Quantitative Monitoring of Cyclic Glycine–Proline in Marine Mangrove-Derived Fungal Metabolites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fungal Strain Culture and Fermentation and Sample Preparation
2.3. UPLC-MS/MS Methods
2.4. Data and Statistical Analysis
3. Results and Discussions
3.1. Fungal Strain Growth and Morphology
3.2. Quantification and Monitoring of cGP
3.3. Method Validation
3.4. Results of cGP Content
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borthwick, A.D. 2,5-Diketopiperazines: Synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem. Rev. 2012, 112, 3641–3716. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Hou, Y.; Yang, Q.; Li, X.; Wu, S. Structures and biological activities of diketopiperazines from marine organisms: A review. Mar. Drugs 2021, 19, 403. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; Li, F.; Kang, D.; Pitcher, T.; Dalrymple-Alford, J.; Shorten, P.; Singh-Mallah, G. Cyclic glycine-proline (cGP) normalises insulin-like growth factor-1 (IGF-1) function: Clinical significance in the ageing brain and in age-related neurological conditions. Molecules 2023, 28, 1021. [Google Scholar] [CrossRef] [PubMed]
- Gizzo, L.; Bliss, G.; Palaty, C.; Kolevzon, A. Caregiver perspectives on patient-focused drug development for Phelan-McDermid syndrome. Orphanet J. Rare Dis. 2024, 19, 134. [Google Scholar] [CrossRef]
- Fan, D.; Alamri, Y.; Liu, K.; MacAskill, M.; Harris, P.; Brimble, M.; Dalrymple-Alford, J.; Prickett, T.; Menzies, O.; Laurenson, A.; et al. Supplementation of blackcurrant anthocyanins increased cyclic glycine-proline in the cerebrospinal fluid of Parkinson patients: Potential treatment to improve insulin-like growth factor-1 function. Nutrients 2018, 10, 714. [Google Scholar] [CrossRef]
- Hasan, A.; Yeom, H.S.; Ryu, J.; Bode, H.B.; Kim, Y. Phenylethylamides derived from bacterial secondary metabolites specifically inhibit an insect serotonin receptor. Sci. Rep. 2019, 9, 20358. [Google Scholar] [CrossRef]
- Baures, P.W.; Ojala, W.H.; Costain, W.J.; Ott, M.C.; Pradhan, A.; Gleason, W.B.; Mishra, R.K.; Johnson, R.L. Design, synthesis, and dopamine receptor modulating activity of diketopiperazine peptidomimetics of L-prolyl-L-leucylglycinamide. J. Med. Chem. 1997, 40, 3594–3600. [Google Scholar] [CrossRef]
- Lopez-Rodriguez, M.L.; Morcillo, M.J.; Fernandez, E.; Benhamú, B.; Tejada, I.; Ayala, D.; Viso, A.; Campillo, M.; Pardo, L.; Delgado, M.; et al. Synthesis and structure-activity relationships of a new model of arylpiperazines. 8. computational simulation of ligand-receptor interaction of 5-HT1AR agonists with selectivity over α1-adrenoceptors. J. Med. Chem. 2005, 48, 2548–2558. [Google Scholar] [CrossRef]
- Ordóñez, M.; Torres-Hernández, F.; Viveros-Ceballos, J.L. Highly diastereoselective synthesis of cyclic α-aminophosphonic and α-aminophosphinic acids from glycyl-ʟ-Proline 2,5-diketopiperazine. Eur. J. Org. Chem. 2019, 2019, 7378–7383. [Google Scholar] [CrossRef]
- Ishizu, T.; Tokunaga, M.; Fukuda, M.; Matsumoto, M.; Goromaru, T.; Takemoto, S. Molecular capture and conformational change of diketopiperazines containing proline residues by epigallocatechin-3-O-gallate in water. Chem. Pharm. Bull. 2021, 69, 585–589. [Google Scholar] [CrossRef]
- Maiya, S.; Grundmann, A.; Li, S.M.; Turner, G. Improved tryprostatin B production by heterologous gene expression in Aspergillus nidulans. Fungal Genet. Biol. 2009, 46, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Dubois, P.; Correia, I.; Le Chevalier, F.; Dubois, S.; Jacques, I.; Canu, N.; Moutiez, M.; Thai, R.; Gondry, M.; Lequin, O.; et al. Reprogramming Escherichia coli for the production of prenylated indole diketopiperazine alkaloids. Sci. Rep. 2019, 9, 9208. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Ying, J.; Sun, D.; Zhang, Y.; Zheng, M.; Ding, R.; Liu, Y.; Zhao, Y. Cyclic dipeptides formation from linear dipeptides under potentially prebiotic earth conditions. Front. Chem. 2021, 9, 675821. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Cai, R.; Liu, Z.; Cui, H.; She, Z. Secondary metabolites from mangrove-associated fungi: Source, chemistry and bioactivities. Nat. Prod. Rep. 2022, 39, 560–595. [Google Scholar] [CrossRef]
- Zeng, W.N.; Cai, J.; Wang, B.; Chen, L.Y.; Pan, C.X.; Chen, S.J.; Huang, G.L.; Zheng, C.J. Secondary Metabolites from the Mangrove-Derived Fungus Penicillium sp. TGM112 and their Bioactivities. Chem. Nat. Compd. 2022, 58, 574–577. [Google Scholar] [CrossRef]
- Hu, L.; Lin, J.; Qin, F.; Xu, L.; Luo, L. Exploring Sources, Biological Functions, and Potential Applications of the Ubiquitous Marine Cyclic Dipeptide: A Concise Review of Cyclic Glycine-Proline. Mar. Drugs 2024, 22, 271. [Google Scholar] [CrossRef]
- Magocha, T.A.; Zabed, H.; Yang, M.; Yun, J.; Zhang, H.; Qi, X. Improvement of industrially important microbial strains by genome shuffling: Current status and future prospects. Bioresour. Technol. 2018, 257, 281–289. [Google Scholar] [CrossRef]
- Rauniyar, N. Parallel reaction monitoring: A targeted experiment performed using high resolution and high mass accuracy mass spectrometry. Int. J. Mol. Sci. 2015, 16, 28566–28581. [Google Scholar] [CrossRef]
- Lu, Y.; Hu, X.; Pang, J.; Wang, X.K.; Li, G.Q.; Li, C.R.; Yang, X.Y.; You, X.F. Parallel Reaction Monitoring Mass Spectrometry for Rapid and Accurate Identification of β-Lactamases Produced by Enterobacteriaceae. Front. Microbiol. 2022, 13, 784628. [Google Scholar] [CrossRef]
- Zhou, J.T.; Liu, H.; Liu, H.Y.; Liu, Y.; Liu, J.; Zhao, X.Y.; Yin, Y.X. Development and evaluation of a parallel reaction monitoring strategy for large-scale targeted metabolomics quantification. Anal. Chem. 2016, 88, 4478–4486. [Google Scholar] [CrossRef]
- Chen, Y.H.; Chang, Y.W.; Ma, C.W.; Luo, L.Z.; Lu, T.J.; Yao, J.Y. Identification of bioactive compounds and inhibitory effects of TNF-α and COX-2 in the extract from cultured three-spot seahorse (H. trimaculatus). Food Sci. Nutr. 2023, 12, 1095–1104. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.Z.; Han, H.Y.; Sui, D.; Tan, S.N.; Liu, C.L.; Wang, P.C.; Xie, C.L.; Xia, X.K.; Gao, J.M.; Liu, C.W. Efficient production of a cyclic dipeptide (cyclo-TA) using heterologous expression system of filamentous fungus Aspergillus oryzae. Microb. Cell Fact. 2022, 21, 146. [Google Scholar] [CrossRef] [PubMed]
- De Hoffmann, E. Tandem mass spectrometry: A primer. J. Mass Spectrom. 1996, 31, 129–137. [Google Scholar] [CrossRef]
- Furtado, N.A.J.C.; Vessecchi, R.; Tomaz, J.C.; Galembeck, S.E.; Bastos, J.K.; Lopes, N.P.; Crotti, A.E.M. Fragmentation of diketopiperazines from Aspergillus fumigatus by electrospray ionization tandem mass spectrometry (ESI-MS/MS). J. Mass Spectrom. 2007, 42, 1279–1286. [Google Scholar] [CrossRef]
- Wang, B.; Chen, Q.H.; Jiang, T.; Cai, Y.W.; Huang, G.L.; Sun, X.P.; Zeng, C.J. Secondary metabolites from the mangrove-derived fungus Penicillium verruculosum and their bioactivities. Chem. Nat. Compd. 2021, 57, 588–591. [Google Scholar] [CrossRef]
- Widodo, W.; Billerbeck, S. Natural and engineered cyclodipeptides: Biosynthesis, chemical diversity, and engineering strategies for diversification and high-yield bioproduction. Eng. Microbiol. 2022, 3, 100067. [Google Scholar] [CrossRef]
Repeatability (% RSD, n = 6) | Precision (% RSD, n = 6) | Recovery (%, n = 6) | |||||
---|---|---|---|---|---|---|---|
33.5 ng/mL | 67.0 ng/mL | ||||||
Mean (ng/mL) | RSD | Mean (ng/mL) | RSD | Mean | RSD | Mean | RSD |
67.45 | 1.65 | 67.61 | 1.54 | 88.62 | 2.90 | 90.04 | 1.60 |
Sample | Measured Content (ng/mL, Mean ± SD) | Production (mg/L, Mean ± SD) |
---|---|---|
Penicillium pedernalense | 67.45 ± 1.11 | 29.31 ± 0.61 a |
Penicillium steckii | 31.71 ± 0.31 | 8.51 ± 0.15 a |
Blank control | 14.15± 0.16 | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, J.; Qin, F.; Lin, Z.; Lin, W.; You, M.; Xu, L.; Hu, L.; Chen, Y.-H. Quantitative Monitoring of Cyclic Glycine–Proline in Marine Mangrove-Derived Fungal Metabolites. J. Fungi 2024, 10, 779. https://doi.org/10.3390/jof10110779
Lin J, Qin F, Lin Z, Lin W, You M, Xu L, Hu L, Chen Y-H. Quantitative Monitoring of Cyclic Glycine–Proline in Marine Mangrove-Derived Fungal Metabolites. Journal of Fungi. 2024; 10(11):779. https://doi.org/10.3390/jof10110779
Chicago/Turabian StyleLin, Jing, Fei Qin, Zeye Lin, Weijian Lin, Minxin You, Li Xu, Lei Hu, and Yung-Husan Chen. 2024. "Quantitative Monitoring of Cyclic Glycine–Proline in Marine Mangrove-Derived Fungal Metabolites" Journal of Fungi 10, no. 11: 779. https://doi.org/10.3390/jof10110779
APA StyleLin, J., Qin, F., Lin, Z., Lin, W., You, M., Xu, L., Hu, L., & Chen, Y. -H. (2024). Quantitative Monitoring of Cyclic Glycine–Proline in Marine Mangrove-Derived Fungal Metabolites. Journal of Fungi, 10(11), 779. https://doi.org/10.3390/jof10110779