The Relationship of Maternal Gestational Mass Spectrometry-Derived Metabolites with Offspring Congenital Heart Disease: Results from Multivariable and Mendelian Randomization Analyses
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Sample Collection and Metabolomic Profiling in BiB
2.3. Confounders
2.4. Congenital Heart Disease Outcomes
2.5. Genetic Data
2.5.1. Genotyping in Each Cohort
2.5.2. GWAS Data and SNP Selection
2.5.3. Genetic Risk Score Generation
2.6. Statistical Analysis
2.6.1. Multivariable Regression (Metabolomic) Analyses
2.6.2. Mendelian Randomization Analyses
3. Results
3.1. Main BiB Multivariable Regression Analyses
3.2. Internal Validation Using NMR or Clinical Chemistry Measures of Suggestive Associations from Main Multivariable Regression Analyses
3.3. Validating Findings with Mendelian Randomization
4. Discussion
4.1. Ethical Approval and Consent to Participate
4.2. Availability of Data and Materials
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.; Naghavi, M.; Allen, C.; Barber, R.M.; Bhutta, Z.A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; Coates, M.M.; et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 459–544. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0140673616310121 (accessed on 20 February 2020). [CrossRef]
- Blue, G.M.; Kirk, E.P.; Sholler, G.F.; Harvey, R.P.; Winlaw, D.S. Congenital heart disease: Current knowledge about causes and inheritance. Med. J. Aust. 2012, 197, 155–159. Available online: https://onlinelibrary.wiley.com/doi/abs/10.5694/mja12.10811 (accessed on 5 February 2020). [CrossRef]
- Monni, G.; Atzori, L.; Corda, V.; Dessolis, F.; Iuculano, A.; Hurt, K.J.; Murgia, F. Metabolomics in Prenatal Medicine: A Review. Front. Med. 2021, 8, 645118. Available online: https://www.frontiersin.org/articles/10.3389/fmed.2021.645118/full (accessed on 26 July 2021). [CrossRef]
- Koster, M.P.H.; van Duijn, L.; Krul-Poel, Y.H.M.; Laven, J.S.; Helbing, W.A.; Simsek, S.; Steegers-Theunissen, R.P.M. A compromised maternal vitamin D status is associated with congenital heart defects in offspring. Early Hum. Dev. 2018, 117, 50–56. [Google Scholar] [CrossRef]
- Smedts, H.P.M.; van Uitert, E.M.; Valkenburg, O.; Laven, J.S.E.; Eijkemans, M.J.C.; Lindemans, J.; Steegers, E.A.P.; Steegers-Theunissen, R.P.M. A derangement of the maternal lipid profile is associated with an elevated risk of congenital heart disease in the offspring. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 477–485. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0939475310001900 (accessed on 27 March 2020). [CrossRef]
- Cao, L.; Du, Y.; Zhang, M.; Wang, F.; Zhao, J.Y.; Ren, Y.Y.; Gui, Y.H. High maternal blood lipid levels during early pregnancy are associated with increased risk of congenital heart disease in offspring. Acta Obstet. Gynecol. Scand. 2021, 100, 1806–1813. [Google Scholar] [CrossRef]
- Priest, J.R.; Yang, W.; Reaven, G.; Knowles, J.W.; Shaw, G.M. Maternal Midpregnancy Glucose Levels and Risk of Congenital Heart Disease in Offspring. JAMA Pediatr. 2015, 169, 1112–1116. [Google Scholar] [CrossRef]
- Øyen, N.; Diaz, L.J.; Leirgul, E.; Boyd, H.A.; Priest, J.; Mathiesen, E.R.; Quertermous, T.; Wohlfahrt, J.; Melbye, M. Prepregnancy Diabetes and Offspring Risk of Congenital Heart Disease: A Nationwide Cohort Study. Circulation 2016, 133, 2243–2253. [Google Scholar] [CrossRef]
- Simeone, R.M.; Devine, O.J.; Marcinkevage, J.A.; Gilboa, S.M.; Razzaghi, H.; Bardenheier, B.H.; Sharma, A.J.; Honein, M.A. Diabetes and congenital heart defects: A systematic review, meta-analysis, and modeling project. Am. J. Prev. Med. 2015, 48, 195–204. [Google Scholar] [CrossRef]
- Bahado-Singh, R.O.; Ertl, R.; Mandal, R.; Bjorndahl, T.C.; Syngelaki, A.; Han, B.; Dong, E.; Liu, P.B.; Alpay-Savasan, Z.; Wishart, D.S.; et al. Metabolomic prediction of fetal congenital heart defect in the first trimester. Obstet. Gynecol. Surv. 2015, 70, 9–11. [Google Scholar] [CrossRef]
- Xie, D.; Luo, Y.; Xiong, X.; Lou, M.; Liu, Z.; Wang, A.; Xiong, L.; Kong, F.; Wang, Y.; Wang, H. Study on the Potential Biomarkers of Maternal Urine Metabolomics for Fetus with Congenital Heart Diseases Based on Modified Gas Chromatograph-Mass Spectrometer. Biomed. Res. Int. 2019, 2019, 1905416. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Yang, L.; Huang, M.; Zhang, X.; Wang, X.; Guan, X.; Yang, P.; Wang, Y.; Meng, L.; et al. Analysis of Biomarkers for Congenital Heart Disease Based on Maternal Amniotic Fluid Metabolomics. Front. Cardiovasc. Med. 2021, 8, 671191. [Google Scholar] [CrossRef]
- Jaddoe, V.W.V.; Felix, J.F.; Andersen, A.M.N.; Charles, M.A.; Chatzi, L.; Corpeleijn, E.; Donner, N.; Elhakeem, A.; Eriksson, J.G.; Foong, R.; et al. The LifeCycle Project-EU Child Cohort Network: A federated analysis infrastructure and harmonized data of more than 250,000 children and parents. Eur. J. Epidemiol. 2020, 35, 709–724. [Google Scholar] [CrossRef]
- Wright, J.; Small, N.; Raynor, P.; Tuffnell, D.; Bhopal, R.; Cameron, N.; Fairley, L.; Lawlor, D.A.; Parslow, R.; Petherick, E.S.; et al. Cohort Profile: The Born in Bradford multi-ethnic family cohort study. Int. J. Epidemiol. 2013, 42, 978–991. Available online: https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dys112 (accessed on 23 March 2020). [CrossRef]
- Taylor, K.; McBride, N.; Goulding, N.J.; Burrows, K.; Mason, D.; Pembrey, L.; Yang, T.; Azad, R.; Wright, J.; Lawlor, D.A.; et al. Metabolomics datasets in the Born in Bradford cohort. Wellcome Open Res. 2021, 5, 264. Available online: https://wellcomeopenresearch.org/articles/5-264/v2 (accessed on 5 October 2021). [CrossRef]
- Yang, Q.; Borges, M.C.; Sanderson, E.; Magnus, M.C.; Kilpi, F.; Collings, P.J.; Soares, A.L.; West, J.; Magnus, P.; Wright, J.; et al. Associations of insomnia on pregnancy and perinatal outcomes: Findings from Mendelian randomization and conventional observational studies in up to 356,069 women. medRxiv 2021, 2021, 21264689. Available online: http://medrxiv.org/content/early/2021/10/10/2021.10.07.21264689.abstract (accessed on 21 January 2022).
- Brand, J.S.; Gaillard, R.; West, J.; McEachan, R.R.C.; Wright, J.; Voerman, E.; Felix, J.F.; Tilling, K.; Lawlor, D.A. Associations of maternal quitting, reducing, and continuing smoking during pregnancy with longitudinal fetal growth: Findings from Mendelian randomization and parental negative control studies. PLoS Med. 2019, 16, e1002972. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6853297/ (accessed on 20 July 2020). [CrossRef]
- Glinianaia, S.V.; Rankin, J.; Wright, C. Congenital anomalies in twins: A register-based study. Hum. Reprod. 2008, 23, 1306–1311. [Google Scholar] [CrossRef]
- Best, K.E.; Rankin, J. Increased risk of congenital heart disease in twins in the North of England between 1998 and 2010. Heart 2015, 101, 1807–1812. [Google Scholar] [CrossRef]
- Boyd, A.; Golding, J.; Macleod, J.; Lawlor, D.A.; Fraser, A.; Henderson, J.; Molloy, L.; Ness, A.; Ring, S.; Davey Smith, G. Cohort Profile: The ‘Children of the 90s’—The index offspring of the Avon Longitudinal Study of Parents and Children. Int. J. Epidemiol. 2013, 42, 111–127. Available online: https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dys064 (accessed on 3 March 2020). [CrossRef]
- Fraser, A.; Macdonald-Wallis, C.; Tilling, K.; Boyd, A.; Golding, J.; Davey Smith, G.; Henderson, J.; Macleod, J.; Molloy, L.; Ness, A.; et al. Cohort Profile: The Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort. Int. J. Epidemiol. 2013, 42, 97–110. [Google Scholar] [CrossRef]
- Northstone, K.; Lewcock, M.; Groom, A.; Boyd, A.; Macleod, J.; Timpson, N.; Wells, N. The Avon Longitudinal Study of Parents and Children (ALSPAC): An update on the enrolled sample of index children in 2019. Wellcome Open Res. 2019, 4, 51. Available online: https://wellcomeopenresearch.org/articles/4-51/v1 (accessed on 10 March 2020). [CrossRef] [PubMed]
- Magnus, P.; Birke, C.; Vejrup, K.; Haugan, A.; Alsaker, E.; Daltveit, A.K.; Handal, M.; Haugen, M.; Høiseth, G.; Knudsen, G.P.; et al. Cohort Profile Update: The Norwegian Mother and Child Cohort Study (MoBa). Int. J. Epidemiol. 2016, 45, 382–388. [Google Scholar] [CrossRef]
- Magnus, P.; Irgens, L.M.; Haug, K.; Nystad, W.; Skjaerven, R.; Stoltenberg, C.; MoBa Study Group. Cohort profile: The Norwegian Mother and Child Cohort Study (MoBa). Int. J. Epidemiol. 2006, 35, 1146–1150. [Google Scholar] [CrossRef] [PubMed]
- Sovio, U.; Goulding, N.; McBride, N.; Cook, E.; Gaccioli, F.; Charnock-Jones, D.S.; Lawlor, D.A.; Smith, G.C.S. A maternal serum metabolite ratio predicts fetal growth restriction at term. Nat. Med. 2020, 26, 348–353. Available online: https://www.nature.com/articles/s41591-020-0804-9 (accessed on 20 May 2019). [CrossRef]
- Bishop, C.; Small, N.; Mason, D.; Corry, P.; Wright, J.; Parslow, R.C.; Bittles, A.H.; Sheridan, E. Improving case ascertainment of congenital anomalies: Findings from a prospective birth cohort with detailed primary care record linkage. BMJPO 2017, 1, e000171. Available online: http://bmjpaedsopen.bmj.com/lookup/doi/10.1136/bmjpo-2017-000171 (accessed on 4 March 2020). [CrossRef] [PubMed]
- Taylor, K.; Thomas, R.; Mumme, M.; Golding, J.; Boyd, A.; Northstone, K.; Caputo, M.; Lawlor, D.A. Ascertaining and classifying cases of congenital anomalies in the ALSPAC birth cohort. Wellcome Open Res. 2020, 5, 231. Available online: https://wellcomeopenresearch.org/articles/5-231/v1 (accessed on 13 October 2020). [CrossRef] [PubMed]
- Leirgul, E.; Fomina, T.; Brodwall, K.; Greve, G.; Holmstrøm, H.; Vollset, S.E.; Tell, G.S.; Øyen, N. Birth prevalence of congenital heart defects in Norway 1994–2009—A nationwide study. Am. Heart J. 2014, 168, 956–964. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0002870314004980 (accessed on 18 January 2022). [CrossRef]
- Smith, G.D.; Lawlor, D.A.; Harbord, R.; Timpson, N.; Day, I.; Ebrahim, S. Clustered Environments and Randomized Genes: A Fundamental Distinction between Conventional and Genetic Epidemiology. PLoS Med. 2007, 4, e352. [Google Scholar] [CrossRef]
- Lawlor, D.A.; Richmond, R.; Warrington, N.; McMahon, G.; Smith, G.D.; Bowden, J.; Evans, D.M. Using Mendelian randomization to determine causal effects of maternal pregnancy (intrauterine) exposures on offspring outcomes: Sources of bias and methods for assessing them. Wellcome Open Res. 2017, 2, 11. Available online: https://wellcomeopenresearch.org/articles/2-11/v1 (accessed on 11 November 2020). [CrossRef]
- Rønningen, K.S.; Paltiel, L.; Meltzer, H.M.; Nordhagen, R.; Lie, K.K.; Hovengen, R.; Haugen, M.; Nystad, W.; Magnus, P.; Hoppin, J.A. The biobank of the Norwegian Mother and Child Cohort Study: A resource for the next 100 years. Eur. J. Epidemiol. 2006, 21, 619–625. [Google Scholar] [CrossRef]
- Lotta, L.A.; Pietzner, M.; Stewart, I.D.; Wittemans, L.B.L.; Li, C.; Bonelli, R.; Raffler, J.; Biggs, E.K.; Oliver-Williams, C.; Auyeung, V.P.W.; et al. A cross-platform approach identifies genetic regulators of human metabolism and health. Nat. Genet. 2021, 53, 54–64. Available online: http://www.nature.com/articles/s41588-020-00751-5 (accessed on 16 February 2021). [CrossRef]
- Hemani, G.; Zheng, J.; Elsworth, B.; Wade, K.H.; Haberland, V.; Baird, D.; Laurin, C.; Burgess, S.; Bowden, J.; Langdon, R.; et al. The MR-Base platform supports systematic causal inference across the human phenome. elife 2018, 7, e34408. [Google Scholar] [CrossRef] [PubMed]
- Day, N.; Oakes, S.; Luben, R.; Khaw, K.T.; Bingham, S.; Welch, A.; Wareham, N. EPIC-Norfolk: Study design and characteristics of the cohort. European Prospective Investigation of Cancer. Br. J. Cancer 1999, 80 (Suppl. S1), 95–103. [Google Scholar] [PubMed]
- Di Angelantonio, E.; Thompson, S.G.; Kaptoge, S.; Moore, C.; Walker, M.; Armitage, J.; Ouwehand, W.H.; Roberts, D.J.; Danesh, J.; INTERVAL Trial Group. Efficiency and safety of varying the frequency of whole blood donation (INTERVAL): A randomised trial of 45 000 donors. Lancet 2017, 390, 2360–2371. [Google Scholar] [CrossRef]
- Myers, T.A.; Chanock, S.J.; Machiela, M.J. LDlinkR: An R Package for Rapidly Calculating Linkage Disequilibrium Statistics in Diverse Populations. Front. Genet. 2020, 11, 157. [Google Scholar] [CrossRef]
- Taylor, K. Using an Untargeted Metabolomics Platform to Explore Associations between Maternal Metabolites and Congenital Heart Disease in the Offspring. 2020. Available online: https://osf.io/zf4k6/ (accessed on 16 February 2021).
- McBride, N.; Yousefi, P.; Sovio, U.; Taylor, K.; Vafai, Y.; Yang, T.; Hou, B.; Suderman, M.; Relton, C.; Smith, G.C.; et al. Do mass-spectrometry-derived metabolomics improve prediction of pregnancy-related disorders? Findings from a UK birth cohort with independent validation. medRxiv 2021, 2021, 21256218. Available online: http://medrxiv.org/content/early/2021/05/04/2021.05.04.21256218.abstract (accessed on 1 January 2021). [CrossRef]
- Lai, G.; Li, X.; Zhang, B.; Wang, L.; He, R.; Zhao, Y. Decreased Amino Acid Concentrations are Involved in Congenital Heart Disease. Ann. Nutr. Metab. 2019, 74, 257–263. [Google Scholar] [CrossRef]
- Parsons, A.M.; Bouma, G.J. A Potential Role and Contribution of Androgens in Placental Development and Pregnancy. Life 2021, 11, 644. Available online: https://www.mdpi.com/2075-1729/11/7/644 (accessed on 6 January 2022). [CrossRef]
- Mai, M.; Tönjes, A.; Kovacs, P.; Stumvoll, M.; Fiedler, G.M.; Leichtle, A.B. Serum Levels of Acylcarnitines Are Altered in Prediabetic Conditions. PLoS ONE 2013, 8, e82459. [Google Scholar] [CrossRef]
- Innis, S.M. Fatty acids and early human development. Early Hum. Dev. 2007, 83, 761–766. [Google Scholar] [CrossRef] [PubMed]
- McKeegan, P.J.; Sturmey, R.G. The role of fatty acids in oocyte and early embryo development. Reprod. Fertil. Dev. 2011, 24, 59–67. [Google Scholar] [CrossRef]
- Gittenberger-de Groot, A.C.; Bartelings, M.M.; Deruiter, M.C.; Poelmann, R.E. Basics of Cardiac Development for the Understanding of Congenital Heart Malformations. Pediatr. Res. 2005, 57, 169–176. Available online: http://www.nature.com/doifinder/10.1203/01.PDR.0000148710.69159.61 (accessed on 4 September 2020). [CrossRef] [PubMed]
- Mills, H.L.; White, S.L.; Pasupathy, D.; Briley, A.L.; Santos Ferreira, D.L.; Seed, P.T.; Nelson, S.M.; Sattar, N.; Tilling, K.; Poston, L.; et al. The effect of a lifestyle intervention in obese pregnant women on gestational metabolic profiles: Findings from the UK Pregnancies Better Eating and Activity Trial (UPBEAT) randomised controlled trial. BMC Med. 2019, 17, 15. Available online: https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-018-1248-7 (accessed on 26 March 2020). [CrossRef] [PubMed]
- Sanderson, E.; Richardson, T.G.; Morris, T.T.; Tilling, K.; Davey Smith, G. Estimation of causal effects of a time-varying exposure at multiple time points through Multivariable Mendelian randomization. medRxiv 2022, 2022, 22268740. Available online: http://medrxiv.org/content/early/2022/01/05/2022.01.04.22268740.abstract (accessed on 21 January 2022). [CrossRef]
- Yang, J.; Kang, Y.; Cheng, Y.; Zeng, L.; Yan, H.; Dang, S. Maternal Dietary Patterns during Pregnancy and Congenital Heart Defects: A Case-Control Study. Int. J. Environ. Res. Public Health 2019, 16, 2957. [Google Scholar] [CrossRef]
Characteristic | Category | BiB Dataset 1 (N = 998) | BiB Dataset 2 (N = 1607) |
---|---|---|---|
Offspring | |||
CHD | Yes | 15 (1.6) | 31 (1.9) |
Sex | Male | 510 (51.1) | 844 (52.5) |
Female | 488 (48.9) | 763 (47.5) | |
Maternal | |||
Age, years | 27.5 (5.7) | 27.3 (5.6) | |
Parity | Nulliparous | 358 (37.0) | 616 (36.8) |
Multiparous | 610 (63.0) | 991 (63.2) | |
BMI, kg/m2 | 26.7 (6.0) | 26.5 (5.8) | |
Ethnicity | White British | 500 (50.0) | 733 (45.6) |
Pakistani | 498 (50.0) | 874 (54.4) | |
Neighbourhood deprivation (IMD) | Quintile 1 (most deprived) | 654 (65.5) | 1084 (67.5) |
Quintile 2 | 175 (17.5) | 281 (17.5) | |
Quintile 3 | 112 (11.2) | 175 (10.9) | |
Quintile 4 | 38 (3.8) | 40 (2.5) | |
Quintile 5 (least deprived) | 19 (1.9) | 27 (2.7) | |
Smoking | Yes | 176 (17.7) | 311 (19.2) |
Alcohol | Yes | 338 (33.9) | 496 (30.8) |
Gest age at blood sampling, weeks | 26.2 (2.0) | 26.2 (2.0) |
Super Pathway | N (%) for All Metabolites (N = 923) | N (%) for Metabolites Suggestively Associated with CHDs (N = 44) |
---|---|---|
Amino Acid | 170 (18.4%) | 10 (22.7%) |
Lipid | 354 (38.4%) | 18 (40.9%) |
Cofactors and Vitamins | 27 (2.9%) | 4 (9.0%) |
Partially Characterized Molecules | 3 (0.3%) | 1 (2.3%) |
Unknown | 201 (21.8%) | 7 (15.9%) |
Xenobiotics | 86 (9.3%) | 2 (4.5%) |
Nucleotide | 33 (3.6%) | 1 (2.3%) |
Energy | 8 (0.9%) | 1 (2.3%) |
Carbohydrate | 19 (2.1%) | 0 |
Peptide | 22 (2.4%) | 0 |
Abbreviations: CHD, congenital heart disease. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taylor, K.; McBride, N.; Zhao, J.; Oddie, S.; Azad, R.; Wright, J.; Andreassen, O.A.; Stewart, I.D.; Langenberg, C.; Magnus, M.C.; et al. The Relationship of Maternal Gestational Mass Spectrometry-Derived Metabolites with Offspring Congenital Heart Disease: Results from Multivariable and Mendelian Randomization Analyses. J. Cardiovasc. Dev. Dis. 2022, 9, 237. https://doi.org/10.3390/jcdd9080237
Taylor K, McBride N, Zhao J, Oddie S, Azad R, Wright J, Andreassen OA, Stewart ID, Langenberg C, Magnus MC, et al. The Relationship of Maternal Gestational Mass Spectrometry-Derived Metabolites with Offspring Congenital Heart Disease: Results from Multivariable and Mendelian Randomization Analyses. Journal of Cardiovascular Development and Disease. 2022; 9(8):237. https://doi.org/10.3390/jcdd9080237
Chicago/Turabian StyleTaylor, Kurt, Nancy McBride, Jian Zhao, Sam Oddie, Rafaq Azad, John Wright, Ole A. Andreassen, Isobel D. Stewart, Claudia Langenberg, Maria Christine Magnus, and et al. 2022. "The Relationship of Maternal Gestational Mass Spectrometry-Derived Metabolites with Offspring Congenital Heart Disease: Results from Multivariable and Mendelian Randomization Analyses" Journal of Cardiovascular Development and Disease 9, no. 8: 237. https://doi.org/10.3390/jcdd9080237
APA StyleTaylor, K., McBride, N., Zhao, J., Oddie, S., Azad, R., Wright, J., Andreassen, O. A., Stewart, I. D., Langenberg, C., Magnus, M. C., Borges, M. C., Caputo, M., & Lawlor, D. A. (2022). The Relationship of Maternal Gestational Mass Spectrometry-Derived Metabolites with Offspring Congenital Heart Disease: Results from Multivariable and Mendelian Randomization Analyses. Journal of Cardiovascular Development and Disease, 9(8), 237. https://doi.org/10.3390/jcdd9080237