Growth Promotion of Rice and Arabidopsis thaliana by Volatile Organic Compounds Produced by Endophytic Clonostachys Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Strains
2.2. Co-Culture of Fungi and Plants
2.3. Determination of Hydrogen Peroxide and Chlorophyll Content in Plant Tissues
2.4. Identification of VOCs Produced by the Two Clonostachys Strains
2.5. In Vitro Growth Promotion of Arabidopsis thaliana and Rice Seedlings by Pure VOCs with Different Concentrations
2.6. Data Analysis
3. Results
3.1. Characterization of Two Clonostachys Isolates
3.2. Impacts of VOC Mixture Produced by the Two Clonostachys Strains on the Growth and Development of Rice
3.3. Impacts of VOC Mixture Produced by the Two Clonostachys Strains on the Growth and Development of Arabidopsis
3.4. Identification of VOC Mixture Produced by the Two Clonostachys Strains
3.5. Effects of Pure VOCs of Different Concentrations on the Growth of Rice and A. thaliana Seedlings
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abdalla, M.A.; Matasyoh, J.C. Endophytes as producers of peptides: An overview about the recently discovered peptides from endophytic microbes. Nat. Prod. Bioprospect. 2014, 4, 257–270. [Google Scholar] [CrossRef]
- Herrmann, A. The Chemistry and Biology of Volatiles; John Wiley & Sons: Chichester, UK, 2010. [Google Scholar]
- Hung, R.; Lee, S.; Bennett, J.W. Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecol. 2013, 6, 19–26. [Google Scholar] [CrossRef]
- Hung, R.; Lee, S.; Rodriguez-Saona, C.; Bennett, J.W. Common gas phase molecules from fungi affect seed germination and plant health in Arabidopsis thaliana. AMB Express 2014, 4, 53. [Google Scholar] [CrossRef]
- Kuswinanti, T.; Syamun, E.; Masniawati, A. The potency of endophytic fungal isolates collected from local aromatic rice as indole acetic acid (IAA) producer. Procedia Food Sci. 2015, 3, 96–103. [Google Scholar]
- Junker, R.R.; Tholl, D. Volatile Organic Compound Mediated Interactions at the Plant-Microbe Interface. J. Chem. Ecol. 2013, 39, 810–825. [Google Scholar] [CrossRef]
- Splivallo, R.; Novero, M.; Bertea, C.M. Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytol. 2007, 175, 417–424. [Google Scholar] [CrossRef]
- Fiers, M.; Lognay, G.; Fauconnier, M.L. Volatile compound-mediated interactions between barley and pathogenic fungi in the soil. PLoS ONE 2013, 8, e66805. [Google Scholar] [CrossRef]
- Kottb, M.; Gigolashvili, T.; Grosskinsky, D.K. Trichoderma volatiles effecting Arabidopsis: From inhibition to protection against phytopathogenic fungi. Front. Microbiol. 2015, 6, 156172. [Google Scholar] [CrossRef]
- Blom, D.; Fabbri, C.; Connor, E.C. Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ. Microbiol. 2011, 13, 3047–3058. [Google Scholar] [CrossRef]
- Han, P.; Zhang, X.; Xu, D. Metabolites from Clonostachys fungi and their biological activities. J. Fungi. 2020, 6, 229. [Google Scholar] [CrossRef]
- Xiao, S.Y.; Guo, S.X.; Yu, N.J. Secondary metabolites of Gliocladium sp. a growth accelerating fungus for Anoectochilus roxburghii (Wall.) Lindl. Chin. Acad. Med. Sci. 2001, 26, 324. [Google Scholar]
- Jing, M.; Xu, X.; Peng, J. Comparative genomics of three Aspergillus strains reveals insights into endophytic lifestyle and endophyte-induced plant growth promotion. J. Fungi. 2022, 8, 690. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef]
- Minerdi, D.; Bossi, S.; Maffei, M.E. Fusarium oxysporum and its bacterial consortium promote lettuce growth and expansin A5 gene expression through microbial volatile organic compound (MVOC) emission. FEMS Microbiol. Ecol. 2011, 76, 342–351. [Google Scholar] [CrossRef]
- Bitas, V.; Mccartney, N.; Li, N.X. Fusarium oxysporum volatiles enhance plant growth via affecting auxin transport and signaling. Front. Microbiol. 2015, 6, 1248. [Google Scholar] [CrossRef]
- Naznin, H.A.; Kimura, M.; Miyazawa, M. Analysis of volatile organic compounds emitted by plant growth-promoting fungus Phoma sp. GS8-3 for growth promotion effects on tobacco. Microbes Environ. 2013, 28, 42–49. [Google Scholar] [CrossRef]
- Zhou, K.; Wu, W.D.; Song, X.Q.; Zhou, Y. Screening and identification of endophytic fungi favorable for the growth of Anoectochilus formosanus (Orchidaceae). J. Trop. Biol. 2018, 9, 440–444. [Google Scholar]
- Sun, Z.B.; Li, S.D.; Ren, Q.; Xu, J.L.; Lu, X.; Sun, M.H. Biology and applications of Clonostachys rosea. J. Appl. Microbiol. 2020, 129, 486–495. [Google Scholar] [CrossRef]
- Meng, F.; Lv, R.; Cheng, M.; Mo, F.; Zhang, N.; Qi, H.; Liu, J.; Chen, X.; Liu, Y.; Ghanizadeh, H.; et al. Insights into the molecular basis of biocontrol of Botrytis cinerea by Clonostachys rosea in tomato. Sci. Hortic. 2022, 291, 110547. [Google Scholar] [CrossRef]
- Türkölmez, Ş.; Özer, G.; Derviş, S. Clonostachys rosea strain ST1140: An endophytic plant-growth-promoting fungus, and its potential use in seedbeds with wheat-grain substrate. Curr. Microbiol. 2022, 80, 36. [Google Scholar] [CrossRef]
- Ravnskov, S.; Jensen, B.; Knudsen, I.M.B.; Bødker, L.; Funck Jensen, D.; Karlin’ ski, L.; Larsen, J. Soil inoculation with the biocontrol agent Clonostachys rosea and the mycorrhizal fungus Glomus intraradices results in mutual inhibition, plant growth promotion and alteration of soil microbial communities. Soil. Biol. Biochem. 2006, 38, 3453–3462. [Google Scholar] [CrossRef]
- Han, Z.Y.; Ghanizadeh, H.; Zhang, H.T.; Li, X.M.; Li, T.T.; Wang, Q.; Liu, J.Y.; Wang, A. Clonostachys rosea promotes root growth in tomato by secreting auxin produced through the tryptamine pathway. J. Fungi. 2022, 8, 1166. [Google Scholar] [CrossRef] [PubMed]
- Correa, E.B.; Bettiol, W.; Morandi, M.A.B. Biological control of Pythium aphanidermatum root rot and growth promotion of hydroponic lettuce by Clonostachys rosea. Trop. Plant Pathol. 2010, 35, 248–252. [Google Scholar]
- Quan, L.J.; Zhang, B.; Shi, W.W.; Li, H.Y. Hydrogen peroxide in plants: A versatile molecule of the reactive oxygen species network. J. Integr. Plant Biol. 2008, 50, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.; Shulaev, V.; Mittler, R. Reactive oxygen signaling and abiotic stress. Physiol. Plant. 2008, 133, 481–489. [Google Scholar] [CrossRef]
- Qureshi, M.K.; Gawroński, P.; Munir, S.; Jindal, S.; Kerchev, P. Hydrogen peroxide-induced stress acclimation in plants. Cell Mol. Life Sci. 2022, 79, 129. [Google Scholar] [CrossRef]
- Smirnoff, N.; Arnaud, D. Hydrogen peroxide metabolism and functions in plants. New Phytol. 2019, 221, 1197–1214. [Google Scholar] [CrossRef]
- Bushra, A.A.; Seleiman, M.F.; Harrison, M.T. Hydrogen peroxide mitigates cu stress in wheat. Agriculture 2023, 13, 862. [Google Scholar] [CrossRef]
- Cordovez, V.; Mommer, L.; Moisan, K.; Lucas-Barbosa, D.; Pierik, R.; Mumm, R.; Carrion, V.J.; Raaijmakers, J.M. Plant phenotypic and transcriptional changes induced by volatiles from the fungal root pathogen Rhizoctonia solani. Front. Plant Sci. 2017, 8, 1262. [Google Scholar] [CrossRef]
- Lin, W.; Zhou, X.; Tang, W.; Takahashi, K.; Pan, X.; Dai, J.; Ren, H.; Zhu, X.; Pan, S.; Zheng, H.; et al. TMK-based cell-surface auxin signalling activates cell-wall acidification. Nature 2021, 599, 278–282. [Google Scholar] [CrossRef] [PubMed]
- Hung, R.; Lee, S.; Bennett, J.W. The effects of low concentrations of the enantiomers of mushroom alcohol (1-octen-3-ol) on Arabidopsis thaliana. Mycology 2014, 5, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Oufensou, S.; Hassan, Z.U.; Balmas, V.; Jaoua, S.; Migheli, Q. Perfume guns: Potential of yeast volatile organic compounds in the biological control of mycotoxin-producing fungi. Toxins 2023, 15, 45. [Google Scholar] [CrossRef] [PubMed]
- Paul, D.; Park, K.S. Identification of volatiles produced by cladosporium cladosporioides CL-1, a fungal biocontrol agent that promotes plant growth. Sensors 2013, 13, 13969–13977. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Lee, M.H.; Kim, C.Y.; Kim, S.W.; Kim, P.I.; Min, S.R.; Lee, J. Plant growth promotion by two volatile organic compounds emitted from the fungus Cladosporium halotolerans NGPF1. Front. Plant Sci. 2021, 12, 794349. [Google Scholar] [CrossRef]
- Kulkarni, O.S.; Mazumder, M.; Kini, S. Volatile methyl jasmonate from roots triggers host-beneficial soil microbiome biofilms. Nat. Chem. Biol. 2024, 20, 473–483. [Google Scholar] [CrossRef]
ID | Residence Time (min) | Compound Name | Clonostachys sp. CC1 | Clonostachys sp. CC2 | CAS Number |
---|---|---|---|---|---|
C1 | 2.33 | 1,3-Pentadiene | + | − | 000504-60-9 |
C2 | 5.15 | 2-Methyl-1-butanol | + | + | 000137-32-6 |
C3 | 5.4 | 1-Pentanol | − | + | 000071-41-0 |
C4 | 8.92 | Ethylbenzene | + | − | 000100-41-4 |
C5 | 18.04 | Ethyl benzoate | + | − | 000093-89-0 |
C6 | 20.38 | 8-Methyl-1-decene | − | + | 061142-79-8 |
C7 | 21.71 | 2-Isopropyl-5-methyl-2-hexenal | + | + | 035158-25-9 |
C8 | 23.73 | Dimethyl phthalate | + | + | 000131-11-3 |
C9 | 24.19 | 2,6,10-Trimethyltetradecane | + | + | 014905-56-7 |
C10 | 25.67 | 3,4-Diethylbiphenyl | − | + | 061141-66-0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Xu, J.; Shao, D.; Zhao, C.; Xu, X.; Xu, X.; Chen, C. Growth Promotion of Rice and Arabidopsis thaliana by Volatile Organic Compounds Produced by Endophytic Clonostachys Species. J. Fungi 2024, 10, 754. https://doi.org/10.3390/jof10110754
Chen H, Xu J, Shao D, Zhao C, Xu X, Xu X, Chen C. Growth Promotion of Rice and Arabidopsis thaliana by Volatile Organic Compounds Produced by Endophytic Clonostachys Species. Journal of Fungi. 2024; 10(11):754. https://doi.org/10.3390/jof10110754
Chicago/Turabian StyleChen, Hui, Jin Xu, Dengke Shao, Chunfang Zhao, Xiaohong Xu, Xihui Xu, and Chen Chen. 2024. "Growth Promotion of Rice and Arabidopsis thaliana by Volatile Organic Compounds Produced by Endophytic Clonostachys Species" Journal of Fungi 10, no. 11: 754. https://doi.org/10.3390/jof10110754
APA StyleChen, H., Xu, J., Shao, D., Zhao, C., Xu, X., Xu, X., & Chen, C. (2024). Growth Promotion of Rice and Arabidopsis thaliana by Volatile Organic Compounds Produced by Endophytic Clonostachys Species. Journal of Fungi, 10(11), 754. https://doi.org/10.3390/jof10110754