic; WHO Technical Report Series 894; World Health organization: Geneva, Switzerland, 2000. [Google Scholar]
- Saric, M.; Armour, A.C.; Arnaout, M.S.; Chaudhry, F.A.; Grimm, R.A.; Kronzon, I.; Landeck, B.F.; Maganti, K.; Michelena, H.I.; Tolstrup, K. Guidelines for the use of echocardiography in the evaluation of a cardiac source of embolism. J. Am. Soc. Echocardiogr. 2016, 29, 1–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwataki, M.; Takeuchi, M.; Otani, K.; Kuwaki, H.; Haruki, N.; Yoshitani, H.; Tamura, M.; Abe, H.; Otsuji, Y. Measurement of left atrial volume from transthoracic three-dimensional echocardiographic datasets using the biplane Simpson’s technique. J. Am. Soc. Echocardiogr. 2012, 25, 1319–1326. [Google Scholar] [CrossRef]
- Dhawan, I.; Makhija, N.; Choudhury, M.; Choudhury, A. Modified Tricuspid Annular Plane Systolic Excursion for Assessment of Right Ventricular Systolic Function. J. Cardiovasc. Imaging 2019, 27, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Graham, B.L.; Steenbruggen, I.; Miller, M.R.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.; McCarthy, K.; McCormack, M.C.; et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med. 2019, 200, 70–88. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, R.; Bakken, K.; D’Elia, E.; Lewis, G.D. Cardiopulmonary Exercise Testing in Heart Failure. JACC Heart Fail. 2016, 4, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.S.; Borges, A.R.; Christy, J.B. Considerations for SphygmoCor radial artery pulse wave analysis: Side selection and peripheral arterial blood pressure calibration. Hypertens. Res. 2015, 38, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Pichler, G.; Martinez, F.; Vicente, A.; Solaz, E.; Calaforra, O.; Redon, J. Pulse pressure amplification and its determinants. Blood Press. 2016, 25, 21–27. [Google Scholar] [CrossRef]
- Rajzer, M.W.; Wojciechowska, W.; Klocek, M.; Palka, I.; Brzozowska-Kiszka, M.; Kawecka-Jaszcz, K. Comparison of aortic pulse wave velocity measured by three techniques: Complior, SphygmoCor and Arteriograph. J. Hypertens. 2008, 26, 2001–2007. [Google Scholar] [CrossRef] [PubMed]
- Marra, M.; Sammarco, R.; De Lorenzo, A.; Iellamo, F.; Siervo, M.; Pietrobelli, A.; Donini, L.M.; Santarpia, L.; Cataldi, M.; Pasanisi, F.; et al. Assessment of Body Composition in Health and Disease Using Bioelectrical Impedance Analysis (BIA) and Dual Energy X-ray Absorptiometry (DXA): A Critical Overview. Contrast Media Mol. Imaging 2019, 2019, 3548284. [Google Scholar] [CrossRef] [PubMed]
- Park, I.; Lee, J.H.; Jang, D.H.; Kim, J.; Hwang, B.R.; Kim, S.; Lee, J.E.; Jo, Y.H. Assessment of body water distribution in patients with sepsis during fluid resuscitation using multi-frequency direct segmental bioelectrical impedance analysis. Clin. Nutr. 2020, 39, 1826–1831. [Google Scholar] [CrossRef] [PubMed]
- Gruchała-Niedoszytko, M.; Niedoszytko, P.; Kaczkan, M.; Pieszko, M.; Gierat-Haponiuk, K.; Śliwińska, A.; Skotnicka, M.; Szalewska, D.; Małgorzewicz, S. Cardiopulmonary exercise test and bioimpedance as prediction tools to predict the outcomes of obesity treatment. Pol. Arch. Intern. Med. 2019, 129, 225–233. [Google Scholar] [CrossRef]
- Pérez-Morales, R.; Donate-Correa, J.; Martín-Núñez, E.; Pérez-Delgado, N.; Ferri, C.; López-Montes, A.; Jiménez-Sosa, A.; Navarro-González, J.F. Extracellular water/total body water ratio as predictor of mortality in hemodialysis patients. Ren. Fail. 2021, 43, 821–829. [Google Scholar] [CrossRef]
- Zuo, M.L.; Yue, W.S.; Yip, T.; Ng, F.; Lam, K.F.; Yiu, K.H.; Lui, S.L.; Tse, H.F.; Siu, C.W.; Lo, W.K. Prevalence of and associations with reduced exercise capacity in peritoneal dialysis patients. Am. J. Kidney Dis. 2013, 62, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Waki, M.; Kral, J.G.; Mazariegos, M.; Wang, J.; Pierson, R.N., Jr.; Heymsfield, S.B. Relative expansion of extracellular fluid in obese vs. nonobese women. Am. J. Physiol. 1991, 261 Pt 1, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Ndumele, C.E.; Coresh, J.; Lazo, M.; Hoogeveen, R.; Blumenthal, R.S.; Folsom, A.R.; Selvin, E.; Ballantyne, C.M.; Nambi, V. Obesity, subclinical myocardial injury, and incident heart failure. JACC Heart Fail. 2014, 2, 600–607. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Shantsila, A.; Guo, P.; Potpara, T.S.; Zhan, X.; Fang, X.; Liao, H.; Liu, Y.; Wei, W.; Fu, L.; et al. A U-shaped relationship of body mass index on atrial fibrillation recurrence post ablation: A report from the Guangzhou atrial fibrillation ablation registry. eBioMedicine 2018, 35, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Russo, C.; Jin, Z.; Homma, S.; Rundek, T.; Elkind, M.S.; Sacco, R.L.; Di Tullio, M.R. Effect of obesity and overweight on left ventricular diastolic function: A community-based study in an elderly cohort. J. Am. Coll. Cardiol. 2011, 57, 1368–1374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pascual, M.; Pascual, D.A.; Soria, F.; Vicente, T.; Hernández, A.M.; Tébar, F.J.; Valdés, M. Effects of isolated obesity on systolic and diastolic left ventricular function. Heart 2003, 89, 1152–1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hulens, M.; Vansant, G.; Lysens, R.; Claessens, A.L.; Muls, E. Exercise capacity in lean versus obese women. Scand. J. Med. Sci. Sports 2001, 11, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Gonze, B.B.; Ostolin, T.L.V.D.P.; Barbosa, A.C.B.; Matheus, A.C.; Sperandio, E.F.; Gagliardi, A.R.T.; Arantes, R.L.; Romiti, M.; Dourado, V.Z. Dynamic physiological responses in obese and non-obese adults submitted to cardiopulmonary exercise test. PLoS ONE 2021, 16, e0255724. [Google Scholar] [CrossRef]
Parameter | BMI ≥ 30 kg/m2 n = 60 | BMI < 30 kg/m2 n = 128 | p |
---|---|---|---|
Age | 53.0 (±8) | 52.0(±8) | 0.5 |
Height (cm) | 163.5 *, (158–165.5) | 164.0 *, (160–167) | 0.3 |
Body mass (kg) | 88.3 *, (82.9–97.2) | 67.0 *, (61.2–73.2) | <0.0001 |
BMI (kg/m2) | 33.3 *, (31.8–35.1) | 25.0 *, (22.9–27.6) | <0.0001 |
Glucose (mg/dL) | 94.0 *, (89–99) | 91.0 *, (86–97) | 0.01 |
HDL cholesterol (mg/dL) | 45.0 *, (38–49) | 54.5 *, (42–66) | <0.0001 |
LDL cholesterol (mg/dL) | 118.7 (±32.4) | 112.8 (±32.9) | 0.3 |
Triglycerides (mg/dL) | 149.0 *, (102–178) | 111.0 *, (75–146) | 0.002 |
Total cholesterol (mg/dL) | 192.5 (±40.2) | 193.0 (±39.5) | 0.9 |
Hemoglobin (g/dL) | 13.5 *, (12.2–14.3) | 13.4 *, (12.5–14) | 0.2 |
GFR (mL/min/1,73 m3) | 84.0 *, (74.7–96) | 86.9 *, (77.2–100.1) | 0.2 |
ALT (U/L) | 23.0 *, (18–32) | 17.0 *, (14–25) | <0.0001 |
AST (U/L) | 24.0 *, (21–30) | 22.0 *, (19–25) | 0.02 |
CRP (mg/L) | 0.6 *, (0.5–0.9) | 0.5 *, (0.5–0.5) | 0.004 |
hsTnT (ng/L) | 4.6 *, (3–5.9) | 3.5 *, (3–4.6) | 0.02 |
NT-proBNP (pg/mL) | 65.5 *, (34.5–105) | 68.0 *, (44–117.5) | 0.2 |
Parameter | BMI ≥ 30 kg/m2 n = 60 | BMI < 30 kg/m2 n = 128 | p |
---|---|---|---|
LVEF (%) | 64.0 *, (61–65.5) | 64.0 *, (61–67) | 0.8 |
LA volume (mL) | 66.3 *, (56–82.5) | 51.0 *, (45.5–62) | <0.0001 |
LAVi (mL/m2) | 34.0 *, (28.8–40.8) | 29.6 *, (26.9–34.8) | 0.0005 |
E (cm/s) | 85.2 (±13.1) | 84.5 (±13.6) | 0.7 |
A (cm/s) | 83.5 *, (74.5–93.5) | 78.0 *, (69–90) | 0.03 |
E/A | 1.0 (±0.2) | 1.1 (±0.2) | 0.1 |
E′ (cm/s) | 9.0 *, (8–10.5) | 10.0 *, (8–12) | 0.03 |
A′ (cm/s) | 10.0 *, (9.5–12) | 10.0 *, (9–12) | 0.9 |
E/E′ (cm/s) | 8.5 *, (7.3–10.3) | 7.7 *, (6.4–8.6) | 0.004 |
LAVi/A′ | 3.4 *, (2.6–4.2) | 2.9 *, (2.4–3.4) | 0.005 |
TAPSE (mm) | 23.0 *, (21–26) | 23.0 *, (21–27) | 0.8 |
TDE S′ (cm/s) | 16.0 *, (13–17) | 14.0 *, (12–16) | 0.1 |
PWV (m/s) | 7.4 *, (6.8–8.4) | 7.5 *, (6.9–8.5) | 0.4 |
Aortic SP (mmHg) | 118.0 *, (112–129) | 118.5 *, (109.5–130) | 0.9 |
Aortic PP (mmHg) | 67.0 *, (40–79) | 66.5 *, (43–81) | 0.6 |
AP (mmHg) | 12.0 *, (9–17) | 13.0 *, (10–16) | 0.7 |
Alx (%) | 31.0 *, (24–37) | 33.0 *, (27–38) | 0.4 |
Alx@HR75 (%) | 28.0 *, (22–35) | 31.0 *, (23–37) | 0.3 |
Parameter | BMI ≥ 30 kg/m2 n = 60 | BMI < 30 kg/m2 n = 128 | p |
---|---|---|---|
Exercise time (min) | 8.86 (±2.1) | 8.42 (±2.2) | 0.2 |
HR max | 136.3 (±20.4) | 147.1 (±19.1) | 0.0006 |
Peripheral SBP max (mmHg) | 180.0 *, (170–200) | 170.0 *, (160–180) | <0.0001 |
Peripheral DBP max (mmHg) | 80.0 *, (80–90) | 80.0 *, (80–90) | 0.04 |
FEV1 (L) | 2.6 *, (2.3–3) | 2.7 *, (2.5–3) | 0.1 |
FVC (L) | 3.2 *, (2.6–3.5) | 3.3 *, (3–3.6) | 0.04 |
FVC% | 108.0 *, (97–117) | 109.0 *, (99–122) | 0.2 |
FEV1/FVC | 85.0 *, (79–88) | 84.0 *, (79–87) | 0.1 |
FEV1/FVC% | 107.0 *, (99–111) | 105.0 *, (99–109) | 0.1 |
FEF 25–75 | 2.5 *, (1.8–3.4) | 2.6 *, (1.9–3.2) | 0.8 |
RER | 1.1 *, (1–1.1) | 1.1 *, (1.1–1.2) | 0.002 |
VO2 max (mL/min/kg) | 18.0 *, (15–19) | 20.0 *, (18–23) | <0.0001 |
VO2 AT (mL/min/kg) | 12.0 *, (10–13) | 13.0 *, (11–15) | 0.006 |
Peak VO2 max (L) | 1.6 *, (1.3–1.7) | 1.4 *, (1.2–1.5) | <0.0001 |
VE/VCO2 slope | 28.0 (±4.2) | 28.6 (±3.9) | 0.4 |
Parameter | BMI ≥ 30 kg/m2 n = 60 | BMI < 30 kg/m2 n = 128 | p |
---|---|---|---|
Fat (%) | 40.5 *, (37.6–42) | 33.3 *, (29.2–36.6) | <0.0001 |
Fat (kg) | 36.6 *, (31.3–40.3) | 23.0 *, (17.5–26.8) | <0.0001 |
FFM (kg) | 53.8 *, (50.8–56.8) | 44.8 *, (42.1–47.2) | <0.0001 |
TBW (kg) | 38.3 *, (36–40.4) | 31.9 *, (30–33.6) | <0.0001 |
TBW (%) | 42.2 *, (41.4–44.4) | 47.4 *, (44.9–50.4) | <0.0001 |
ECW (kg) | 17.6 *, (16.8–18.7) | 14.3 *, (13.6–15.2) | <0.0001 |
ICW (kg) | 20.5 *, (19.2–22.3) | 17.5 *, (16.2–18.9) | <0.0001 |
ECW/TBW % | 46.5 *, (45.6–47.3) | 45.1 *, (43.9–46.2) | <0.0001 |
Metabolic age | 64.0 *, (58–70) | 47.0 *, (40–55) | <0.0001 |
BMI ≥ 30 kg/m2 | |||
---|---|---|---|
Parameter | OR | 95% Cl | p |
Fat (%) | 1.49 | 1.16–1.90 | 0.002 |
HDL cholesterol (mg/dL) | 0.94 | 0.88–0.99 | 0.045 |
Peak VO2 max (L) | 9266.68 | 76.22–126,642.67 | 0.001 |
VO2 max (mL/min/kg) | 0.51 | 0.33–0.80 | 0.003 |
BMI ≥ 30 kg/m2 | ||
---|---|---|
Parameter | r | p |
Exercise time (min) | 0.55 | <0.0001 |
Peak VO2 max (L) | 0.57 | <0.0001 |
VO2 max (mL/min/kg) | 0.69 | <0.0001 |
BMI < 30 kg/m2 | ||
---|---|---|
Parameter | r | p |
Exercise time (min) | 0.41 | <0.0001 |
Peak VO2 max (L) | 0.43 | <0.0001 |
VO2 max (mL/min/kg) | 0.72 | <0.0001 |
TBW (%) | 0.41 | <0.0001 |
Fat (kg) | −0.4 | <0.0001 |
Fat (%) | −0.41 | <0.0001 |
ECW/TBW % | −0.44 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bielecka-Dabrowa, A.; Gryglewska, K.; Sakowicz, A.; Rybak, M.; Janikowski, K.; Banach, M. Obesity and Body Mass Components Influence Exercise Tolerance and the Course of Hypertension in Perimenopausal Women. J. Cardiovasc. Dev. Dis. 2022, 9, 238. https://doi.org/10.3390/jcdd9080238
Bielecka-Dabrowa A, Gryglewska K, Sakowicz A, Rybak M, Janikowski K, Banach M. Obesity and Body Mass Components Influence Exercise Tolerance and the Course of Hypertension in Perimenopausal Women. Journal of Cardiovascular Development and Disease. 2022; 9(8):238. https://doi.org/10.3390/jcdd9080238
Chicago/Turabian StyleBielecka-Dabrowa, Agata, Katarzyna Gryglewska, Agata Sakowicz, Marek Rybak, Kamil Janikowski, and Maciej Banach. 2022. "Obesity and Body Mass Components Influence Exercise Tolerance and the Course of Hypertension in Perimenopausal Women" Journal of Cardiovascular Development and Disease 9, no. 8: 238. https://doi.org/10.3390/jcdd9080238
APA StyleBielecka-Dabrowa, A., Gryglewska, K., Sakowicz, A., Rybak, M., Janikowski, K., & Banach, M. (2022). Obesity and Body Mass Components Influence Exercise Tolerance and the Course of Hypertension in Perimenopausal Women. Journal of Cardiovascular Development and Disease, 9(8), 238. https://doi.org/10.3390/jcdd9080238