Peak Oxygen Uptake on Cardiopulmonary Exercise Test Is a Predictor for Severe Arrhythmic Events during Three-Year Follow-Up in Patients with Complex Congenital Heart Disease
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Cardiopulmonary Exercise Test
2.3. Data Collection
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Severe Arrhythmic Events during Follow-Up
3.3. Clinical Parameters Associated with SAE
3.4. The Predictive Value of O2peak and Age
3.5. Prediction of SAE-Free Survivial with O2peak and Age
4. Discussion
Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koyak, Z.; Harris, L.; de Groot, J.R.; Silversides, C.K.; Oechslin, E.N.; Bouma, B.J.; Budts, W.; Zwinderman, A.H.; Van Gelder, I.C.; Mulder, B.J. Sudden cardiac death in adult congenital heart disease. Circulation 2012, 126, 1944–1954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oechslin, E.N.; Harrison, D.A.; Connelly, M.S.; Webb, G.D.; Siu, S.C. Mode of death in adults with congenital heart disease. Am. J. Cardiol. 2000, 86, 1111–1116. [Google Scholar] [CrossRef]
- Vehmeijer, J.T.; Mulder, B.J.; de Groot, J.R. Current state of risk stratification for sudden cardiac death in adults with congenital heart disease. Anatol. J. Cardiol. 2018, 19, 401–403. [Google Scholar] [CrossRef] [PubMed]
- Verheugt, C.L.; Uiterwaal, C.S.; van der Velde, E.T.; Meijboom, F.J.; Pieper, P.G.; van Dijk, A.P.; Vliegen, H.W.; Grobbee, D.E.; Mulder, B.J. Mortality in adult congenital heart disease. Eur. Heart J. 2010, 31, 1220–1229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vehmeijer, J.T.; Koyak, Z.; Zwinderman, A.H.; Harris, L.; Peinado, R.; Oechslin, E.N.; Silversides, C.K.; Bouma, B.J.; Budts, W.; van Gelder, I.C.; et al. PREVENTION-ACHD: PRospEctiVE study on implantable cardioverter-defibrillator therapy and suddeN cardiac death in Adults with Congenital Heart Disease; Rationale and Design. Neth. Heart. J. 2019, 27, 474–479. [Google Scholar] [CrossRef] [Green Version]
- Priori, S.G.; Blomstrom-Lundqvist, C. 2015 European Society of Cardiology Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death summarized by co-chairs. Eur. Heart J. 2015, 36, 2757–2759. [Google Scholar] [CrossRef] [Green Version]
- Bardy, G.H.; Lee, K.L.; Mark, D.B.; Poole, J.E.; Packer, D.L.; Boineau, R.; Domanski, M.; Troutman, C.; Anderson, J.; Johnson, G.; et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N. Engl. J. Med. 2005, 352, 225–237. [Google Scholar] [CrossRef]
- Goldenberg, I.; Moss, A.J.; McNitt, S.; Zareba, W.; Hall, W.J.; Andrews, M.L.; Wilber, D.J.; Klein, H.U.; Investigators, M.-I. Time dependence of defibrillator benefit after coronary revascularization in the Multicenter Automatic Defibrillator Implantation Trial (MADIT)-II. J. Am. Coll. Cardiol. 2006, 47, 1811–1817. [Google Scholar] [CrossRef] [Green Version]
- Moss, A.J.; Zareba, W.; Hall, W.J.; Klein, H.; Wilber, D.J.; Cannom, D.S.; Daubert, J.P.; Higgins, S.L.; Brown, M.W.; Andrews, M.L.; et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N. Engl. J. Med. 2002, 346, 877–883. [Google Scholar] [CrossRef] [Green Version]
- Kadish, A.; Dyer, A.; Daubert, J.P.; Quigg, R.; Estes, N.A.; Anderson, K.P.; Calkins, H.; Hoch, D.; Goldberger, J.; Shalaby, A.; et al. Prophylactic defibrillator implantation in patients with nonischemic dilated cardiomyopathy. N. Engl. J. Med. 2004, 350, 2151–2158. [Google Scholar] [CrossRef] [Green Version]
- Kwiatkowska, J.; Budrejko, S.; Wasicionek, M.; Meyer-Szary, F.J.; Lubinski, A.; Kempa, M. Long-term follow-up of implantable cardioverter-defibrillators in children: Indications and outcomes. Adv. Clin. Exp. Med. 2020, 29, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Garnreiter, J.M.; Pilcher, T.A.; Etheridge, S.P.; Saarel, E.V. Inappropriate ICD shocks in pediatrics and congenital heart disease patients: Risk factors and programming strategies. Heart Rhythm. 2015, 12, 937–942. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, M.; Sterlinski, M.; Maciag, A.; Syska, P.; Kowalik, I.; Szwed, H.; Chojnowska, L.; Przybylski, A. Long-term follow-up of children and young adults treated with implantable cardioverter-defibrillator: The authors’ own experience with optimal implantable cardioverter-defibrillator programming. Europace 2010, 12, 1245–1250. [Google Scholar] [CrossRef] [PubMed]
- Poole, J.E.; Johnson, G.W.; Hellkamp, A.S.; Anderson, J.; Callans, D.J.; Raitt, M.H.; Reddy, R.K.; Marchlinski, F.E.; Yee, R.; Guarnieri, T.; et al. Prognostic importance of defibrillator shocks in patients with heart failure. N. Engl. J. Med. 2008, 359, 1009–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamphuis, H.C.; de Leeuw, J.R.; Derksen, R.; Hauer, R.N.; Winnubst, J.A. Implantable cardioverter defibrillator recipients: Quality of life in recipients with and without ICD shock delivery: A prospective study. Europace 2003, 5, 381–389. [Google Scholar] [CrossRef]
- Von Bergen, N.H.; Atkins, D.L.; Dick, M., 2nd; Bradley, D.J.; Etheridge, S.P.; Saarel, E.V.; Fischbach, S.P.; Balaji, S.; Sreeram, N.; Evans, W.N.; et al. Multicenter study of the effectiveness of implantable cardioverter defibrillators in children and young adults with heart disease. Pediatr. Cardiol. 2011, 32, 399–405. [Google Scholar] [CrossRef]
- Vehmeijer, J.T.; Brouwer, T.F.; Limpens, J.; Knops, R.E.; Bouma, B.J.; Mulder, B.J.; de Groot, J.R. Implantable cardioverter-defibrillators in adults with congenital heart disease: A systematic review and meta-analysis. Eur. Heart. J. 2016, 37, 1439–1448. [Google Scholar] [CrossRef] [Green Version]
- Khairy, P.; Van Hare, G.F.; Balaji, S.; Berul, C.I.; Cecchin, F.; Cohen, M.I.; Daniels, C.J.; Deal, B.J.; Dearani, J.A.; Groot, N.; et al. PACES/HRS Expert Consensus Statement on the Recognition and Management of Arrhythmias in Adult Congenital Heart Disease: Developed in partnership between the Pediatric and Congenital Electrophysiology Society (PACES) and the Heart Rhythm Society (HRS). Endorsed by the governing bodies of PACES, HRS, the American College of Cardiology (ACC), the American Heart Association (AHA), the European Heart Rhythm Association (EHRA), the Canadian Heart Rhythm Society (CHRS), and the International Society for Adult Congenital Heart Disease (ISACHD). Heart Rhythm. 2014, 11, e102–e165. [Google Scholar] [CrossRef]
- Baumgartner, H.; De Backer, J.; Babu-Narayan, S.V.; Budts, W.; Chessa, M.; Diller, G.P.; Lung, B.; Kluin, J.; Lang, I.M.; Meijboom, F.; et al. 2020 ESC Guidelines for the management of adult congenital heart disease. Eur. Heart J. 2020, 42, 563–645. [Google Scholar] [CrossRef]
- Ghosh, R.M.; Gates, G.J.; Walsh, C.A.; Schiller, M.S.; Pass, R.H.; Ceresnak, S.R. The prevalence of arrhythmias, predictors for arrhythmias, and safety of exercise stress testing in children. Pediatr. Cardiol. 2015, 36, 584–590. [Google Scholar] [CrossRef]
- Burstein, D.S.; Menachem, J.N.; Opotowsky, A.R. Exercise testing for assessment of heart failure in adults with congenital heart disease. Heart Fail. Rev. 2020, 25, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Morales Mestre, N.; Reychler, G.; Goubau, C.; Moniotte, S. Correlation Between Cardiopulmonary Exercise Test, Spirometry, and Congenital Heart Disease Severity in Pediatric Population. Pediatr. Cardiol. 2019, 40, 871–877. [Google Scholar] [CrossRef] [PubMed]
- Muller, J.; Hess, J.; Hager, A. Sense of coherence, rather than exercise capacity, is the stronger predictor to obtain health-related quality of life in adults with congenital heart disease. Eur. J. Prev. Cardiol. 2014, 21, 949–955. [Google Scholar] [CrossRef] [PubMed]
- Hock, J.; Reiner, B.; Neidenbach, R.C.; Oberhoffer, R.; Hager, A.; Ewert, P.; Muller, J. Functional outcome in contemporary children with total cavopulmonary connection–Health-related physical fitness, exercise capacity and health-related quality of life. Int. J. Cardiol 2018, 255, 50–54. [Google Scholar] [CrossRef]
- American College of Cardiology/American Heart Association Task Force on Clinical Data Standard; Buxton, A.E.; Calkins, H.; Callans, D.J.; DiMarco, J.P.; Fisher, J.D.; Greene, H.L.; Haines, D.E.; Hayes, D.L.; Heidenreich, P.A.; et al. ACC/AHA/HRS 2006 key data elements and definitions for electrophysiological studies and procedures: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Data Standards (ACC/AHA/HRS Writing Committee to Develop Data Standards on Electrophysiology). Circulation 2006, 114, 2534–2570. [Google Scholar] [CrossRef] [Green Version]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attenhofer Jost, C.H.; Tan, N.Y.; Hassan, A.; Vargas, E.R.; Hodge, D.O.; Dearani, J.A.; Connolly, H.; Asirvatham, S.J.; McLeod, C.J. Sudden death in patients with Ebstein anomaly. Eur. Heart J. 2018, 39, 1970–1977a. [Google Scholar] [CrossRef] [Green Version]
- Walsh, P.E. Ebstein’s Anomaly of the Tricuspid Valve: A Natural Laboratory for Re-Entrant Tachycardias. JACC Clin. Electrophysiol 2018, 4, 1271–1288. [Google Scholar] [CrossRef]
- Kumor, M.; Lipczynska, M.; Biernacka, E.K.; Klisiewicz, A.; Wojcik, A.; Konka, M.; Kozuch, K.; Szymanski, P.; Hoffman, P. Cardiac arrest and ventricular arrhythmia in adults with Ebstein anomaly and left ventricular non-compaction. J. Cardiol. 2018, 71, 484–487. [Google Scholar] [CrossRef] [Green Version]
- Freeman, A.; Byard, R.W. Ebstein Anomaly and Sudden Childhood Death. J. Forensic. Sci. 2018, 63, 969–971. [Google Scholar] [CrossRef]
- Moore, B.; Yu, C.; Kotchetkova, I.; Cordina, R.; Celermajer, D.S. Incidence and clinical characteristics of sudden cardiac death in adult congenital heart disease. Int. J. Cardiol. 2018, 254, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, R.; Bakken, K.; D’Elia, E.; Lewis, G.D. Cardiopulmonary Exercise Testing in Heart Failure. JACC Heart Fail. 2016, 4, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Goulart, C.D.L.; Dos Santos, P.B.; Caruso, F.R.; Areas, G.P.T.; Marinho, R.S.; Camargo, P.F.; Alexandre, T.D.S.; Oliveira, C.R.; da Silva, A.L.G.; Mendes, R.G.; et al. The Value of Cardiopulmonary Exercise Testing in Determining Severity in Patients with both Systolic Heart Failure and COPD. Sci. Rep. 2020, 10, 4309. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, C.K.; Cronin, E.; Baker, W.L.; Kluger, J. Heart failure as a substrate and trigger for ventricular tachycardia. J. Interv. Card. Electrophysiol. 2019, 56, 229–247. [Google Scholar] [CrossRef]
- Baher, A.; Valderrabano, M. Management of ventricular tachycardia in heart failure. Methodist Debakey Cardiovasc. J. 2013, 9, 20–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muller, J.; Hager, A.; Diller, G.P.; Derrick, G.; Buys, R.; Dubowy, K.O.; Takken, T.; Orwat, S.; Inuzuka, R.; Vanhees, L.; et al. Peak oxygen uptake, ventilatory efficiency and QRS-duration predict event free survival in patients late after surgical repair of tetralogy of Fallot. Int. J. Cardiol. 2015, 196, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Shafer, K.M.; Opotowsky, A.R.; Rhodes, J. Exercise testing and spirometry as predictors of mortality in congenital heart disease: Contrasting Fontan physiology with repaired tetralogy of Fallot. Congenit. Heart Dis. 2018, 13, 903–910. [Google Scholar] [CrossRef]
- Gatzoulis, M.A.; Balaji, S.; Webber, S.A.; Siu, S.C.; Hokanson, J.S.; Poile, C.; Rosenthal, M.; Nakazawa, M.; Moller, J.H.; Gillette, P.C.; et al. Risk factors for arrhythmia and sudden cardiac death late after repair of tetralogy of Fallot: A multicentre study. Lancet 2000, 356, 975–981. [Google Scholar] [CrossRef]
- Vehmeijer, J.T.; Koyak, Z.; Budts, W.; Harris, L.; Silversides, C.K.; Oechslin, E.N.; Bouma, B.J.; Zwinderman, A.H.; Mulder, B.J.M.; de Groot, J.R. Prevention of Sudden Cardiac Death in Adults with Congenital Heart Disease: Do the Guidelines Fall Short? Circ. Arrhythm Electrophysi. 2017, 10, e005093. [Google Scholar] [CrossRef]
- Khairy, P. Arrhythmias in Adults With Congenital Heart Disease: What the Practicing Cardiologist Needs to Know. Can. J. Cardiol 2019, 35, 1698–1707. [Google Scholar] [CrossRef]
- Hernandez-Madrid, A.; Paul, T.; Abrams, D.; Aziz, P.F.; Blom, N.A.; Chen, J.; Chessa, M.; Combes, N.; Dagres, N.; Diller, G.; et al. Arrhythmias in congenital heart disease: A position paper of the European Heart Rhythm Association (EHRA), Association for European Paediatric and Congenital Cardiology (AEPC), and the European Society of Cardiology (ESC) Working Group on Grown-up Congenital heart disease, endorsed by HRS, PACES, APHRS, and SOLAECE. Europace 2018, 20, 1719–1753. [Google Scholar] [CrossRef] [PubMed]
Total | UVH | EBS | TOF | TAC | TGA ASO | TGA SM | p-Value | |
---|---|---|---|---|---|---|---|---|
663/1194 (55.5) | 118/205 (57.6) | 60/135 (44.4) | 235/469 (50.1) | 31/51(60.8) | 105/148 (70.3) | 114/186 (61.8) | <0.001 [χ2] | |
Age [median(IQR)] | 25.9 (17.4–34.6) | 22.7 (13.1–30.8) | 37.1 (24.9–48.2) | 26.2 (18.5–35.9) | 23.5 (16.1–28.4) | 16.2 (13.3–19.4) | 31.0 (27.1–36.5) | <0.001 [KW] |
BMI in kg/m2 [median(IQR)] | 22.4 (19.8–25.6) | 21.2 (17.9–24.4) | 24.1 (20.9–26.9) | 22.79 (20.0–25.6) | 22.2 (19.9–25.1) | 20.7 (17.9–22.3) | 24.2 (21.9–27.1) | <0.001 [KW] |
CPET | ||||||||
Peak performance reached [n/N(%)] | 1075/1194 (90.0) | 184/205 (89.8) | 121/135 (89.6) | 428/469 (91.3) | 44/51(86.3) | 132/148 (89.2) | 166/186 (89.2) | 0.866 [χ2] |
O2peak in mL/min/kg [median(IQR)] | 26.8 (21.3–33.3) | 25.7 (19.8–32.2) | 23.1 (18.4–28.9) | 26.9 (21.5–33.2) | 28.0 (23.4–33.5) | 37.2 (29.4–43.5) | 24.6 (20.5–29.4) | <0.001 [KW] |
O2at in mL/min/kg [median(IQR)] | 16.0 (12.4–20.1) | 15.7 (11.8–20.4) | 13.3 (10.7–16.8) | 16.2 (12.5–19.9) | 17.1 (12.8–20.3) | 20.3 (17.0–25.0) | 14.5 (12.1–17.2) | <0.001 [KW] |
E/CO2-slope [median(IQR)] | 28.1 (25.4–31.5) | 31.9 (29.1–35.0) | 28.8 (25.7–33.1) | 26.8 (24.3–29.7) | 27.4 (25.0–29.9) | 26.5 (24.5–28.8) | 29.1 (26.2–32.1) | <0.001 [KW] |
RERmax [mean±SD] | 1.1 ± 0.1 | 1.1 ± 0.1 | 1.2 ± 0.1 | 1.1 ± 0.1 | 1.1 ± 0.1 | 1.1 ± 0.1 | 1.1 ± 0.1 | 0.001 [A] |
SpO2max in % [median(IQR)] | 94.0 (91.0–97.0) | 89.0 (84.0–92.0) | 97.0 (93.8–98.0) | 95.5 (93.0–98.0) | 96.0 (93.0–97.0) | 96.0 (94.0–98.0) | 93.0 (90.0–95.0) | <0.001 [KW] |
Impaired systemic ventricle function [n/N(%)] | 160/1148 (13.9) | 53/194 (27.3) | 5/119 (4.2) | 23/456 (5.0) | 4/50 (8.0) | 5/146 (3.4) | 70/183 (38.3) | <0.001 [χ2] |
Follow-up complete [n/N(%)] | 1101/1194 (92.2) | 198/205 (96.6) | 117/135 86.7) | 419/469 (89.3) | 51/51 (100.0) | 139/148 (93.9) | 177/186 (95.2) | <0.001 [χ2] |
Holter recordings [n/N(%)] | 445/1194 (38.1) | 107/205 (52.2) | 58/135 (43.0) | 157/469 (33.5) | 17/51(33.3) | 29/148 (19.6) | 87/186 (46.8) | <0.001 [χ2] |
Implanted device [n/N(%)] | 175/1194 (14.7) | 52/205 (25.4) | 26/135 (19.3) | 51/469 (10.9) | 2/51(3.9) | 7/148(4.7) | 37/186 (19.9) | <0.001 [χ2] |
Pacemaker [n/N(%)] | 130/1194 (10.9) | 49/205 (23.5) | 24/135 (17.8) | 21/469 (4.5) | 1/51(2.0) | 4/148(2.7) | 31/186 (16.7) | <0.001 [χ2] |
ICD [n/N(%)] | 26/1194 (2.2) | 2/205(1.0) | 2/135(1.5) | 17/469(3.6) | 0/51(0.0) | 1/148(0.7) | 4/186(2.2) | 0.109 [χ2] |
ICD & pacemaker [n/N(%)] | 16/1194 (1.3) | 1/205(0.5) | 0/135(0.0) | 11/469(2.3) | 0/51(0.0) | 2/148(1.4) | 2/186(1.1) | 0.197 [χ2] |
Event recorder [n/N(%)] | 3/1194(0.0) | 0/205(0.0) | 0/135(0.0) | 2/469(0.4) | 1/51(2.0) | 0/148(0.0) | 0/186(0.0) | 0.145 [χ2] |
Death during follow-up [n/N(%)] | 27/1194 (2.3) | 8/205(3.9) | 9/135(6.7) | 8/469(1.7) | 1/51(2.0) | 0/148(0.0) | 1/186(0.5) | <0.001 [χ2] |
Heart transplantation [n/N(%)] | 3/1194(0.3) | 1/205(0.5) | 1/135(0.7) | 0/469(0.0) | 0/51(0.0) | 0/148(0.0) | 1/186(0.5) | 0.544 [χ2] |
[n/N[%)] | Total | UVH | EBS | TOF | TAC | TGA ASO | TGA SM | p-Value |
---|---|---|---|---|---|---|---|---|
Severe arrhythmic event | 97/1194(8.1) | 18/205(8.8) | 15/135(11.1) | 41/469(8.7) | 1/51(2.0) | 8/149(5.4) | 14/185(7.6) | 0.291 [χ2] |
SCD equivalent | 15/1194(1.3) | 2/205(1.0) | 3/135(2.2) | 8/469(1.7) | 0/51(0.0) | 1/149(0.7) | 1/185(0.5) | 0.588 [χ2] |
SCD | 2/1194(0.2) | 0/205(0.0) | 1/135(0.7) | 1/469(0.2) | 0/51(0.0) | 0/148(0.0) | 0/186(0.0) | 0.593 [χ2] |
Aborted SCD | 6/1194(0.5) | 1/205(0.5) | 1/135(0.7) | 2/169(0.4) | 0/51(0.0) | 1/149(0.7) | 1/185(0.5) | 0.990 [χ2] |
ICD-ATP | 8/1194(0.7) | 2/205(1.0) | 1/135(0.7) | 5/469(1.1) | 0/51(0.0) | 0/149(0.0) | 0/185(0.0) | 0.549 [χ2] |
Appropriate ICD-discharge | 6/1194(0.5) | 1/205(0.5) | 1/135(0.7) | 4/469(0.9) | 0/51(0.0) | 0/149(0.0) | 0/185(0.0) | 0.661 [χ2] |
Hospitalisation/Syncope | 21/1194(1.8) | 2/205(1.0) | 2/135(1.5) | 13/469(2.8) | 0/51(0.0) | 2/149(1.3) | 2/185(1.1) | 0.400 [χ2] |
Hospitalisation | 11/1194(0.9) | 1/205(0.5) | 1/135(0.7) | 7/469(1.5) | 0/51(0.0) | 1/149(0.7) | 1/185(0.5) | 0.697 [χ2] |
Syncope | 14/1194(1.2) | 1/205(0.5) | 2/135(1.5) | 8/469(1.7) | 0/51(0.0) | 1/149(0.7) | 2/185(1.1) | 0.695 [χ2] |
sVT/nsVT in device | 83/1194(7.0) | 17/205(8.3) | 12/135(8.9) | 33/469(7.0) | 1/51(2.0) | 7/149(4.7) | 13/185(7.0) | 0.481 [χ2] |
sVT in device | 8/1194(0.7) | 2/205(1.0) | 1/135(0.7) | 4/469(0.9) | 0/51(0.0) | 0/149(0.0) | 1/185(0.5) | 0.859 [χ2] |
nsVT in device | 82/1194(6.9) | 17/205(8.3) | 12/135(8.9) | 32/469(6.8) | 1/51(2.0) | 7/149(4.7) | 13/185(7.0) | 0.475 [χ2] |
Univariable Analysis | Multivariable Analysis | |||||
---|---|---|---|---|---|---|
Variable | OR | 95% CI | p-value | OR | 95% CI | p-value |
Base data | ||||||
Age [per additional year] | 1.046 | 1.030–1.063 | <0.001 | 1.029 | 1.009–1.049 | 0.004 |
BMI [per 1 kg/m2 increase] | 1.069 | 1.025–1.115 | 0.002 | |||
Gender [female] | 1.107 | 0.725–1.692 | 0.639 | |||
CPET | ||||||
O2 peak [per 1 mL/min/kg decrease] | 1.078 | 1.048–1.107 | <0.001 | 1.052 | 1.018–1.086 | 0.002 |
O2 at [per 1 mL/min/kg decrease] | 1.098 | 1.050–1.148 | <0.001 | |||
VE/CO2-slope [per 1 increase] | 1.005 | 0.968–1.043 | 0.797 | |||
RERmax [per 1 increase] | 1.741 | 0.199–15.214 | 0.616 | |||
SpO2max [per 1% decrease] | 1.005 | 0.970–1.042 | 0.767 | |||
CHD | ||||||
UVH | 1.088 | 0.635–1.864 | 0.758 | |||
EBS | 1.685 | 0.935–3.035 | 0.083 | |||
TOF | 1.170 | 0.761–1.798 | 0.474 | |||
TAC | 0.206 | 0.028–1.507 | 0.120 | |||
TGA ASO | 0.617 | 0.292–1.302 | 0.205 | |||
TGA SM | 0.831 | 0.452–1.528 | 0.551 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
von Sanden, F.; Ptushkina, S.; Hock, J.; Fritz, C.; Hörer, J.; Hessling, G.; Ewert, P.; Hager, A.; Wolf, C.M. Peak Oxygen Uptake on Cardiopulmonary Exercise Test Is a Predictor for Severe Arrhythmic Events during Three-Year Follow-Up in Patients with Complex Congenital Heart Disease. J. Cardiovasc. Dev. Dis. 2022, 9, 215. https://doi.org/10.3390/jcdd9070215
von Sanden F, Ptushkina S, Hock J, Fritz C, Hörer J, Hessling G, Ewert P, Hager A, Wolf CM. Peak Oxygen Uptake on Cardiopulmonary Exercise Test Is a Predictor for Severe Arrhythmic Events during Three-Year Follow-Up in Patients with Complex Congenital Heart Disease. Journal of Cardiovascular Development and Disease. 2022; 9(7):215. https://doi.org/10.3390/jcdd9070215
Chicago/Turabian Stylevon Sanden, Felix, Svetlana Ptushkina, Julia Hock, Celina Fritz, Jürgen Hörer, Gabriele Hessling, Peter Ewert, Alfred Hager, and Cordula M. Wolf. 2022. "Peak Oxygen Uptake on Cardiopulmonary Exercise Test Is a Predictor for Severe Arrhythmic Events during Three-Year Follow-Up in Patients with Complex Congenital Heart Disease" Journal of Cardiovascular Development and Disease 9, no. 7: 215. https://doi.org/10.3390/jcdd9070215
APA Stylevon Sanden, F., Ptushkina, S., Hock, J., Fritz, C., Hörer, J., Hessling, G., Ewert, P., Hager, A., & Wolf, C. M. (2022). Peak Oxygen Uptake on Cardiopulmonary Exercise Test Is a Predictor for Severe Arrhythmic Events during Three-Year Follow-Up in Patients with Complex Congenital Heart Disease. Journal of Cardiovascular Development and Disease, 9(7), 215. https://doi.org/10.3390/jcdd9070215