3D Approaches in Complex CHD: Where Are We? Funny Printing and Beautiful Images, or a Useful Tool?
Abstract
:1. Introduction
2. Practical Approach
3. Three-Dimensional Echocardiography
4. CT
5. MRI
6. Three-Dimensional Printing
7. Foetal Cardiac Techniques
8. Fusion of 3D Imaging Modalities
9. Extended Reality
10. Reverse Engineering
11. Teaching/Training/Patient Information-Engagement
12. Challenges
13. Future
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fratz, S.; Chung, T.; Greil, G.F.; Samyn, M.M.; Taylor, A.M.; Buechel, E.R.V.; Yoo, S.-J.; Powell, A.J. Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J. Cardiovasc. Magn. Reson. 2013, 15, 51. [Google Scholar] [CrossRef]
- Dillman, J.R.; Hernandez, R.J. Role of CT in the Evaluation of Congenital Cardiovascular Disease in Children. Am. J. Roentgenol. 2009, 192, 1219–1231. [Google Scholar] [CrossRef]
- Sachdeva, R.; Valente, A.M.; Armstrong, A.K.; Cook, S.C.; Han, B.K.; Lopez, L.; Lui, G.K.; Pickard, S.S.; Powell, A.J.; Bhave, N.M.; et al. ACC/AHA/ASE/HRS/ISACHD/SCAI/SCCT/SCMR/SOPE 2020 Appropriate Use Criteria for Multimodality Imaging During the Follow-Up Care of Patients With Congenital Heart Disease. J. Am. Coll. Cardiol. 2020, 75, 657–703. [Google Scholar] [CrossRef]
- Simpson, J.; Lopez, L.; Acar, P.; Friedberg, M.; Khoo, N.; Ko, H.; Marek, J.; Marx, G.; McGhie, J.; Meijboom, F.; et al. Three-dimensional echocardiography in congenital heart disease: An expert consensus document from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 1071–1097. [Google Scholar] [CrossRef]
- Pushparajah, K.; Duong, P.; Mathur, S.; Babu-Narayan, S.V. Cardiovascular MRI and CT in congenital heart disease. Echo Res. Pract. 2019, 6, R121–R138. [Google Scholar] [CrossRef]
- de Castro, S.; Caselli, S.; Papetti, F.; Ventriglia, F.; Giardina, A.; Cavarretta, E.; Angelantonio, E.D.; Marcantonio, A.; Perez, F.D.I.; Pandian, N.G.; et al. Feasibility and Clinical Impact of Live Three-Dimensional Echocardiography in the Management of Congenital Heart Disease; Blackwell Publishing, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Jone, P. Applications of three-dimensional transesophageal echocardiography in congenital heart disease. Echocardiography 2020, 37, 1665–1672. [Google Scholar] [CrossRef]
- Arbic, N.; Dragulescu, A.; Mertens, L.; Villemain, O. The Use of 3D Echocardiography in Surgical Planning of the Mitral Valve in Pediatric Cardiology. J. Vis. Exp. 2021, 3, e62574. [Google Scholar] [CrossRef]
- Shiota, T. Clinical Application of 3-Dimensional Echocardiography in the USA. Circ. J. 2015, 79, 2287–2298. [Google Scholar] [CrossRef]
- Charakida, M.; Pushparajah, K.; Simpson, J. 3D echocardiography in congenital heart disease: A valuable tool for the surgeon. Futur. Cardiol. 2014, 10, 497–509. [Google Scholar] [CrossRef]
- Valverde, I.; Rawlins, D.; Austin, C.; Simpson, J.M. Three-dimensional echocardiography in the management of parachute mitral valve. Eur. Heart J. Cardiovasc. Imaging 2011, 13, 446. [Google Scholar] [CrossRef]
- Colen, T.; Smallhorn, J.F. Three-Dimensional Echocardiography for the Assessment of Atrioventricular Valves in Congenital Heart Disease: Past, Present and Future. Semin. Thorac. Cardiovasc. Surgery: Pediatr. Card. Surg. Annu. 2015, 18, 62–71. [Google Scholar] [CrossRef]
- Pushparajah, K.; Barlow, A.; Tran, V.-H.; Miller, O.I.; Zidere, V.; Vaidyanathan, B.; Simpson, J.M. A Systematic Three-Dimensional Echocardiographic Approach to Assist Surgical Planning in Double Outlet Right Ventricle. Echocardiography 2012, 30, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Savis, A.; Simpson, J. Echocardiographic approach to catheter closure of atrial septal defects: Patient selection, procedural guidance and post-procedural checks. Echo Res. Pract. 2018, 5, R49–R64. [Google Scholar] [CrossRef]
- Jone, P.-N.; Zablah, J.; Burkett, D.A.; Schäfer, M.; Wilson, N.; Morgan, G.J.; Ross, M. Three-Dimensional Echocardiographic Guidance of Right Heart Catheterization Decreases Radiation Exposure in Atrial Septal Defect Closures. J. Am. Soc. Echocardiogr. 2018, 31, 1044–1049. [Google Scholar] [CrossRef] [PubMed]
- Charakida, M.; Qureshi, S.; Simpson, J.M. 3D Echocardiography for Planning and Guidance of Interventional Closure of VSD. JACC Cardiovasc. Imaging 2013, 6, 120–123. [Google Scholar] [CrossRef]
- Hansen, J.H.; Duong, P.; Jivanji, S.G.; Jones, M.; Kabir, S.; Butera, G.; Qureshi, S.A.; Rosenthal, E. Transcatheter Correction of Superior Sinus Venosus Atrial Septal Defects as an Alternative to Surgical Treatment. J. Am. Coll. Cardiol. 2020, 75, 1266–1278. [Google Scholar] [CrossRef] [PubMed]
- Kabir, S.R.; Simpson, J.M.; Jones, M.I.; Butera, G.; Qureshi, S.A.; Rosenthal, E. TEE Guidance During Transcatheter Treatment of Superior SVASDs With PAPVD. JACC Cardiovasc. Imaging 2021, 15, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Gherardi, G.G.; Iball, G.R.; Darby, M.J.; Thomson, J.D. Cardiac computed tomography and conventional angiography in the diagnosis of congenital cardiac disease in children: Recent trends and radiation doses. Cardiol. Young 2011, 21, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, A.; Engelfriet, P.; Mulder, B. Radiation exposure during follow-up of adults with congenital heart disease. Int. J. Cardiol. 2007, 118, 151–153. [Google Scholar] [CrossRef] [PubMed]
- Precht, H.; Thygesen, J.; Gerke, O.; Egstrup, K.; Waaler, D.; Lambrechtsen, J. Influence of adaptive statistical iterative reconstruction algorithm on image quality in coronary computed tomography angiography. Acta Radiol. Open 2016, 5, 205846011668488. [Google Scholar] [CrossRef] [PubMed]
- Son, S.S.; Choo, K.S.; Jeon, U.B.; Jeon, G.R.; Nam, K.J.; Kim, T.U.; Yeom, J.A.; Hwang, J.Y.; Jeong, D.W.; Lim, S.J. Image quality of CT angiography with model-based iterative reconstruction in young children with congenital heart disease: Comparison with filtered back projection and adaptive statistical iterative reconstruction. Int. J. Cardiovasc. Imaging 2014, 31, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Forte, E.; Monti, S.; Parente, C.A.; Beyer, L.P.; De Rosa, R.; Infante, T.; Cavaliere, C.; Cademartiri, F.; Salvatore, M.; Stroszczynski, C.; et al. Image Quality and Dose Reduction by Dual Source Computed Tomography Coronary Angiography: Protocol Comparison. Dose Response 2018, 16, 1559325818805838. [Google Scholar] [CrossRef] [PubMed]
- Vigneswaran, T.V.; Kapravelou, E.; Bell, A.J.; Nyman, A.; Pushparajah, K.; Simpson, J.M.; Durward, A.; Zidere, V. Correlation of Symptoms with Bronchoscopic Findings in Children with a Prenatal Diagnosis of a Right Aortic Arch and Left Arterial Duct. Pediatr. Cardiol. 2018, 39, 665–673. [Google Scholar] [CrossRef]
- Valverde, I.; Tangcharoen, T.; Hussain, T.; De Bliek, H.; Penney, G.; Breeuwer, M.; Schaeffter, T.; Razavi, R.; Greil, G. Magnetic resonance imaging planning in children with complex congenital heart disease—A new approach. JRSM Cardiovasc. Dis. 2017, 6, 2048004017701870. [Google Scholar] [CrossRef]
- Dyverfeldt, P.; Bissell, M.; Barker, A.J.; Bolger, A.F.; Carlhäll, C.-J.; Ebbers, T.; Francios, C.J.; Frydrychowicz, A.; Geiger, J.; Giese, D.; et al. 4D flow cardiovascular magnetic resonance consensus statement. J. Cardiovasc. Magn. Reson. 2015, 17, 72. [Google Scholar] [CrossRef]
- Frieberg, P.; Aristokleous, N.; Sjöberg, P.; Töger, J.; Liuba, P.; Carlsson, M. Computational Fluid Dynamics Support for Fontan Planning in Minutes, Not Hours: The Next Step in Clinical Pre-Interventional Simulations. J. Cardiovasc. Transl. Res. 2021. [Google Scholar] [CrossRef] [PubMed]
- Mowers, K.L.; Fullerton, J.B.; Hicks, D.; Singh, G.K.; Johnson, M.C.; Anwar, S. 3D Echocardiography Provides Highly Accurate 3D Printed Models in Congenital Heart Disease. Pediatr. Cardiol. 2020, 42, 131–141. [Google Scholar] [CrossRef]
- Chepelev, L.; Wake, N.; Ryan, J.; Althobaity, W.; Gupta, A.; Arribas, E.; Santiago, L.; Ballard, D.H.; Wang, K.C.; Weadock, W.; et al. Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): Guidelines for medical 3D printing and appropriateness for clinical scenarios. 3D Print. Med. 2018, 4, 11. [Google Scholar] [CrossRef]
- Valverde, I.; Gomez-Ciriza, G.; Hussain, T.; Suárez-Mejías, C.; Velasco-Forte, M.N.; Byrne, N.; Ordoñez, A.; Gonzalez-Calle, A.; Anderson, D.; Hazekamp, M.G.; et al. Three-dimensional printed models for surgical planning of complex congenital heart defects: An international multicentre study. Eur. J. Cardio-Thorac. Surg. 2017, 52, 1139–1148. [Google Scholar] [CrossRef] [PubMed]
- Les, A.S.; Ohye, R.G.; Filbrun, A.G.; Mahani, M.G.; Ms, C.L.F.; Daniels, R.C.; Kidwell, K.M.; Zopf, D.A.; Hollister, S.J.; Green, G.E. 3D-printed, externally-implanted, bioresorbable airway splints for severe tracheobronchomalacia. Laryngoscope 2019, 129, 1763–1771. [Google Scholar] [CrossRef] [PubMed]
- Gomez, A.; Gomez, G.; Simpson, J.; Valverde, I. 3D hybrid printed models in complex congenital heart disease: 3D echocardiography and cardiovascular magnetic resonance imaging fusion. Eur. Heart J. 2020, 41, 4214. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Addetia, K.; Narang, A.; Mor-Avi, V. 3-Dimensional Echocardiography. JACC Cardiovasc. Imaging 2018, 11, 1854–1878. [Google Scholar] [CrossRef]
- Karmegaraj, B.; Ma, A.S.; Srimurugan, B.; Sudhakar, A.; Simpson, J.M.; Vaidyanathan, B. 3D/4D spatiotemporal image correlation (STIC) fetal echocardiography provides incremental benefit over 2D fetal echocardiography in predicting postnatal surgical approach in double-outlet right ventricle. Ultrasound Obstet. Gynecol. 2020, 57, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Y. Fetal Vascular Rings and Pulmonary Slings: Strategies for Two- and Three-Dimensional Echocardiographic Diagnosis. J. Am. Soc. Echocardiogr. 2021, 34, 336–351. [Google Scholar] [CrossRef]
- Gonçalves, L.F.; Espinoza, J.; Romero, R.; Lee, W.; Treadwell, M.C.; Huang, R.; Devore, G.; Chaiworapongsa, T.; Schoen, M.L.; Beyer, B. Four-dimensional fetal echocardiography with spatiotemporal image correlation (STIC): A systematic study of standard cardiac views assessed by different observers. J. Matern. Neonatal Med. 2005, 17, 323–331. [Google Scholar] [CrossRef]
- Lloyd, D.F.A.; Pushparajah, K.; Simpson, J.; van Amerom, J.; van Poppel, M.P.; Schulz, A.; Kainz, B.; Deprez, M.; Lohezic, M.; Allsop, J.; et al. Three-dimensional visualisation of the fetal heart using prenatal MRI with motion-corrected slice-volume registration: A prospective, single-centre cohort study. Lancet 2019, 393, 1619–1627. [Google Scholar] [CrossRef]
- Roberts, T.A.; van Amerom, J.F.P.; Uus, A.; Lloyd, D.F.A.; van Poppel, M.P.M.; Price, A.N.; Tournier, J.-D.; Mohanadass, C.A.; Jackson, L.H.; Malik, S.J.; et al. Fetal whole heart blood flow imaging using 4D cine MRI. Nat. Commun. 2020, 11, 4992. [Google Scholar] [CrossRef]
- Van Amerom, J.F.; Lloyd, D.F.; Deprez, M.; Price, A.N.; Malik, S.J.; Pushparajah, K.; van Poppel, M.P.; Rutherford, M.A.; Razavi, R.; Hajnal, J.V. Fetal whole-heart 4D imaging using motion-corrected multi-planar real-time MRI. Magn. Reson. Med. 2019, 82, 1055–1072. [Google Scholar] [CrossRef]
- Lloyd, D.F.; van Poppel, M.P.; Pushparajah, K.; Vigneswaran, T.V.; Zidere, V.; Steinweg, J.; van Amerom, J.F.; Roberts, T.A.; Schulz, A.; Charakida, M.; et al. Analysis of 3-Dimensional Arch Anatomy, Vascular Flow, and Postnatal Outcome in Cases of Suspected Coarctation of the Aorta Using Fetal Cardiac Magnetic Resonance Imaging. Circ. Cardiovasc. Imaging 2021, 14, e012411. [Google Scholar] [CrossRef]
- Van Poppel, M.P.M.; Pushparajah, K.; Lloyd, D.F.A.; Razavi, R.; Speggiorin, S.; Nyman, A.; Simpson, J.M.; Zidere, V.; Vigneswaran, T.V. Insights from fetal cardiac magnetic resonance imaging in double aortic arch. Ultrasound Obstet. Gynecol. 2020, 56, 636–639. [Google Scholar] [CrossRef]
- Barrera, C.A.; Johnson, A.M.; Rychik, J.; Biko, D.M.; Degenhardt, K.; Moldenhauer, J.S.; Victoria, T. Prognostic value of the nutmeg lung pattern/lymphangiectasia on fetal magnetic resonance imaging. Pediatr. Radiol. 2021, 51, 1809–1817. [Google Scholar] [CrossRef]
- Rojo, E.C.; Gómez, M.V. Fusion of 3D-Echocardiography and Other Imaging Modalities: Hybrid Imaging. Man. 3d Echocardiogr. 2017, 46, 193–210. [Google Scholar] [CrossRef]
- Hadeed, K.; Hascoet, S.; Karsenty, C.; Ratsimandresy, M.; Dulac, Y.; Chausseray, G.; Alacoque, X.; Fraisse, A.; Acar, P. Usefulness of echocardiographic-fluoroscopic fusion imaging in children with congenital heart disease. Arch. Cardiovasc. Dis. 2018, 111, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Suntharos, P.; Setser, R.M.; Bradley-Skelton, S.; Prieto, L.R. Real-time three dimensional CT and MRI to guide interventions for congenital heart disease and acquired pulmonary vein stenosis. Int. J. Cardiovasc. Imaging 2017, 33, 1619–1626. [Google Scholar] [CrossRef]
- Maffessanti, F.; Patel, A.R.; Patel, M.B.; Walter, J.J.; Mediratta, A.; Medvedofsky, D.; Kachenoura, N.; Lang, R.M.; Mor-Avi, V. Non-invasive assessment of the haemodynamic significance of coronary stenosis using fusion of cardiac computed tomography and 3D echocardiography. Eur. Heart J. Cardiovasc. Imaging 2016, 18, 670–680. [Google Scholar] [CrossRef]
- Milgram, P. A Taxonomy of Mixed Reality Visual Displays. IEICE Trans. Inf. Syst. 1994, 12, 1321–1329. [Google Scholar]
- Ye, W.; Zhang, X.; Li, T.; Luo, C.; Yang, L. Mixed-reality hologram for diagnosis and surgical planning of double outlet of the right ventricle: A pilot study. Clin. Radiol. 2021, 76, 237.e1–237.e7. [Google Scholar] [CrossRef] [PubMed]
- Pushparajah, K.; Chu, K.Y.K.; Deng, S.; Wheeler, G.; Gomez, A.; Kabir, S.; Schnabel, J.A.; Simpson, J.M. Virtual reality three-dimensional echocardiographic imaging for planning surgical atrioventricular valve repair. JTCVS Technol. 2021, 7, 269–277. [Google Scholar] [CrossRef]
- Tandon, A.; Burkhardt, B.E.; Batsis, M.; Zellers, T.M.; Forte, M.N.V.; Valverde, I.; McMahan, R.; Guleserian, K.J.; Greil, G.F.; Hussain, T. Sinus Venosus Defects. JACC Cardiovasc. Imaging 2018, 12, 921–924. [Google Scholar] [CrossRef]
- Sadeghi, A.H.; Ooms, J.F.; Bakhuis, W.; Taverne, Y.J.H.J.; Mieghem, N.M.V.; Bogers, A.J.J.C. Immersive Virtual Reality Heart Models for Planning of Transcatheter Paravalvular Leak Closure: A Feasibility Study. JACC Cardiovasc. Interv. 2021, 14, 1854–1856. [Google Scholar] [CrossRef] [PubMed]
- Chan, F.; Aguirre, S.; Martin, E.; Ma, M.; Hanley, F. Spotlight on Special Topics Intra-Operative Augmented Reality Guidance for Complex Pulmonary Artery Repair, a Step toward Precision Surgery. J. Am. Coll. Cardiol. 2021, 77, 3239. [Google Scholar] [CrossRef]
- Sadri, S.; Loeb, G.; Grinshpoon, A.; Elvezio, C.; Velagapudi, P.; Ng, V.G.; Khalique, O.; Moses, J.W.; Sommer, R.J.; Patel, A.J.; et al. Abstract 12019: Augmented Reality Guidance for Cerebral Embolic Protection (CEP) with the Sentinel Device During Transcatheter Aortic Valve Replacement (TAVR): First-In-Human Study. Circulation 2018, 138, A12019. [Google Scholar]
- Bruckheimer, E.; Rotschild, C.; Dagan, T.; Amir, G.; Kaufman, A.; Gelman, S.; Birk, E. Computer-generated real-time digital holography: First time use in clinical medical imaging. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 845–849. [Google Scholar] [CrossRef]
- Forte, M.N.V.; Hussain, T.; Roest, A.; Gomez, G.; Jongbloed, M.; Simpson, J.; Pushparajah, K.; Byrne, N.; Valverde, I. Living the heart in three dimensions: Applications of 3D printing in CHD. Cardiol. Young 2019, 29, 733–743. [Google Scholar] [CrossRef] [PubMed]
- Forte, M.N.V.; Byrne, N.; Perez, I.V.; Bell, A.; Gómez-Ciriza, G.; Krasemann, T.; Sievert, H.; Simpson, J.; Pushparajah, K.; Razavi, R.; et al. 3D printed models in patients with coronary artery fistulae: Anatomical assessment and interventional planning. EuroIntervention 2017, 12, 1080–1083. [Google Scholar] [CrossRef] [PubMed]
- Treasure, T.; Petrou, M.; Rosendahl, U.; Austin, C.; Rega, F.; Pirk, J.; Pepper, J. Personalized external aortic root support: A review of the current status. Eur. J. Cardio-Thoracic Surg. 2016, 50, 400–404. [Google Scholar] [CrossRef]
- Treasure, T.; Pepper, J.; Golesworthy, T.; Mohiaddin, R.; Anderson, R.H. External aortic root support: NICE guidance. Heart 2011, 98, 65–68. [Google Scholar] [CrossRef]
- Nam, J.G.; Lee, W.; Jeong, B.; Park, E.-A.; Lim, J.Y.; Kwak, Y.; Lim, H.-G. Three-Dimensional Printing of Congenital Heart Disease Models for Cardiac Surgery Simulation: Evaluation of Surgical Skill Improvement among Inexperienced Cardiothoracic Surgeons. Korean J. Radiol. 2021, 22, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Awori, J.; Friedman, S.D.; Chan, T.; Howard, C.; Seslar, S.; Soriano, B.D.; Buddhe, S. 3D models improve understanding of congenital heart disease. 3D Print. Med. 2021, 7, 26. [Google Scholar] [CrossRef] [PubMed]
- Biglino, G.; Koniordou, D.; Gasparini, M.; Capelli, C.; Leaver, L.-K.; Khambadkone, S.; Schievano, S.; Taylor, A.M.; Wray, J. Piloting the Use of Patient-Specific Cardiac Models as a Novel Tool to Facilitate Communication During Cinical Consultations. Pediatr. Cardiol. 2017, 38, 813–818. [Google Scholar] [CrossRef]
- Simpson, J.M. Three-dimensional echocardiography in congenital heart disease: The next steps. Arch. Cardiovasc. Dis. 2016, 109, 81–83. [Google Scholar] [CrossRef]
- Gómez-Ciriza, G.; Gómez-Cía, T.; Rivas-González, J.A.; Forte, M.N.V.; Valverde, I. Affordable Three-Dimensional Printed Heart Models. Front. Cardiovasc. Med. 2021, 8, 642011. [Google Scholar] [CrossRef]
- Muraru, D.; Veronesi, F.; Maddalozzo, A.; Dequal, D.; Frajhof, L.; Rabischoffsky, A.; Iliceto, S.; Badano, L.P. 3D printing of normal and pathologic tricuspid valves from transthoracic 3D echocardiography data sets. Eur. Heart J. Cardiovasc. Imaging 2016, 18, 802–808. [Google Scholar] [CrossRef]
- Anwar, S.; Singh, G.K.; Miller, J.; Sharma, M.; Manning, P.; Billadello, J.J.; Eghtesady, P.; Woodard, P.K. 3D Printing is a Transformative Technology in Congenital Heart Disease. JACC: Basic Transl. Sci. 2018, 3, 294–312. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.V.; Lasso, A.; Nam, H.H.; Faerber, J.; Aly, A.H.; Pouch, A.M.; Scanlan, A.B.; McGowan, F.X.; Mercer-Rosa, L.; Cohen, M.S.; et al. Dynamic Three-Dimensional Geometry of the Tricuspid Valve Annulus in Hypoplastic Left Heart Syndrome with a Fontan Circulation. J. Am. Soc. Echocardiogr. 2019, 32, 655–666.e13. [Google Scholar] [CrossRef]
- Monroe, D.C.; Blumenfeld, R.S.; Keator, D.B.; Solodkin, A.; Small, S.L. One season of head-to-ball impact exposure alters functional connectivity in a central autonomic network. NeuroImage 2020, 223, 117306. [Google Scholar] [CrossRef] [PubMed]
- Silvestry, F.E.; Kadakia, M.B.; Willhide, J.; Herrmann, H.C. Initial Experience with a Novel Real-Time Three-Dimensional Intracardiac Ultrasound System to Guide Percutaneous Cardiac Structural Interventions: A Phase 1 Feasibility Study of Volume Intracardiac Echocardiography in the Assessment of Patients with Structural Heart Disease Undergoing Percutaneous Transcatheter Therapy. J. Am. Soc. Echocardiogr. 2014, 27, 978–983. [Google Scholar] [CrossRef] [PubMed]
2D Echo | 3D Echo | Cardiac Catheterisation | CT | CMR | |
---|---|---|---|---|---|
Radiation | - | - | ++ | +(+) | - |
Temporal resolution | <5 ms | 20–200 ms | 1–10 ms | 50–135 ms | 20–50 ms |
Spatial resolution | 0.5–2.0 mm | 0.3–1.2 mm | 0.5 mm | 0.8–2.0 mm | |
Quantitative ventricular function | ++ | ++ | + | ++ | +++ |
Ventricular volumetric | + | ++ | - | + | +++ |
Flow in vessels | + | - | + | - | +++ |
3D whole heart imaging | - | ++ | ++ | +++ | +++ |
Atrioventricular valve assessment | ++ | +++ | + | + | ++ |
Semilunar valve assessment | ++ | +++ | + | ++ | +++ |
Myocardial tissue characterisation | ++ | + | + | + | +++ |
Pressure measurements/estimation | +++ | - | +++ | - | ++ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spanaki, A.; Kabir, S.; Stephenson, N.; van Poppel, M.P.M.; Benetti, V.; Simpson, J. 3D Approaches in Complex CHD: Where Are We? Funny Printing and Beautiful Images, or a Useful Tool? J. Cardiovasc. Dev. Dis. 2022, 9, 269. https://doi.org/10.3390/jcdd9080269
Spanaki A, Kabir S, Stephenson N, van Poppel MPM, Benetti V, Simpson J. 3D Approaches in Complex CHD: Where Are We? Funny Printing and Beautiful Images, or a Useful Tool? Journal of Cardiovascular Development and Disease. 2022; 9(8):269. https://doi.org/10.3390/jcdd9080269
Chicago/Turabian StyleSpanaki, Adriani, Saleha Kabir, Natasha Stephenson, Milou P. M. van Poppel, Valentina Benetti, and John Simpson. 2022. "3D Approaches in Complex CHD: Where Are We? Funny Printing and Beautiful Images, or a Useful Tool?" Journal of Cardiovascular Development and Disease 9, no. 8: 269. https://doi.org/10.3390/jcdd9080269
APA StyleSpanaki, A., Kabir, S., Stephenson, N., van Poppel, M. P. M., Benetti, V., & Simpson, J. (2022). 3D Approaches in Complex CHD: Where Are We? Funny Printing and Beautiful Images, or a Useful Tool? Journal of Cardiovascular Development and Disease, 9(8), 269. https://doi.org/10.3390/jcdd9080269