Three New Species and Five New Host Records from Chaetomiaceae with Anti-Phytopathogenic Potential from Cover Crops Astragalus sinicus and Vicia villosa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection, Fungal Isolation, and Preservation
2.2. DNA Extraction, PCR Amplifcation, and Sequencing
2.3. Phylogenetic Analyses
2.4. Morphology
2.5. Dual Culture Test
2.6. Salt Tolerance Ability Assessment
2.7. Statistical Analysis
3. Results
3.1. Fungal Isolates
3.2. Phylogenetic Analyses
3.3. Taxonomy
3.4. Result of Dual Culture Test
3.5. Salt Tolerance Ability of NSJA2
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X.W.; Han, P.J.; Bai, F.Y.; Luo, A.; Bensch, K.; Meijer, M.; Kraak, B.; Han, D.Y.; Sun, B.D.; Crous, P.W.; et al. Taxonomy, phylogeny and identification of Chaetomiaceae with emphasis on thermophilic species. Stud. Mycol. 2022, 101, 121–243. [Google Scholar] [CrossRef] [PubMed]
- Vivi, V.K.; Martins-Franchetti, S.M.; Attili-Angelis, D. Biodegradation of PCL and PVC: Chaetomium globosum (ATCC 16021) activity. Folia Microbiol. 2019, 64, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Singh, B. Myceliophthora thermophila syn. Sporotrichum thermophile: A thermophilic mould of biotechnological potential. Crit. Rev. Biotechnol. 2016, 36, 59–69. [Google Scholar] [PubMed]
- Lang, J.J.; Hu, J.; Ran, W.; Xu, Y.C.; Shen, Q.R. Control of cotton Verticillium wilt and fungal diversity of rhizosphere soils by bio-organic fertilizer. Biol. Fert. Soils 2012, 48, 191–203. [Google Scholar] [CrossRef]
- Yang, C.H.; Lin, M.J.; Su, H.J.; Ko, W.H. Multiple resistance-activating substances produced by Humicola phialophoroides isolated from soil for control of Phytophthora blight of pepper. Bot. Stud. 2014, 55, 1–10. [Google Scholar] [CrossRef]
- Larran, S.; Simón, M.R.; Moreno, M.V.; Siurana, M.P.S.; Perelló, A. Endophytes from wheat as biocontrol agents against tan spot disease. Biol. Control 2016, 92, 17–23. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Zhang, J.; Yang, L.; Zhang, L.; Jiang, D.H.; Chen, W.D.; Li, G.Q. Diversity and biocontrol potential of endophytic fungi in Brassica napus. Biol. Control 2014, 72, 98–108. [Google Scholar] [CrossRef]
- Hung, P.M.; Wattanachai, P.; Kasem, S.; Poaim, S. Biological control of Phytophthora palmivora causing root rot of pomelo using Chaetomium spp. Mycobiology 2015, 43, 63–70. [Google Scholar] [CrossRef]
- Jiang, C.; Song, J.Z.; Zhang, J.Z.; Yang, Q. Identification and characterization of the major antifungal substance against Fusarium sporotrichioides from Chaetomium globosum. World J. Microb. Biot. 2017, 33, 1–9. [Google Scholar] [CrossRef]
- Shanthiyaa, V.; Saravanakumar, D.; Rajendran, L.; Karthikeyan, G.; Prabakar, K.; Raguchander, T. Use of Chaetomium globosum for biocontrol of potato late blight disease. Crop Prot. 2013, 52, 33–38. [Google Scholar] [CrossRef]
- Mo, W.D.; Mao, T.T. Screening and identification of antagonistic fungi in soil against Fusarium oxysporum in pepper. Guizhou Agric. Sci. 2019, 47, 66–70. (In Chinese) [Google Scholar]
- Wu, F.; Yang, D.C.; Zhang, L.P.; Chen, Y.L.; Hu, X.K.; Li, L.; Liang, J.S. Diversity estimation and antimicrobial activity of culturable endophytic fungi from Litsea cubeba (Lour.) Pers. in China. Forests 2019, 10, 33–44. [Google Scholar] [CrossRef]
- Zhao, S.S.; Zhang, Y.Y.; Yan, W.; Cao, L.L.; Xiao, Y.; Ye, Y.H. Chaetomium globosum CDW7, a potential biological control strain and its antifungal metabolites. Fems Microbiol. Lett. 2017, 364, fnw287. [Google Scholar] [CrossRef] [PubMed]
- Lan, N.; Qi, G.F.; Yu, Z.N.; Zhao, X.Y. Isolation, identification and anti-fungal action of endophytic fungi of rapeseed. J. Huazhong Agric. Univ. 2011, 30, 270–275. (In Chinese) [Google Scholar]
- Yue, H.M.; Yang, Q.; Song, J.Z. Study on analysis of biological control effect of two kinds of Chaetomium spp. on several pathogens. J. Harbin Univ. Commer. (Nat. Sci. Ed.) 2009, 25, 593–596. (In Chinese) [Google Scholar]
- Zhou, C.Y.; Xu, S.Q.; Yan, M.X.; Cui, L.L.; Hua, S.; Wang, Y.P. Identification and optimization of fermentation conditions of an antagonistic endophytic fungus from mountain-cultivated ginseng. J. Henan Agric. Sci. 2020, 49, 104–110. (In Chinese) [Google Scholar]
- Chen, J.H.; Zhang, W.Z.; Guo, Q.F.; Yu, W.J.; Zhang, Y.N.; He, B.X. Bioactivities and future perspectives of Chaetoglobosins. Evid.-Based Complement. Altern. Med. 2020, 2020, 8574084. [Google Scholar] [CrossRef]
- Qin, J.C.; Zhang, Y.M.; Gao, J.M.; Bai, M.S.; Yang, S.X.; Laatsch, H.; Zhang, A.L. Bioactive metabolites produced by Chaetomium globosum, an endophytic fungus isolated from. Bioorg. Med. Chem. Lett. 2009, 19, 1572–1574. [Google Scholar] [CrossRef]
- Sekita, S.; Yoshihira, K.; Natori, S.; Kuwano, H. Structures of Chaetoglobosin A and B, cytotoxic metabolites of Chaetomium globosum. Tetrahedron Lett. 1973, 4, 2109–2112. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, H.Q.; Zong, S.C.; Gao, J.M.; Zhang, A.L. Chemical and bioactive diversities of the genus Chaetomium secondary metabolites. Mini-Rev. Med. Chem. 2012, 12, 127–148. [Google Scholar] [CrossRef]
- Liang, H.L.; Tong, Z.W.; Zhu, D. Secondary metabolites from Chaetomiun globosum and their bioactivities. Nat. Prod. Res. Dev. 2018, 30, 702–707+609. (In Chinese) [Google Scholar]
- Xu, G.B.; Zhang, Q.Y.; Zhou, M. Review on the secondary metabolites and its biological activities from Chaetomium fungi. Nat. Prod. Res. Dev. 2018, 30, 515–525. (In Chinese) [Google Scholar]
- Liao, H.L.; Zhong, F.R.; Ke, W.J.; Li, N.; Ma, Y.T. Isolation and identification of the pathogen of root rot of Coptis chinensis and screening of antagonistic microorganism. Chin. J. Antibiot. 2022, 47, 900–912. (In Chinese) [Google Scholar]
- Hu, Y.; Zhang, W.P.; Zhang, P.; Ruan, W.B.; Zhu, X.D. Nematicidal activity of Chaetoglobosin A poduced by Chaetomium globosum NK102 against Meloidogyne incognita. J. Agric. Food Chem. 2013, 61, 41–46. [Google Scholar] [CrossRef]
- Khan, B.; Yan, W.; Wei, S.; Wang, Z.Y.; Zhao, S.S.; Cao, L.L.; Rajput, N.A.; Ye, Y.H. Nematicidal metabolites from endophytic fungus Chaetomium globosum YSC5. FEMS Microbiol. Lett. 2019, 366, fnz169. [Google Scholar] [CrossRef]
- Abeywickram, P.D.; Qian, N.; Jayawardena, R.S.; Li, Y.H.; Zhang, W.; Guo, K.; Zhang, L.; Zhang, G.Z.; Yan, J.Y.; Li, X.H.; et al. Endophytic fungi in green manure crops; friends or foe? Mycosphere 2023, 14, 1–106. [Google Scholar] [CrossRef]
- Chomnunti, P.; Hongsanan, S.; Aguirre-Hudson, B.; Tian, Q.; Persoh, D.; Dhami, M.K.; Alias, A.S.; Xu, J.C.; Liu, X.Z.; Stadler, M.; et al. The sooty moulds. Fungal Divers. 2014, 66, 1–36. [Google Scholar] [CrossRef]
- Senanayake, I.C.; Rathnayaka, A.R.; Marasinghe, D.S.; Calabon, M.S.; Gentekaki, E.; Lee, H.B.; Hurdeal, V.G.; Pem, D.; Dissanayake, L.S.; Wijesinghe, S.N.; et al. Morphological approaches in studying fungi: Collection, examination, isolation, sporulation and preservation. Mycosphere 2020, 11, 2678–2754. [Google Scholar] [CrossRef]
- Chi, M.H.; Park, S.Y.; Lee, Y.H. A quick and safe method for fungal DNA extraction. Plant Pathol. J. 2009, 25, 108–111. [Google Scholar] [CrossRef]
- Katoh, K.; Toh, H. Recent developments in the MAFFT multiple sequence alignment program. Brief. Bioinform. 2008, 9, 286–298. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Swofford, D.L. PAUP*: Phylogenetic Analysis Using Parsimony, Version 4.0 b10; Sinauer Associates: Sunderland, MA, USA, 2002. [Google Scholar]
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. The CIPRES Science Gateway: Enabling high-impact science for phylogenetics researchers with limited resources. In Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment: Bridging from the extreme to the campus and beyond, Chicago, IL, USA, 16–20 July 2012. [Google Scholar]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Luo, C.X.; Wu, H.J.; Peng, B.; Kang, B.S.; Liu, L.M.; Zhang, M.; Gu, Q.S. Colletotrichum species associated with anthracnose disease of watermelon (Citrullus lanatus) in China. J. Fungi 2022, 8, 790. [Google Scholar] [CrossRef] [PubMed]
- Samson, R.A.; Houbraken, J.; Thrane, U.; Frisvad, J.C.; Andersen, B. Food and Indoor Fungi; CBS-KNAW Fungal Biodiversity Centre: Utrecht, The Netherland, 2010. [Google Scholar]
- Wang, X.W.; Houbraken, J.; Groenewald, J.Z.; Meijer, M.; Andersen, B.; Nielsen, K.F.; Crous, P.W.; Samson, R.A. Diversity and taxonomy of Chaetomium and chaetomium-like fungi from indoor environments. Stud. Mycol. 2016, 84, 145–224. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.W.; Lombard, L.; Groenewald, J.Z.; Li, J.; Videira, S.I.; Samson, R.A.; Liu, X.Z.; Crous, P.W. Phylogenetic reassessment of the Chaetomium globosum species complex. Persoonia 2016, 36, 83–133. [Google Scholar] [CrossRef]
- Wang, R.; Chen, D.; Khan, R.A.A.; Cui, J.; Hou, J.M.; Liu, T. A novel Trichoderma asperellum strain DQ-1 promotes tomato growth and induces resistance to gray mold caused by Botrytis cinerea. FEMS Microbiol. Lett. 2021, 368, 140. [Google Scholar] [CrossRef]
- Yao, Y.P.; Lv, G.Z.; Zhang, S.; Sun, X.D. Antagonistic effect of Trichoderma against Rhizoctonia solani and Fusarium oxysporum occurring on turfgrass. Grassl. Turf 2006, 06, 52–55+59. (In Chinese) [Google Scholar]
- Li, Y.; Xia, L.Q.; Wang, Y.N.; Liu, X.Y.; Zhang, C.H.; Hu, T.L.; Cao, K.Q. The inhibitory effect of Epicoccum nigrum strain XF1 against Phytophthora infestans. Biol. Control 2013, 67, 462–468. [Google Scholar] [CrossRef]
- Colpaert, J.V.; Vandenkoornhuyse, P.; Adriaensen, K.; Vangronsveld, J. Genetic variation and heavy metal tolerance in the ectomycorrhizal basidiomycete. New Phytol. 2000, 147, 367–379. [Google Scholar] [CrossRef]
- Wang, R.; Yu, X.L.; Yin, Y.P.; Norvienyeku, J.; Khan, R.A.A.; Zhang, M.M.; Ren, S.; Chen, J.; Liu, T. Biocontrol of cucumber Fusarium wilt by Trichoderma asperellum FJ035 dependent on antagonism and spatiotemporal competition with Fusarium oxysporum. Biol. Control 2023, 186, 105334. [Google Scholar] [CrossRef]
- Rai, J.N.; Tewari, J.P.; Mukerji, K.G. Achaetomium, a new genus of ascomycetes. Can. J. Bot. 1964, 42, 693–697. [Google Scholar] [CrossRef]
- Cannon, P.F. A Revision of Achaetomium, Achaetomiella and Subramaniula, and some similar species of Chaetomium. Trans. Br. Mycol. Soc. 1986, 87, 45–76. [Google Scholar] [CrossRef]
- Crous, P.W.; Wingfield, M.J.; Burgess, T.I.; Carnegie, A.J.; Hardy, G.S.J.; Smith, D.; Summerell, B.A.; Cano-Lira, J.F.; Guarro, J.; Houbraken, J.; et al. Fungal Planet description sheets: 625–715. Persoonia 2017, 39, 270–476. [Google Scholar] [CrossRef] [PubMed]
- Mehrabi, M.; Asgari, B.; Zare, R. Description of Allocanariomyces and Parachaetomium, two new genera, and Achaetomium aegilopis sp. nov. in the Chaetomiaceae. Mycol. Prog. 2020, 19, 1415–1427. [Google Scholar] [CrossRef]
- Pu, M.Y.; Wu, Z.Q.; Zhang, S.W.; Li, Y.J.; Gu, J.; Cui, Y.S.; He, H.H.; Chen, L.Q.; Wang, C. First report of Chaetomium pseudocochliodes causing petal blight disease of Camellia reticulata in Yunnan, China. Plant Dis. 2022, 106, 3001. [Google Scholar] [CrossRef]
- Camacho-Luna, V.; Pizar-Quiroz, A.M.; Rodríguez-Hernández, A.A.; Rodríguez-Monroy, M.; Sepúlveda-Jiménez, G. Trichoderma longibrachiatum, a biological control agent of Sclerotium on onion plants under salt stress. Biol. Control 2023, 180, 105168. [Google Scholar] [CrossRef]
- Kouadria, R.; Mohamed, B.; Lotmani, B. Induction of growth and osmoregulation in salt stressed barley by the endophytic fungus Chaetomium coarctatum. Tunis. J. Plant Prot. 2020, 15, 19–27. [Google Scholar]
- Qiu, T.C.; Zhao, X.S.; Feng, H.J.; Qi, L.L.; Yang, J.; Peng, Y.L.; Zhao, W.S. OsNBL3, a mitochondrion-localized pentatricopeptide repeat protein, is involved in splicing intron 4 and its disruption causes lesion mimic phenotype with enhanced resistance to biotic and abiotic stresses. Plant Biotechnol. J. 2021, 19, 2277–2290. [Google Scholar] [CrossRef]
Isolate Number | Host | Substrate | Locality | NCBI-BLAST Result |
---|---|---|---|---|
g6 | Astragalus sinicus | leaf | Henan province, Xinyang city | Achaetomium sp. |
NSYB3 | Vicia villosa | leaf | Sichuan province, Guangan city | Botryotrichum sp. |
NSYB4 | Vicia villosa | leaf | Sichuan province, Guangan city | Botryotrichum sp. |
NSYB1 | Vicia villosa | leaf | Sichuan province, Guangan city | Collariella sp. |
NSJA2 | Vicia villosa | stem | Sichuan province, Guangan city | Chaetomium sp. |
NSYB2 | Vicia villosa | leaf | Sichuan province, Guangan city | Chaetomium sp. |
GXZYB1 | Astragalus sinicus | leaf | Guangxi province, Nanning city | Chaetomium sp. |
NZYA1 | Astragalus sinicus | leaf | Sichuan province, Guangan city | Subramaniula sp. |
NZYA2 | Astragalus sinicus | leaf | Sichuan province, Guangan city | Subramaniula sp. |
XZYB3d | Astragalus sinicus | leaf | Henan province, Xinyang city | Subramaniula sp. |
Dataset | Subst. Model a | NST b | Rate Matrix | p-Inv | Gamma | Rates | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
[AC] | [AG] | [AT] | [CG] | [CT] | [GT] | ||||||
ITS | TIM2 + I + G | 6 | 1.8695 | 1.5540 | 1.8695 | 1.0000 | 4.9116 | 1.0000 | 0.5550 | 0.9100 | gamma |
LSU | TIM3ef + I + G | 6 | 0.5820 | 1.0173 | 1.0000 | 0.5820 | 4.9349 | 1.0000 | 0.7490 | 0.5600 | gamma |
rpb2 | TrN + I + G | 6 | 1.0000 | 4.8611 | 1.0000 | 1.0000 | 8.3943 | 1.0000 | 0.4850 | 1.0410 | gamma |
tub2 | HKY + I + G | 2 | - | - | - | - | - | - | 0.3220 | 2.1740 | gamma |
Phytopathogens | 10 Isolates of Chaetomiaceae | ||||
---|---|---|---|---|---|
g6 | GXZYB1 | NSYB2 | NSJA2 | NSYB1 | |
Fusarium graminearum F0609 | 0.42 ± 0.01 ef a | 1.19 ± 0.06 cd | 0.44 ± 0.09 ef | 11.40 ± 1.18 a | 1.16 ± 0.15 cde |
Botrytis cinerea B79 | 1.86 ± 0.24 c | 2.30 ± 0.07 b | 1.94 ± 0.08 c | 5.72 ± 0.13 a | 1.31 ef |
Colletotrichum siamense CCT1 | 0.97 ± 0.02 de | 2.04 ± 0.01 a | 1.43 ± 0.05 b | 1.83 ± 0.16 a | 1.82 ± 0.11 a |
F. oxysporum f. sp. cucumerinum Foc | 0.66 e | 1.30 ± 0.06 b | 1.04 ± 0.08 c | 13.06 a | 0.74 ± 0.05 de |
Stemphylium astragali XZYB6f | 2.44 ± 0.18 cd | 3.02 ± 0.37 bc | 3.02 ± 0.09 bc | 10.71 ± 2.71 a | 4.25 b |
Sclerotinia minor HJ5 | 2.93 ± 0.06 b | 1.59 ± 0.36 bc | 1.31 ± 0.13 c | 12.60 ± 2.76 a | 0.38 ± 0.22 c |
S. sclerotiorum ZJ25 | 5.47 ± 0.16 b | 1.77 ± 0.51 e | 2.54 ± 0.11 d | 9.78 ± 0.17 a | 3.71 ± 0.15 c |
Pyricularia oryzae P131 | 0.98 ± 0.09 cd | 0.48 ± 0.08 ef | 0.32 ± 0.07 f | 3.09 ± 0.45 a | 1.41 ± 0.11 b |
Botryosphaeria dothidea B-8-1 | 0.98 ± 0.03 e | 2.83 ± 0.43 c | 2.53 ± 0.58 c | 7.05 ± 0.28 a | 3.47 ± 0.36 b |
Phytophthora capsici LT263 | 3.07 ± 0.08 b | 2.61 ± 0.11 b | 1.36 ± 0.15 c | 4.55 ± 0.58 a | 2.89 ± 0.60 b |
Verticillium dahliae V991 | 1.11 ± 0.12 bc | 0.57 ± 0.07 c | 0.65 ± 0.04 c | 5.40 ± 1.01 a | 1.45 ± 0.03 b |
Alternaria brassicae HEYA2 | 1.29 ± 0.16 b | 1.43 ± 0.47 b | 0.60 ± 0.10 c | 5.06 ± 0.34 a | 0.34 ± 0.08 c |
Alternaria alternate A33 | 1.34 ± 0.08 b | 1.05 ± 0.03 b | 1.09 ± 0.03 b | 7.07 ± 1.75 a | 1.02 ± 0.16 b |
Boeremia linicolaY3-3 | 0.13 e | 2.08 ± 0.84 b | 0.25 ± 0.02 e | 9.13 ± 0.39 a | 1.52 ± 0.22 c |
Lasiodiplodia theobromae CSS-01S | 1.42 ± 0.14 d | 1.09 ± 0.12 d | 2.18 ± 0.15 c | 3.88 ± 0.89 a | 1.00 ± 0.25 d |
NSYB3 | NSYB4 | NZYA1 | NZYA2 | XZYB3d | |
Fusarium graminearum F0609 | 2.78 ± 0.14 b | 1.58 ± 0.12 c | 0.09 ± 0.08 f | 0.55 ± 0.32 def | 0.65 ± 0.10 def |
Botrytis cinerea B79 | 1.06 ± 0.18 f | 1.81 ± 0.28 c | 1.71 ± 0.14 cd | 0.74 ± 0.13 g | 1.51 ± 0.14 de |
Colletotrichum siamense CCT1 | 1.04 ± 0.09 cd | 0.72 ± 0.21 e | 1.34 ± 0.09 b | 1.39 ± 0.36 b | 1.29 ± 0.09 bc |
F. oxysporum f. sp. cucumerinum Foc | 1.16 ± 0.14 bc | 0.22 f | 0.86 ± 0.19 d | 0.57 e | 1.28 ± 0.17 b |
Stemphylium astragali XZYB6f | 1.74 cde | 0.93 ± 0.44 de | 1.18 ± 0.19 de | 0.72 ± 0.03 e | 1.93 ± 0.26 cde |
Sclerotinia minor HJ5 | 0.32 ± 0.26 c | 0.64 ± 0.09 c | 0.89 ± 0.23 c | 0.25 ± 0.03 c | 0.72 ± 0.20 c |
S. sclerotiorum ZJ25 | 0.31 g | 0.41 ± 0.05 g | 1.16 ± 0.24 f | 0.44 ± 0.06 g | 1.00 ± 0.23 f |
Pyricularia oryzae P131 | 1.14 ± 0.19 bc | 0.86 ± 0.19 cde | 1.44 ± 0.33 b | 0.59 ± 0.30 def | 1.10 ± 0.02 bc |
Botryosphaeria dothidea B-8-1 | 2.65 ± 0.33 c | 1.12 e | 0.13 f | 0.29 ± 0.03 f | 1.77 ± 0.24 d |
Phytophthora capsici LT263 | 1.58 ± 0.11 c | 0.44 ± 0.02 d | 2.57 ± 0.91 b | 0.22 d | 1.85 ± 0.30 c |
Verticillium dahliae V991 | 1.53 ± 0.73 b | 0.96 ± 0.17 bc | 0.93 ± 0.16 bc | 0.85 ± 0.18 bc | 0.76 ± 0.07 bc |
Alternaria brassicae HEYA2 | 0.32 ± 0.04 c | 1.16 ± 0.23 b | 0.36 ± 0.13 c | 0.41 ± 0.10 c | 0.40 ± 0.15 c |
Alternaria alternate A33 | 0.51 ± 0.09 b | 1.50 ± 0.35 b | 0.96 ± 0.17 b | 1.29 ± 0.23 b | 0.77 ± 0.02 b |
Boeremia linicola Y3-3 | 1.15 ± 0.18 cd | 0.18 ± 0.07 e | 0.58 ± 0.10 de | 0.30 ± 0.05 e | 0.63 ± 0.29 de |
Lasiodiplodia theobromae CSS-01S | 3.00 ± 01.6 b | 1.21 ± 0.44 d | 0.97 ± 0.99 d | 0.34 ± 0.12 e | 0.28 ± 0.05 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, N.; Wu, Y.; Zhang, W.; Yang, J.; Bhadauria, V.; Zhang, G.; Yan, J.; Zhao, W. Three New Species and Five New Host Records from Chaetomiaceae with Anti-Phytopathogenic Potential from Cover Crops Astragalus sinicus and Vicia villosa. J. Fungi 2024, 10, 776. https://doi.org/10.3390/jof10110776
Qian N, Wu Y, Zhang W, Yang J, Bhadauria V, Zhang G, Yan J, Zhao W. Three New Species and Five New Host Records from Chaetomiaceae with Anti-Phytopathogenic Potential from Cover Crops Astragalus sinicus and Vicia villosa. Journal of Fungi. 2024; 10(11):776. https://doi.org/10.3390/jof10110776
Chicago/Turabian StyleQian, Ning, Yuhong Wu, Wei Zhang, Jun Yang, Vijai Bhadauria, Guozhen Zhang, Jiye Yan, and Wensheng Zhao. 2024. "Three New Species and Five New Host Records from Chaetomiaceae with Anti-Phytopathogenic Potential from Cover Crops Astragalus sinicus and Vicia villosa" Journal of Fungi 10, no. 11: 776. https://doi.org/10.3390/jof10110776
APA StyleQian, N., Wu, Y., Zhang, W., Yang, J., Bhadauria, V., Zhang, G., Yan, J., & Zhao, W. (2024). Three New Species and Five New Host Records from Chaetomiaceae with Anti-Phytopathogenic Potential from Cover Crops Astragalus sinicus and Vicia villosa. Journal of Fungi, 10(11), 776. https://doi.org/10.3390/jof10110776