Comparative Transcriptome Analysis Explores the Mechanism of Angiosperm and Gymnosperm Deadwood Degradation by Fomes fomentarius
Abstract
:1. Introduction
2. Materials and Methods
2.1. F. fomentarius Cultivation and Woody Stripe Degradation
2.2. Weight, Cellulose, and Lignin Loss of Wood Stripe Degradation
2.3. RNA Extraction, Library Construction, and RNA-Seq
2.4. Basic Analysis and mRNA Analysis of F. fomentarius Transcriptome
2.5. Degradative Enzyme Activities
2.6. Statistical Analysis
3. Results
3.1. Wood Stick Degradation
3.2. Data Quality Control Analysis of Transcriptome Sequencing
3.3. Analysis of Differential Expression of mRNA
3.4. Functional Annotation of Differentially Expressed Genes
3.5. Analysis of Different Genes Using KEGG
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sjöström, E. Wood Chemistry, Fundamentals and Applications; Academic: San Diego, CA, USA, 1993. [Google Scholar]
- Gilbertson, R.L. Wood rotting fungi of North America. Mycologia 1980, 72, 1–49. [Google Scholar] [CrossRef]
- Ruel, K.; Ambert, K.; Joseleau, J.P. Influence of the enzyme equipment of white-rot fungi on the patterns of wood degradation. FEMS Microbiol. Rev. 1994, 13, 241–254. [Google Scholar] [CrossRef]
- Baldrian, P. Enzymes of saprotrophic basidiomycetes. In Ecology of Saprotrophic Basidiomycetes; Boddy, L., Frankland, J.C., van West, P., Eds.; Academic Press: Amsterdam, The Netherlands, 2008; pp. 19–41. [Google Scholar]
- Baldrian, P.; Valášková, V. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol. Rev. 2008, 32, 501–521. [Google Scholar] [CrossRef]
- Arora, D.S.; Sharma, R.K. Ligninolytic fungal laccases and their biotechnological applications. Appl. Biochem. Biotechnol. 2010, 160, 1760–1788. [Google Scholar] [CrossRef]
- Lundell, T.K.; Mäkelä, M.R.; Hildén, K. Lignin-modifying enzymes in filamentous basidiomycetes: Ecological, functional and phylogenetic review. J. Basic Microb. 2010, 50, 5–20. [Google Scholar] [CrossRef]
- Gabriel, J.; Baldrian, P.; Rychlovsky, P.; Krenzelok, M. Heavy metal content in wood-decaying fungi collected in Prague and in the National Park Sumava in the Czech Republic. Bull. Environ. Contam. Toxicol. 1997, 59, 595–602. [Google Scholar] [CrossRef]
- Cui, B.K.; Li, H.J.; Ji, X.; Zhou, J.L.; Song, J.; Si, J.; Yang, Z.L.; Dai, Y.C. Species diversity, taxonomy and phylogeny of Polyporaceae (Basidiomycota) in China. Fungal Divers. 2019, 97, 137–392. [Google Scholar] [CrossRef]
- Niemelä, T.; Renvall, P.; Pentillä, R. Interactions of fungi at late stages of wood decomposition. Ann. Bot. Fennici. 1995, 32, 141–152. [Google Scholar]
- Hiscox, J.; Baldrian, P.; Rogers, H.J.; Boddy, L. Changes in oxidative enzyme activity during interspecific mycelial interactions involving the white-rot fungus Trametes versicolor. Fungal Genet. Biol. 2010, 47, 562–571. [Google Scholar] [CrossRef]
- Heilmann-Clausen, J.; Boddy, L. Inhibition and stimulation effects in communities of wood decay fungi: Exudates from colonized wood influence growth by other species. Microb. Ecol. 2005, 49, 399–406. [Google Scholar] [CrossRef]
- Li, Z.J.; Bao, H.Y. Comparative transcriptome and proteome analysis explores the antitumor key regulators of ergosterone in H22 tumor-bearing mice. Eur. J. Pharmacol. 2023, 953, 175831. [Google Scholar] [CrossRef]
- Huang, X.Y.; Zhang, R.J.; Yang, Q.Y.; Li, X.Z.; Xiang, Q.J.; Zhao, K.; Ma, M.G.; Yu, X.M.; Chen, Q.; Zeng, Z.F.; et al. Cultivating Lentinula edodes on substrate containing composted sawdust affects the expression of carbohydrate and aromatic amino acid metabolism-related genes. mSystems 2022, 7, e0082721. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for diertary fiber, neutral detergent fiber and nonstrarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- A’Bear, A.D.; Jones, T.H.; Kandeler, E.; Boddy, L. Interactive effects of temperature and soil moisture on fungal-mediated wood decomposition and extracellular enzyme activity. Soil Biol. Biochem. 2014, 70, 151–158. [Google Scholar] [CrossRef]
- Kahl, T.; Arnstadt, T.; Baber, K.; Bässler, C.; Bauhus, J.; Borken, W.; Buscot, F.; Floren, A.; Heibl, C.; Hessenmöller, D.; et al. Wood decay rates of 13 temperate tree species in relation to wood properties, enzyme activities and organismic diversities. Forest Ecol. Manag. 2017, 391, 86–95. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 17 January 2022).
- Suvorov, P.A. Biological characteristics of Fomes fomentarius found on spruce and birch. Can. J. Bot. 1967, 45, 1853–1857. [Google Scholar] [CrossRef]
- Větrovský, T.; Voříšková, J.; Šnajdr, J.; Gabriel, J.; Baldrian, P. Ecology of coarse wood decomposition by the saprotrophic fungus Fomes fomentarius. Biodegradation 2011, 22, 709–718. [Google Scholar] [CrossRef]
- Bari, E.; Pizzi, A.; Schmidt, O.; Amirou, S.; Tajick-Ghanbary, M.A.; Humar, M. Differentiation of fungal destructive behaviour of wood by the white-rot fungus Fomes fomentarius by Maldi-Tof mass spectrometry. J. Renew. Mater. 2021, 9, 381–397. [Google Scholar] [CrossRef]
- Gunduz, G.; Aydemir, D. The Influence of mass loss on the mechanical properties of heat-treated black pine wood. Wood Res. 2009, 54, 33–42. [Google Scholar]
- Baker, P.W.; Charlton, A.; Hale, M.D.C. Fungal pre-treatment of forestry biomass with a focus on biorefining: A comparison of biomass degradation and enzyme activities by wood rot fungi across three tree species. Biomass Bioenerg. 2017, 107, 20–28. [Google Scholar] [CrossRef]
- Xu, H.; Di, Y.; Cappellazzi, J.; Morrell, J.J. Effect of brown rot degradation on mass loss and compressive strength of Chinese poplar (Populus simonii). Maderas Cienc. Tecnol. 2019, 21, 341–346. [Google Scholar] [CrossRef]
- Bari, E.; Daniel, G.; Yilgor, N.; Kim, J.S.; Tajick-Ghanbary, M.A.; Singh, A.P.; Ribera, J. Comparison of the decay behavior of two white-rot fungi in relation to wood type and exposure conditions. Microorganisms 2020, 8, 1931. [Google Scholar] [CrossRef]
- Cristini, V.; Nop, P.; Zlámal, J.; Vand, M.H.; Šeda, V.; Tippner, J. Fomes fomentarius and F. inzengae—A comparison of their decay patterns on beech wood. Microorganisms 2023, 11, 679. [Google Scholar] [CrossRef]
- Deflorio, G.; Fink, S.; Schwarze, F.W.M.R. Detection of incipient decay in tree stems with Sonic tomography after wounding and fungal inoculation. Wood Sci. Technol. 2008, 42, 117–132. [Google Scholar] [CrossRef]
- Hatakka, A.; Hammel, K.E. Fungal biodegradation of lignocelluloses. In Industrial Applications; Hofrichter, M., Ed.; The Mycota; Springer: Berlin/Heidelberg, Germany, 2011; Volume 10, pp. 319–340. [Google Scholar]
- Schwarze, F.W. Wood decay under the microscope. Fungal Biol. Rev. 2007, 21, 133–170. [Google Scholar] [CrossRef]
- Větrovský, T.; Baldrian, P.; Gabriel, J. Extracellular enzymes of the white-rot fungus Fomes fomentarius and purification of 1,4-β-Glucosidase. Appl. Biochem. Biotechnol. 2013, 169, 100–109. [Google Scholar] [CrossRef]
- Lundell, T.K.; Mäkelä, M.R.; de Vries, R.P.; Hildén, K.S. Genomics, lifestyles and future prospects of wood-decay and litter-decomposing basidiomycota. Adv. Bot. Res. 2014, 70, 29–70. [Google Scholar]
Treatment | Control | Up Number | Down Number | DEG Number |
---|---|---|---|---|
FFB | FFC | 761 | 636 | 1397 |
FFP | FFC | 523 | 437 | 960 |
FFB | FFP | 212 | 181 | 393 |
Common Pathways in FFB and FFP | FFB Upregulated Genes | FFP Upregulated Genes |
---|---|---|
Arginine and proline metabolism | gene_3060, gene_3216, gene_3728, gene_6398, gene_11214, gene_11215 | gene_3060, gene_3728, gene_11214, gene_11215 |
Arginine biosynthesis | gene_3743 | - |
Cysteine and methionine metabolism | gene_1945, gene_6207, gene_6296, gene_6974, gene_6361, gene_8194, gene_12255 | gene_1628, gene_6974, gene_6977, gene_12255 |
Nitrogen metabolism | gene_10400, gene_13672 | gene_10398, gene_10400 |
Pentose and glucuronate interconversions | gene_6893, gene_9547, gene_10780, gene_11651 | gene_2187, gene_2927, gene_14482 |
Phenylalanine metabolism | gene_1945, gene_3216, gene_8194, gene_11214 | gene_11214 |
Propanoate metabolism | - | gene_5467 |
Pyruvate metabolism | gene_1293, gene_6127, gene_8215 | gene_5467 |
Starch and sucrose metabolism | gene_427, gene_2477, gene_3019, gene_3590, gene_3712, gene_10784 | gene_3845, gene_8031, gene_10784 |
Taurine and hypotaurine metabolism | gene_674, gene_2880, gene_6947 | gene_674, gene_5467 |
Tryptophan metabolism | gene_1945, gene_3216, gene_5115, gene_5130, gene_9810, gene_8194, gene_11214 | gene_5130, gene_9810, gene_11214 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Xue, J.; Shi, J.; Li, T.; Yuan, H. Comparative Transcriptome Analysis Explores the Mechanism of Angiosperm and Gymnosperm Deadwood Degradation by Fomes fomentarius. J. Fungi 2024, 10, 196. https://doi.org/10.3390/jof10030196
Wei Y, Xue J, Shi J, Li T, Yuan H. Comparative Transcriptome Analysis Explores the Mechanism of Angiosperm and Gymnosperm Deadwood Degradation by Fomes fomentarius. Journal of Fungi. 2024; 10(3):196. https://doi.org/10.3390/jof10030196
Chicago/Turabian StyleWei, Yulian, Jianbin Xue, Jiangtao Shi, Tong Li, and Haisheng Yuan. 2024. "Comparative Transcriptome Analysis Explores the Mechanism of Angiosperm and Gymnosperm Deadwood Degradation by Fomes fomentarius" Journal of Fungi 10, no. 3: 196. https://doi.org/10.3390/jof10030196
APA StyleWei, Y., Xue, J., Shi, J., Li, T., & Yuan, H. (2024). Comparative Transcriptome Analysis Explores the Mechanism of Angiosperm and Gymnosperm Deadwood Degradation by Fomes fomentarius. Journal of Fungi, 10(3), 196. https://doi.org/10.3390/jof10030196