Spatiotemporal Pattern of a Macrofungal Genus Phylloporia (Basidiomycota) Revealing Its Adaptive Evolution in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Species Occurrence Records
2.2. Environmental Variables
2.3. Modeling Procedure
2.4. Divergence Time and Historical Distributions
2.5. Spatiotemporal Pattern
2.6. Net Diversification Rate
3. Results
3.1. Modeling Accuracy Evaluation
3.2. The Current Potential Distribution of Phylloporia in China
3.3. The Divergence Time and Possible Historical Distributions of Phylloporia in China
3.4. Spatiotemporal Pattern of Phylloporia in China
3.5. Net Diversification Rate of Phylloporia in China
4. Discussion
4.1. The Highly Suitable Habitat of Phylloporia Mainly Concentrated in Warmer and More Humid Southeastern China
4.2. The Chinese Ancestor of Phylloporia Originated from Southeast China
4.3. The Spatiotemporal Pattern of Phylloporia in China Is a Result of Adaptive Evolution
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Naeem, S.; Chazdon, R.; Duffy, J.E.; Prager, C.; Worm, B. Biodiversity and human well-being: An essential link for sustainable development. Proc. R. Soc. B-Biol. Sci. 2016, 283, 20162091. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Zhou, L.W.; Tong, Y.J.; Yin, F. Risk assessment and warning system for strategic biological resources in China. Innov. Life 2023, 1, 100004. [Google Scholar] [CrossRef]
- Wei, F.W. Toward post-2020 global biodiversity conservation: Footprint and direction in China. Innovation 2021, 2, 100175. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.L.; Liu, D.M.; Zhou, L.W. The future is now: How to conserve fungi. Biol. Divers. 2024, 1, 6–8. [Google Scholar] [CrossRef]
- Pennisi, E. What determines species diversity? Science 2005, 309, 90. [Google Scholar] [CrossRef]
- Gavrilets, S.; Losos, J.B. Adaptive radiation: Contrasting theory with data. Science 2009, 323, 732–737. [Google Scholar] [CrossRef]
- Erwin, D.H. A conceptual framework of evolutionary novelty and innovation. Biol. Rev. 2021, 96, 1–15. [Google Scholar] [CrossRef]
- Miller, A.H.; Stroud, J.T.; Losos, J.B. The ecology and evolution of key innovations. Trends Ecol. Evol. 2023, 38, 122–131. [Google Scholar] [CrossRef]
- Yuan, Z.Y.; Zhou, W.W.; Chen, X.; Poyarkov, N.A.; Chen, H.M.; Jang-Liaw, N.H.; Chou, W.H.; Matzke, N.J.; Iizuka, K.; Min, M.S.; et al. Spatiotemporal diversification of the true frogs (Genus Rana): A historical framework for a widely studied group of model organisms. Syst. Biol. 2016, 65, 824–842. [Google Scholar] [CrossRef]
- Navalon, G.; Marugan-Lobon, J.; Bright, J.A.; Cooney, C.R.; Rayfield, E.J. The consequences of craniofacial integration for the adaptive radiations of Darwin’s finches and Hawaiian Honeycreepers. Nat. Ecol. Evol. 2020, 4, 270–278. [Google Scholar] [CrossRef]
- Ronco, F.; Matschiner, M.; Boehne, A.; Boila, A.; Buescher, H.H.; El Taher, A.; Indermaur, A.; Malinsky, M.; Ricci, V.; Kahmen, A.; et al. Drivers and dynamics of a massive adaptive radiation in cichlid fishes. Nature 2021, 589, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.T.; Gernandt, D.S.; Wehenkel, C.; Xia, X.M.; Wei, X.X.; Wang, X.Q. Phylogenomic and ecological analyses reveal the spatiotemporal evolution of global pines. Proc. Natl. Acad. Sci. USA 2021, 118, e2022302118. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.M.; Yang, M.Q.; Li, C.L.; Huang, S.X.; Jin, W.T.; Shen, T.T.; Wang, F.; Li, X.H.; Yoichi, W.; Zhang, L.H.; et al. Spatiotemporal evolution of the global species diversity of Rhododendron. Mol. Biol. Evol. 2022, 39, msab314. [Google Scholar] [CrossRef] [PubMed]
- Perez-Escobar, O.A.; Bogarin, D.; Przelomska, N.A.S.; Ackerman, J.D.; Balbuena, J.A.; Bellot, S.; Buhlmann, R.P.; Cabrera, B.; Cano, J.A.; Charitonidou, M.; et al. The origin and speciation of orchids. New Phytol. 2024, 242, 700–716. [Google Scholar] [CrossRef]
- Garcia-Porta, J.; Irisarri, I.; Kirchner, M.; Rodriguez, A.; Kirchhof, S.; Brown, J.L.; MacLeod, A.; Turner, A.P.; Ahmadzadeh, F.; Albaladejo, G.; et al. Environmental temperatures shape thermal physiology as well as diversification and genome-wide substitution rates in lizards. Nat. Commun. 2019, 10, 4077. [Google Scholar] [CrossRef]
- Lu, L.M.; Mao, L.F.; Yang, T.; Ye, J.F.; Liu, B.; Li, H.L.; Sun, M.; Miller, J.T.; Mathews, S.; Hu, H.H.; et al. Evolutionary history of the angiosperm flora of China. Nature 2018, 554, 234–238. [Google Scholar] [CrossRef]
- Wang, X.W.; Liu, S.L.; Zhou, L.W. Citizen Science initiative in taxonomy of macrofungi in China 1.0. Mycosystema 2021, 4, 844–850. [Google Scholar] [CrossRef]
- Mueller, G.M.; Schmit, J.P.; Leacock, P.R.; Buyck, B.; Cifuentes, J.; Desjardin, D.E.; Halling, R.E.; Hjortstam, K.; Iturriaga, T.; Larsson, K.H.; et al. Global diversity and distribution of macrofungi. Biodivers. Conserv. 2007, 16, 37–48. [Google Scholar] [CrossRef]
- Hawksworth, D.L.; Luecking, R. Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol. Spectr. 2017, 5, 79–95. [Google Scholar] [CrossRef]
- Bhunjun, C.S.; Niskanen, T.; Suwannarach, N.; Wannathes, N.; Chen, Y.J.; McKenzie, E.H.C.; Maharachchikumbura, S.S.N.; Buyck, B.; Zhao, C.L.; Fan, Y.G.; et al. The numbers of fungi: Are the most speciose genera truly diverse? Fungal Divers. 2022, 114, 387–462. [Google Scholar] [CrossRef]
- Jiang, J.H.; Zhou, L.J.; Liu, S.L.; Zhou, L.W.; Tian, X.M. Species clarification of the medicinal wood-inhabiting fungus Phylloporia (Hymenochaetales, Basidiomycota) in China. Phytotaxa 2020, 446, 209–219. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhou, L.J.; Jiang, J.H.; Tian, X.M.; Zhou, L.W. Phylloporia (Hymenochaetales, Basidiomycota), a medicinal wood-inhabiting fungal genus with much potential for commercial development. Food Rev. Int. 2023, 39, 2776–2789. [Google Scholar] [CrossRef]
- Jiang, J.H.; Li, Q.Z.; Luo, X.; Yu, J.; Zhou, L.W. Transcriptome and metabolome reveal accumulation of key metabolites with medicinal properties of Phylloporia pulla. Int. J. Mol. Sci. 2024, 25, 11070. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.W.; Dai, Y.C. Phylogeny and taxonomy of Phylloporia (Hymenochaetales): New species and a worldwide key to the genus. Mycologia 2012, 104, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Zhou, L.W.; Vlasak, J.; Dai, Y.C. Global diversity and systematics of Hymenochaetaceae with poroid hymenophore. Fungal Divers. 2022, 113, 1–192. [Google Scholar] [CrossRef]
- Wang, X.W.; Varga, T.; Li, Q.S.; Nagy, L.G.; Zhou, L.W. Analyses of trait evolution and diversification reveal multiple adaptive periods in the fungal order Hymenochaetales. bioRxiv 2024. [Google Scholar] [CrossRef]
- Zhou, L.W. Phylloporia tiliae sp. nov. from China. Mycotaxon 2013, 124, 361–365. [Google Scholar] [CrossRef]
- Zhou, L.W. Phylloporia osmanthi and P. terrestris spp. nov. (Hymenochaetales, Basidiomycota) from Guangxi, South China. Nova Hedwigia 2015, 100, 239–249. [Google Scholar] [CrossRef]
- Zhou, L.W. Four new species of Phylloporia (Hymenochaetales, Basidiomycota) from tropical China with a key to Phylloporia species worldwide. Mycologia 2015, 107, 1184–1192. [Google Scholar] [CrossRef]
- Zhou, L.W. Phylloporia minutipora and P. radiata spp. nov. (Hymenochaetales, Basidiomycota) from China and a key to worldwide species of Phylloporia. Mycol. Prog. 2016, 15, 57. [Google Scholar] [CrossRef]
- Wu, F.; Ren, G.J.; Wang, L.; Oliveira-Filho, J.R.C.; Gibertoni, T.B.; Dai, Y.C. An updated phylogeny and diversity of Phylloporia (Hymenochaetales): Eight new species and keys to species of the genus. Mycol. Prog. 2019, 18, 615–639. [Google Scholar] [CrossRef]
- Wu, S.H.; Chang, C.C.; Wei, C.L.; Lin, Y.T.; Chen, S.Z. Four new species of Phylloporia (Hymenochaetales, Basidiomycota) from southeastern Taiwan. Mycol. Prog. 2020, 19, 743–752. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Hao, T.X.; Guillera-Arroita, G.; May, T.W.; Lahoz-Monfort, J.J.; Elith, J. Using species distribution models for Fungi. Fungal Biol. Rev. 2020, 34, 74–88. [Google Scholar] [CrossRef]
- Yang, X.Q.; Kushwaha, S.P.S.; Saran, S.; Xu, J.; Roy, P.S. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia Adhatoda L. in Lesser Himalayan foothills. Ecol. Eng. 2013, 51, 83–87. [Google Scholar] [CrossRef]
- Street, G.M. Habitat suitability and distribution models with applications in R. J. Wildlife Manag. 2020, 84, 1212–1213. [Google Scholar] [CrossRef]
- Warren, D.L.; Glor, R.E.; Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography 2010, 33, 607–611. [Google Scholar] [CrossRef]
- Strubbe, D.; Jackson, H.; Groombridge, J.; Matthysen, E. Invasion success of a global avian invader is explained by within-taxon niche structure and association with humans in the native range. Divers. Distrib. 2015, 21, 675–685. [Google Scholar] [CrossRef]
- Thuiller, W.; Lafourcade, B.; Engler, R.; Araujo, M.B. BIOMOD—A platform for ensemble forecasting of species distributions. Ecography 2009, 32, 369–373. [Google Scholar] [CrossRef]
- Hastie, T.J. Generalized additive models. In Statistical Models in S; Routledge: London, UK, 2017; pp. 249–307. [Google Scholar]
- Elith, J.; Leathwick, J.R.; Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 2008, 77, 802–813. [Google Scholar] [CrossRef]
- Hastie, T.J.; Pregibon, D. Generalized linear models. In Statistical Models in S; Routledge: London, UK, 2017; pp. 195–247. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Thuiller, W.; Georges, D.; Gueguen, M.; Engler, R.; Breiner, F.; Lafourcade, B.; Patin, R.; Blancheteau, H.; Gueguen, M.M.; Thuiller, C.W. R Package ‘Biomod2 v.4.2.5.’, 2024. Available online: https://cran.r-project.org/ (accessed on 7 November 2024).
- Phillips, S.J.; Anderson, R.P.; Dudik, M.; Schapire, R.E.; Blair, M.E. Opening the black box: An open-source release of Maxent. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- Zhao, Y.; Deng, X.; Xiang, W.; Chen, L.; Ouyang, S. Predicting potential suitable habitats of Chinese fir under current and future climatic scenarios based on Maxent model. Ecol. Inform. 2021, 64, 101393. [Google Scholar] [CrossRef]
- Bouckaert, R.; Vaughan, T.; Barido-Sottani, J.; Duchene, S.; Fourment, M.; Gavryushkina, A.; Heled, J.; Jones, G.; Kühnert, D.; De Maio, N.; et al. BEAST 2.5: An advanced software platform for bayesian evolutionary analysis. PLoS Comput. Biol. 2019, 15, e1006650. [Google Scholar] [CrossRef]
- Wang, X.W.; Liu, S.L.; Zhou, L.W. An updated taxonomic framework of Hymenochaetales (Agaricomycetes, Basidiomycota). Mycosphere 2023, 14, 452–496. [Google Scholar] [CrossRef]
- Wang, X.W.; Zhou, L.W. Umbellaceae fam. nov. (Hymenochaetales, Basidiomycota) for Umbellus sinensis gen. et sp. nov. and three new combinations. J. Fungi 2024, 10, 22. [Google Scholar] [CrossRef]
- Gardes, M.; Bruns, T. ITS primers with enhanced specifity for Basidiomycetes: Application to identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef]
- Vilgalys, R.; Hester, M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 1990, 172, 4238–4246. [Google Scholar] [CrossRef]
- Liu, K.L.; Porras-Alfaro, A.; Kuske, C.R.; Eichorst, S.A.; Xie, G. Accurate, rapid taxonomic classification of fungal large-subunit rRNA genes. Appl. Environ. Microbiol. 2012, 78, 1523–1533. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Katoh, K.; Kuma, K.; Toh, H.; Miyata, T. MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005, 33, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Guindon, S.; Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 2003, 52, 696–704. [Google Scholar] [CrossRef]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef]
- Wang, X.W.; May, T.W.; Liu, S.L.; Zhou, L.W. Towards a natural classification of Hyphodontia sensu lato and the trait evolution of basidiocarps within Hymenochaetales (Basidiomycota). J. Fungi 2021, 7, 478. [Google Scholar] [CrossRef]
- Smith, S.Y.; Currah, R.S.; Stockey, R.A. Cretaceous and Eocene poroid hymenophores from Vancouver Island, British Columbia. Mycologia 2004, 96, 180–186. [Google Scholar] [CrossRef]
- Berbee, M.L.; Taylor, J.W. Dating the molecular clock in fungi—How close are we? Fungal Biol. Rev. 2010, 24, 1–16. [Google Scholar] [CrossRef]
- Drummond, A.J.; Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 2007, 7, 214. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Harris, A.J.; Blair, C.; He, X. RASP (Reconstruct Ancestral State in Phylogenies): A tool for historical biogeography. Mol. Phylogenet. Evol. 2015, 87, 46–49. [Google Scholar] [CrossRef]
- Yu, Y.; Blair, C.; He, X. RASP 4: Ancestral state reconstruction tool for multiple genes and characters. Mol. Biol. Evol. 2020, 37, 604–606. [Google Scholar] [CrossRef]
- Kruskal, W.; Wallis, W. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Rabosky, D.L.; Grundler, M.; Anderson, C.; Title, P.; Shi, J.J.; Brown, J.W.; Huang, H.; Larson, J.G. BAMMtools: An R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 2014, 5, 701–707. [Google Scholar] [CrossRef]
- Plummer, M.; Best, N.; Cowles, K.; Vines, K. CODA: Convergence diagnosis and output analysis for MCMC. R News 2006, 6, 7–11. [Google Scholar]
- Wagenmakers, E.J. Model selection and multimodel inference: A practical information-theoretic approach. J. Math. Psychol. 2003, 47, 580–586. [Google Scholar] [CrossRef]
- Ge, S.L.; Jiang, C.; Wang, J.; Liu, S.N. Analyzing temperature and precipitation extremes in China using multiple gridded datasets: A comparative evaluation. Weather Clim. Extremes 2023, 42, 100614. [Google Scholar] [CrossRef]
- Wei, S.K.; Rao, Z.G.; Cao, J.T.; Jia, G.D.; Li, Y.X.; Guo, H.C.; Feng, Z.X.; Guang, K.Y.; Qin, Q.Q.; Tian, Y.P.; et al. Holocene warming trend based on peat brGDGTs records from southeastern humid to northwestern arid China. Paleogeogr. Paleoclimatol. Paleoecol. 2023, 619, 111528. [Google Scholar] [CrossRef]
- Title, P.O.; Rabosky, D.L. Tip rates, phylogenies and diversification: What are we estimating, and how good are the estimates? Methods Ecol. Evol. 2019, 10, 821–834. [Google Scholar] [CrossRef]
- Varga, T.; Krizsán, K.; Földi, C.; Dima, B.; Sánchez-García, M.; Sánchez-Ramírez, S.; Szöllosi, G.J.; Szarkándi, J.G.; Papp, V.; Albert, L.; et al. Megaphylogeny resolves global patterns of mushroom evolution. Nat. Ecol. Evol. 2019, 3, 668–678. [Google Scholar] [CrossRef] [PubMed]
- Sato, H. The evolution of ectomycorrhizal symbiosis in the Late Cretaceous is a key driver of explosive diversification in Agaricomycetes. New Phytol. 2024, 241, 444–460. [Google Scholar] [CrossRef]
- Glor, R.E. Phylogenetic insights on adaptive radiation. Annu. Rev. Ecol. Evol. Syst. 2010, 41, 251–270. [Google Scholar] [CrossRef]
- Moen, D.; Morlon, H. From dinosaurs to modern bird diversity: Extending the time scale of adaptive radiation. PLoS Biol. 2014, 12, e1001854. [Google Scholar] [CrossRef]
Variable | Description | Unit | Score |
---|---|---|---|
Bio1 | Annual mean temperature | °C | – |
Bio2 | Mean diurnal temperature range | °C | – |
Bio3 | Isothermality (Bio2/Bio7) (×100) | % | – |
Bio4 | Temperature seasonality (standard deviation ×100) | °C | 0.45 |
Bio5 | Max temperature of the warmest month | °C | – |
Bio6 | Min temperature of the coldest month | °C | 0.11 |
Bio7 | Annual temperature range (Bio5-Bio6) | °C | – |
Bio8 | Mean temperature of the wettest quarter | °C | – |
Bio9 | Mean temperature of the driest quarter | °C | – |
Bio10 | Mean temperature of the warmest quarter | °C | – |
Bio11 | Mean temperature of the coldest quarter | °C | – |
Bio12 | Annual precipitation | mm | – |
Bio13 | Precipitation of the wettest month | mm | 0.44 |
Bio14 | Precipitation of the driest month | mm | – |
Bio15 | Precipitation seasonality (coefficient of variation) | % | – |
Bio16 | Precipitation of the wettest quarter | mm | – |
Bio17 | Precipitation of the driest quarter | mm | – |
Bio18 | Precipitation of the warmest quarter | mm | – |
Bio19 | Precipitation of the coldest quarter | mm | – |
Altitude | Altitude | m | 0.34 |
Host plant | Host plant | tree/km2 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.-W.; Zhou, L.-W. Spatiotemporal Pattern of a Macrofungal Genus Phylloporia (Basidiomycota) Revealing Its Adaptive Evolution in China. J. Fungi 2024, 10, 780. https://doi.org/10.3390/jof10110780
Wang X-W, Zhou L-W. Spatiotemporal Pattern of a Macrofungal Genus Phylloporia (Basidiomycota) Revealing Its Adaptive Evolution in China. Journal of Fungi. 2024; 10(11):780. https://doi.org/10.3390/jof10110780
Chicago/Turabian StyleWang, Xue-Wei, and Li-Wei Zhou. 2024. "Spatiotemporal Pattern of a Macrofungal Genus Phylloporia (Basidiomycota) Revealing Its Adaptive Evolution in China" Journal of Fungi 10, no. 11: 780. https://doi.org/10.3390/jof10110780
APA StyleWang, X. -W., & Zhou, L. -W. (2024). Spatiotemporal Pattern of a Macrofungal Genus Phylloporia (Basidiomycota) Revealing Its Adaptive Evolution in China. Journal of Fungi, 10(11), 780. https://doi.org/10.3390/jof10110780