Genome Analysis of a Newly Discovered Yeast Species, Hanseniaspora menglaensis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Genome Sequence of H. menglaensis
3.2. Characterization of the Mating-Type Locus
3.3. Physiological Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
ITS | D1/D2 | |||
---|---|---|---|---|
Isolate | % Identity | Accession | % Identity | Accession |
CBS 16921 * | 100 | OR939358 | 100 | SRR24099575 |
CBS 18247 * | 99.3 | OR939360 | 99.8 | SRR24099573 |
CBS 18246 * | 99.3 | OR939359 | 99.8 | SRR24099574 |
CICC33364 | 99 | MK682803 | 99.3 | MK682799 |
NYNU 181083 | 98.9 | OQ168353 | 99.3 | OQ168352 |
H. lindneri * | 96.7 | GCA_019649525 | 98.4 | GCA_019649525 |
H. valbyensis | 95.8 | KY103578 | 97.9 | KY107858 |
Isolate | OrthoANI Value | Average Aligned Length | Query Coverage | Subject Coverage | Subject Length |
---|---|---|---|---|---|
H. menglaensis CBS 16921 | 100 | 9,523,740 | 1 | 1 | 9,553,320 |
H. menglaensis CBS 18246 | 99.96 | 7,358,704 | 0.77 | 0.78 | 9,432,960 |
H. menglaensis CBS 18247 | 99.96 | 6,908,493 | 0.72 | 0.74 | 9,348,300 |
H. valbyensis NRRL Y-1626 | 76 | 2,853,907 | 0.3 | 0.3 | 9,664,500 |
H. smithiae CRUB 1602 | 75.87 | 3,063,016 | 0.32 | 0.33 | 9,319,740 |
H. lindneri CBS 285 | 75.5 | 2,340,075 | 0.24 | 0.22 | 10,647,780 |
H. singularis ZIM 2326 | 74.87 | 2,343,548 | 0.25 | 0.27 | 8,784,240 |
H. mollemarum CBS 15034 | 74.59 | 2,715,924 | 0.28 | 0.3 | 8,941,320 |
H. hatyaiensis ZIM 2327 | 74.29 | 1,621,195 | 0.17 | 0.17 | 9,581,880 |
H. uvarum CBA6001 | 74.14 | 1,723,829 | 0.18 | 0.19 | 8,958,660 |
H. thailandica ZIM 2325 | 74.14 | 1,655,772 | 0.17 | 0.18 | 9,229,980 |
H. opuntiae AWRI3578 | 74.04 | 1,434,013 | 0.15 | 0.16 | 8,820,960 |
H. jakobsenii ZIM 2603 | 73.96 | 1,648,240 | 0.17 | 0.12 | 13,340,580 |
H. guilliermondii NRRL Y-1625 | 73.94 | 1,582,303 | 0.17 | 0.18 | 8,974,980 |
H. meyeri NRRL Y-27513 | 73.94 | 1,462,711 | 0.15 | 0.15 | 9,746,100 |
H. nectarophila CBS 13383 | 73.79 | 1,636,636 | 0.17 | 0.18 | 9,218,760 |
H. clermontiae NRRL Y-27515 | 73.77 | 1,487,723 | 0.16 | 0.17 | 8,667,960 |
H. pseudoguilliermondii ZIM 213 | 73.42 | 1,509,933 | 0.16 | 0.17 | 8,747,520 |
H. lachancei NRRL Y-27514 | 73.39 | 1,449,502 | 0.15 | 0.16 | 8,821,980 |
H. occidentalis CBS 6783 | 72.26 | 712,638 | 0.07 | 0.06 | 11,567,820 |
H. osmophila AWRI3579 | 71.96 | 647,824 | 0.07 | 0.06 | 11,449,500 |
H. gamundiae CRUB 1928 | 71.73 | 597,327 | 0.06 | 0.06 | 10,006,200 |
H. vineae T02/19AF | 71.58 | 689,535 | 0.07 | 0.06 | 11,293,440 |
References
- Čadež, N.; Smith, M.T. Hanseniaspora Zikes (1912). In The Yeasts; Elsevier: Amsterdam, The Netherlands, 2011; pp. 421–434. ISBN 978-0-444-52149-1. [Google Scholar]
- Čadež, N.; Bellora, N.; Ulloa, R.; Hittinger, C.T.; Libkind, D. Genomic Content of a Novel Yeast Species Hanseniaspora Gamundiae Sp. Nov. from Fungal Stromata (Cyttaria) Associated with a Unique Fermented Beverage in Andean Patagonia, Argentina. PLoS ONE 2019, 14, e0210792. [Google Scholar] [CrossRef]
- van Wyk, N.; Badura, J.; von Wallbrunn, C.; Pretorius, I.S. Exploring Future Applications of the Apiculate Yeast Hanseniaspora. Crit. Rev. Biotechnol. 2023, 44, 100–119. [Google Scholar] [CrossRef]
- Bourbon-Melo, N.; Palma, M.; Rocha, M.P.; Ferreira, A.; Bronze, M.R.; Elias, H.; Sá-Correia, I. Use of Hanseniaspora guilliermondii and Hanseniaspora opuntiae to Enhance the Aromatic Profile of Beer in Mixed-Culture Fermentation with Saccharomyces Cerevisiae. Food Microbiol. 2021, 95, 103678. [Google Scholar] [CrossRef]
- Borren, E.; Tian, B. The Important Contribution of Non-Saccharomyces Yeasts to the Aroma Complexity of Wine: A Review. Foods 2020, 10, 13. [Google Scholar] [CrossRef]
- de Celis, M.; Ruiz, J.; Vicente, J.; Acedo, A.; Marquina, D.; Santos, A.; Belda, I. Expectable Diversity Patterns in Wine Yeast Communities. FEMS Yeast Res. 2022, 22, foac034. [Google Scholar] [CrossRef]
- Dzialo, M.C.; Park, R.; Steensels, J.; Lievens, B.; Verstrepen, K.J. Physiology, Ecology and Industrial Applications of Aroma Formation in Yeast. FEMS Microbiol. Rev. 2017, 41, S95–S128. [Google Scholar] [CrossRef]
- Escott, C.; Loira, I.; Morata, A.; Bañuelos, M.A.; Suárez-Lepe, J.A. Wine Spoilage Yeasts: Control Strategy. In Yeast—Industrial Applications; Morata, A., Loira, I., Eds.; InTech: London, UK, 2017; ISBN 978-953-51-3599-9. [Google Scholar]
- Medina, K.; Boido, E.; Fariña, L.; Gioia, O.; Gomez, M.E.; Barquet, M.; Gaggero, C.; Dellacassa, E.; Carrau, F. Increased Flavour Diversity of Chardonnay Wines by Spontaneous Fermentation and Co-Fermentation with Hanseniaspora vineae. Food Chem. 2013, 141, 2513–2521. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, R.; Sirisena, S.; Gan, R.; Fang, Z. Beta-Glucosidase Activity of Wine Yeasts and Its Impacts on Wine Volatiles and Phenolics: A Mini-Review. Food Microbiol. 2021, 100, 103859. [Google Scholar] [CrossRef] [PubMed]
- Steenwyk, J.L.; Opulente, D.A.; Kominek, J.; Shen, X.-X.; Zhou, X.; Labella, A.L.; Bradley, N.P.; Eichman, B.F.; Čadež, N.; Libkind, D.; et al. Extensive Loss of Cell-Cycle and DNA Repair Genes in an Ancient Lineage of Bipolar Budding Yeasts. PLoS Biol. 2019, 17, e3000255. [Google Scholar] [CrossRef] [PubMed]
- Granchi, L.; Ganucci, D.; Messini, A.; Vincenzini, M. Oenological Properties of and from Wines Produced by Spontaneous Fermentations of Normal and Dried Grapes. FEMS Yeast Res. 2002, 2, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Qiao, Y.-Z.; Hui, F.-L. Hanseniaspora Menglaensis f.a., Sp. Nov., a Novel Apiculate Yeast Species Isolated from Rotting Wood. Int. J. Syst. Evol. Microbiol. 2023, 73, 005970. [Google Scholar] [CrossRef]
- Ryan, A.; Ó Cinnéide, E.; Bergin, S.A.; Alhajeri, G.; Almotawaa, H.; Daly, I.; Heneghan, S.; Horan, K.; Kavanagh, R.; Keane, C.; et al. Draft Genome Sequence of a Diploid and Hybrid Candida Strain, Candida sanyaensis UCD423, Isolated from Compost in Ireland. Microbiol Resour. Announc. 2021, 10, e00761-21. [Google Scholar] [CrossRef] [PubMed]
- Ó Cinnéide, E.; Jones, M.; Bahate, E.; Boyd, E.; Clavero, R.; Doherty, H.; Drozdz, I.; Dumana, M.; Gonzales, C.; Kennedy, J.; et al. Draft Genome Sequence of the Yeast Ogataea degrootiae Strain UCD465, Isolated from Soil in Ireland. Microbiol. Resour. Announc. 2021, 10, e00736-21. [Google Scholar] [CrossRef] [PubMed]
- Bergin, S.A.; Allen, S.; Hession, C.; Ó Cinnéide, E.; Ryan, A.; Byrne, K.P.; Ó Cróinín, T.; Wolfe, K.H.; Butler, G. Identification of European Isolates of the Lager Yeast Parent Saccharomyces eubayanus. FEMS Yeast Res. 2022, 22, foac053. [Google Scholar] [CrossRef]
- Sylvester, K.; Wang, Q.-M.; James, B.; Mendez, R.; Hulfachor, A.B.; Hittinger, C.T. Temperature and Host Preferences Drive the Diversification of Saccharomyces and Other Yeasts: A Survey and the Discovery of Eight New Yeast Species. FEMS Yeast Res. 2015, 15, fov002. [Google Scholar] [CrossRef]
- Xie, J.; Fu, Y.; Jiang, D.; Li, G.; Huang, J.; Li, B.; Hsiang, T.; Peng, Y. Intergeneric Transfer of Ribosomal Genes between Two Fungi. BMC Evol. Biol. 2008, 8, 87. [Google Scholar] [CrossRef]
- Jiang, H.; Lei, R.; Ding, S.-W.; Zhu, S. Skewer: A Fast and Accurate Adapter Trimmer for next-Generation Sequencing Paired-End Reads. BMC Bioinform. 2014, 15, 182. [Google Scholar] [CrossRef] [PubMed]
- Koren, S.; Walenz, B.P.; Berlin, K.; Miller, J.R.; Bergman, N.H.; Phillippy, A.M. Canu: Scalable and Accurate Long-Read Assembly via Adaptive k-Mer Weighting and Repeat Separation. Genome Res. 2017, 27, 722–736. [Google Scholar] [CrossRef]
- Chen, Z.; Erickson, D.L.; Meng, J. Polishing the Oxford Nanopore Long-Read Assemblies of Bacterial Pathogens with Illumina Short Reads to Improve Genomic Analyses. Genomics 2021, 113, 1366–1377. [Google Scholar] [CrossRef]
- Donath, A.; Jühling, F.; Al-Arab, M.; Bernhart, S.H.; Reinhardt, F.; Stadler, P.F.; Middendorf, M.; Bernt, M. Improved Annotation of Protein-Coding Genes Boundaries in Metazoan Mitochondrial Genomes. Nucleic Acids Res. 2019, 47, 10543–10552. [Google Scholar] [CrossRef]
- Quinlan, A.R.; Hall, I.M. BEDTools: A Flexible Suite of Utilities for Comparing Genomic Features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef] [PubMed]
- Prjibelski, A.; Antipov, D.; Meleshko, D.; Lapidus, A.; Korobeynikov, A. Using SPAdes De Novo Assembler. Curr. Protoc. Bioinform. 2020, 70, e102. [Google Scholar] [CrossRef]
- Brůna, T.; Hoff, K.J.; Lomsadze, A.; Stanke, M.; Borodovsky, M. BRAKER2: Automatic Eukaryotic Genome Annotation with GeneMark-EP+ and AUGUSTUS Supported by a Protein Database. NAR Genom. Bioinform. 2021, 3, lqaa108. [Google Scholar] [CrossRef]
- Flynn, J.M.; Hubley, R.; Goubert, C.; Rosen, J.; Clark, A.G.; Feschotte, C.; Smit, A.F. RepeatModeler2 for Automated Genomic Discovery of Transposable Element Families. Proc. Natl. Acad. Sci. USA 2020, 117, 9451–9457. [Google Scholar] [CrossRef]
- Tarailo-Graovac, M.; Chen, N. Using RepeatMasker to Identify Repetitive Elements in Genomic Sequences. CP Bioinform. 2009, 25, 4.10.1–4.10.14. [Google Scholar] [CrossRef] [PubMed]
- Zdobnov, E.M.; Kuznetsov, D.; Tegenfeldt, F.; Manni, M.; Berkeley, M.; Kriventseva, E.V. OrthoDB in 2020: Evolutionary and Functional Annotations of Orthologs. Nucleic Acids Res. 2021, 49, D389–D393. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.; Binns, D.; Chang, H.-Y.; Fraser, M.; Li, W.; McAnulla, C.; McWilliam, H.; Maslen, J.; Mitchell, A.; Nuka, G.; et al. InterProScan 5: Genome-Scale Protein Function Classification. Bioinformatics 2014, 30, 1236–1240. [Google Scholar] [CrossRef]
- Chan, P.P.; Lowe, T.M. tRNAscan-SE: Searching for tRNA Genes in Genomic Sequences. In Gene Prediction; Methods in Molecular Biology; Kollmar, M., Ed.; Springer New York: New York, NY, USA, 2019; Volume 1962, pp. 1–14. ISBN 978-1-4939-9172-3. [Google Scholar]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Li, H. Aligning Sequence Reads, Clone Sequences and Assembly Contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map Format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- De Auwera, G.A.V.; O’Connor, B.D. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra, 1st ed.; O’Reilly: Beijing, China; Boston, MA, USA; Farnham, UK; Sebastopol, CA, USA; Tokyo, Japan, 2020; ISBN 978-1-4919-7519-0. [Google Scholar]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve Years of SAMtools and BCFtools. GigaScience 2021, 10, giab008. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The Variant Call Format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.T.; Thorvaldsdóttir, H.; Winckler, W.; Guttman, M.; Lander, E.S.; Getz, G.; Mesirov, J.P. Integrative Genomics Viewer. Nat. Biotechnol. 2011, 29, 24–26. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Gu, L.; Eils, R.; Schlesner, M.; Brors, B. Circlize Implements and Enhances Circular Visualization in R. Bioinformatics 2014, 30, 2811–2812. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Ouk Kim, Y.; Park, S.-C.; Chun, J. OrthoANI: An Improved Algorithm and Software for Calculating Average Nucleotide Identity. Int. J. Syst. Evol. Microbiol. 2016, 66, 1100–1103. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Stoeckert, C.J.; Roos, D.S. OrthoMCL: Identification of Ortholog Groups for Eukaryotic Genomes. Genome Res. 2003, 13, 2178–2189. [Google Scholar] [CrossRef]
- Altschul, S. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- Katoh, K. MAFFT: A Novel Method for Rapid Multiple Sequence Alignment Based on Fast Fourier Transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef]
- Capella-Gutiérrez, S.; Silla-Martínez, J.M.; Gabaldón, T. trimAl: A Tool for Automated Alignment Trimming in Large-Scale Phylogenetic Analyses. Bioinformatics 2009, 25, 1972–1973. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML Version 8: A Tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An Online Tool for Phylogenetic Tree Display and Annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef] [PubMed]
- Kurtzman, C.P.; Fell, J.W.; Boekhout, T.; Robert, V. Methods for Isolation, Phenotypic Characterization and Maintenance of Yeasts. In The Yeasts; Elsevier: Amsterdam, The Netherlands, 2011; pp. 87–110. ISBN 978-0-444-52149-1. [Google Scholar]
- Kurtzman, C.P.; Robnett, C.J. Identification and Phylogeny of Ascomycetous Yeasts from Analysis of Nuclear Large Subunit (26S) Ribosomal DNA Partial Sequences. Antonie Van Leeuwenhoek 1998, 73, 331–371. [Google Scholar] [CrossRef]
- Vu, D.; Groenewald, M.; Szöke, S.; Cardinali, G.; Eberhardt, U.; Stielow, B.; De Vries, M.; Verkleij, G.J.M.; Crous, P.W.; Boekhout, T.; et al. DNA Barcoding Analysis of More than 9 000 Yeast Isolates Contributes to Quantitative Thresholds for Yeast Species and Genera Delimitation. Stud. Mycol. 2016, 85, 91–105. [Google Scholar] [CrossRef]
- Boekhout, T.; Aime, M.C.; Begerow, D.; Gabaldón, T.; Heitman, J.; Kemler, M.; Khayhan, K.; Lachance, M.-A.; Louis, E.J.; Sun, S.; et al. The Evolving Species Concepts Used for Yeasts: From Phenotypes and Genomes to Speciation Networks. Fungal Divers. 2021, 109, 27–55. [Google Scholar] [CrossRef]
- Freel, K.C.; Friedrich, A.; Schacherer, J. Mitochondrial Genome Evolution in Yeasts: An All-Encompassing View. FEMS Yeast Res. 2015, 15, fov023. [Google Scholar] [CrossRef] [PubMed]
- Pramateftaki, P.V.; Kouvelis, V.N.; Lanaridis, P.; Typas, M.A. The Mitochondrial Genome of the Wine Yeast Hanseniaspora uvarum: A Unique Genome Organization among Yeast/Fungal Counterparts. FEMS Yeast Res. 2006, 6, 77–90. [Google Scholar] [CrossRef]
- Butler, G.; Kenny, C.; Fagan, A.; Kurischko, C.; Gaillardin, C.; Wolfe, K.H. Evolution of the MAT Locus and Its Ho Endonuclease in Yeast Species. Proc. Natl. Acad. Sci. USA 2004, 101, 1632–1637. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.C.; Ni, M.; Li, W.; Shertz, C.; Heitman, J. The Evolution of Sex: A Perspective from the Fungal Kingdom. Microbiol. Mol. Biol. Rev. 2010, 74, 298–340. [Google Scholar] [CrossRef]
- Ni, M.; Feretzaki, M.; Sun, S.; Wang, X.; Heitman, J. Sex in Fungi. Annu. Rev. Genet. 2011, 45, 405–430. [Google Scholar] [CrossRef]
- Krassowski, T.; Kominek, J.; Shen, X.-X.; Opulente, D.A.; Zhou, X.; Rokas, A.; Hittinger, C.T.; Wolfe, K.H. Multiple Reinventions of Mating-Type Switching during Budding Yeast Evolution. Curr. Biol. 2019, 29, 2555–2562.e8. [Google Scholar] [CrossRef]
- Saubin, M.; Devillers, H.; Proust, L.; Brier, C.; Grondin, C.; Pradal, M.; Legras, J.-L.; Neuvéglise, C. Investigation of Genetic Relationships Between Hanseniaspora Species Found in Grape Musts Revealed Interspecific Hybrids With Dynamic Genome Structures. Front. Microbiol. 2020, 10, 2960. [Google Scholar] [CrossRef]
- Ouoba, L.I.I.; Nielsen, D.S.; Anyogu, A.; Kando, C.; Diawara, B.; Jespersen, L.; Sutherland, J.P. Hanseniaspora jakobsenii Sp. Nov., a Yeast Isolated from Bandji, a Traditional Palm Wine of Borassus Akeassii. Int. J. Syst. Evol. Microbiol. 2015, 65, 3576–3579. [Google Scholar] [CrossRef]
- Opulente, D.A.; LaBella, A.L.; Harrison, M.-C.; Wolters, J.F.; Liu, C.; Li, Y.; Kominek, J.; Steenwyk, J.L.; Stoneman, H.R.; VanDenAvond, J.; et al. Genomic and Ecological Factors Shaping Specialism and Generalism across an Entire Subphylum. bioRxiv. 2023. [Google Scholar] [CrossRef]
- Rueda-Mejia, M.P.; Bühlmann, A.; Ortiz-Merino, R.A.; Lutz, S.; Ahrens, C.H.; Künzler, M.; Freimoser, F.M. Pantothenate Auxotrophy in a Naturally Occurring Biocontrol Yeast. Appl. Environ. Microbiol. 2023, 89, e00884-23. [Google Scholar] [CrossRef] [PubMed]
- Dujon, B.A.; Louis, E.J. Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina). Genetics 2017, 206, 717–750. [Google Scholar] [CrossRef]
- Peter, J.; De Chiara, M.; Friedrich, A.; Yue, J.-X.; Pflieger, D.; Bergström, A.; Sigwalt, A.; Barre, B.; Freel, K.; Llored, A.; et al. Genome Evolution across 1,011 Saccharomyces cerevisiae Isolates. Nature 2018, 556, 339–344. [Google Scholar] [CrossRef]
- Wang, J.M.; Bennett, R.J.; Anderson, M.Z. The Genome of the Human Pathogen Candida Albicans Is Shaped by Mutation and Cryptic Sexual Recombination. mBio 2018, 9, e01205-18. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.D. Molecular Mechanisms of Cell-Type Determination in Budding Yeast. Curr. Opin. Genet. Dev. 1995, 5, 552–558. [Google Scholar] [CrossRef]
- Hull, C.M.; Johnson, A.D. Identification of a Mating Type-Like Locus in the Asexual Pathogenic Yeast Candida albicans. Science 1999, 285, 1271–1275. [Google Scholar] [CrossRef]
- Sengupta, P.; Cochran, B.H. MAT Alpha 1 Can Mediate Gene Activation by A-Mating Factor. Genes Dev. 1991, 5, 1924–1934. [Google Scholar] [CrossRef]
- Coughlan, A.Y.; Lombardi, L.; Braun-Galleani, S.; Martos, A.A.; Galeote, V.; Bigey, F.; Dequin, S.; Byrne, K.P.; Wolfe, K.H. The Yeast Mating-Type Switching Endonuclease HO Is a Domesticated Member of an Unorthodox Homing Genetic Element Family. eLife 2020, 9, e55336. [Google Scholar] [CrossRef] [PubMed]
Species | H. menglaensis CBS 16921 | H. menglaensis CBS 18246 | H. menglaensis CBS 18247 | H. menglaensis CICC 33364/NYNU 181083 | H. lindneri |
---|---|---|---|---|---|
Glucose | + | + | + | + | + |
Cellobiose | + | + | + | + | d |
Arbutin | + | + | + | + | d |
Salicin | + | + | + | + | d |
Glucono D-lactone | + | + | + | + | d |
D-Galactose | w | w | w | - | - |
Inulin | dw | dw | dw | - | - |
Soluble Starch | dw | dw | dw | n | n |
D-Gluconate | - | - | - | + | - |
Lysine | + | + | + | + | + |
Ethylamine | - | - | - | - | + |
Cadaverine | + | + | + | - | + |
Creatine | + | + | + | - | n |
Tryptophan | - | - | - | + | n |
30 °C | - | - | - | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryan, A.P.; Groenewald, M.; Smith, M.T.; Holohan, C.; Boekhout, T.; Wolfe, K.H.; Butler, G. Genome Analysis of a Newly Discovered Yeast Species, Hanseniaspora menglaensis. J. Fungi 2024, 10, 180. https://doi.org/10.3390/jof10030180
Ryan AP, Groenewald M, Smith MT, Holohan C, Boekhout T, Wolfe KH, Butler G. Genome Analysis of a Newly Discovered Yeast Species, Hanseniaspora menglaensis. Journal of Fungi. 2024; 10(3):180. https://doi.org/10.3390/jof10030180
Chicago/Turabian StyleRyan, Adam P., Marizeth Groenewald, Maudy Th. Smith, Cian Holohan, Teun Boekhout, Kenneth H. Wolfe, and Geraldine Butler. 2024. "Genome Analysis of a Newly Discovered Yeast Species, Hanseniaspora menglaensis" Journal of Fungi 10, no. 3: 180. https://doi.org/10.3390/jof10030180
APA StyleRyan, A. P., Groenewald, M., Smith, M. T., Holohan, C., Boekhout, T., Wolfe, K. H., & Butler, G. (2024). Genome Analysis of a Newly Discovered Yeast Species, Hanseniaspora menglaensis. Journal of Fungi, 10(3), 180. https://doi.org/10.3390/jof10030180