Bio-Priming with Bacillus Isolates Suppresses Seed Infection and Improves the Germination of Garden Peas in the Presence of Fusarium Strains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacillus Isolates
2.2. Pathogenic Fungi
2.3. Antifungal Assay
2.4. Molecular Identification of Bacillus Isolates
2.5. Detection of Antagonistic Traits
2.6. Detection of Plant Growth-Promoting Traits
2.7. Germination Assays
2.7.1. Effect of Selected Bacillus Isolates on Germination and the Initial Growth of Non-Infected Garden Pea Seeds
2.7.2. Effect of Selected Bacillus Isolates on Seed Germination and Fusarium Incidence on Infected Garden Pea Seeds
2.8. Statistical Analysis
3. Results
3.1. Antifungal Activity of Bacillus spp. Isolates
3.2. Molecular Identification of Selected Bacillus Isolates
3.3. Antagonistic Traits of Selected Bacillus Isolates
3.4. Plant Growth-Promoting (PGP) Traits of Selected Bacillus Isolates
3.5. Effect of Selected Bacillus Isolates on the Germination and Initial Growth of Non-Infected Garden Pea Seeds
3.6. Effect of Selected Bacillus Isolates on the Germination of Infected Garden Pea Seeds
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, L.; Chhogyel, N.; Gopalakrishnan, T.; Hasan, M.K.; Jayasinghe, S.L.; Kariyawasam, C.S.; Kogo, B.K.; Ratnayake, S. Climate change and future of agri-food production. In Future Foods; Bhat, R., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 49–79. [Google Scholar] [CrossRef]
- Stagnari, F.; Maggio, A.; Galieni, A.; Pisante, M. Multiple benefits of legumes for agriculture sustainability: An overview. Chem. Biol. Technol. Agric. 2017, 4, 2. [Google Scholar] [CrossRef]
- Tulbek, M.C.; Lam, R.S.H.; Wang, Y.C.; Asavajaru, P.; Lam, A. Pea: A sustainable vegetable protein crop. In Sustainable Protein Sources; Nadathur, S.R., Wanasundara, J.P.D., Scanlin, L., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 145–164. [Google Scholar] [CrossRef]
- Kumari, T.; Deka, S.C. Potential health benefits of garden pea seeds and pods: A review. Legume Sci. 2021, 3, e82. [Google Scholar] [CrossRef]
- Kalapchieva, S.; Yankova, V. Opportunities for growing of garden pea in organic production systems. Zemdirbyste 2019, 106, 227–232. [Google Scholar] [CrossRef]
- FAOSTAT Database. Food and Agriculture Organization Statistics. Available online: https://www.fao.org/faostat/en/ (accessed on 15 June 2023).
- Weissmann, E.A.; Raja, K.; Gupta, A.; Patel, M.; Buehler, A. Seed quality enhancement. In Seed Science and Technology; Dadlani, M., Yadava, D.K., Eds.; Springer: Singapore, 2023; pp. 391–414. [Google Scholar] [CrossRef]
- Moumni, M.; Brodal, G.; Romanazzi, G. Recent innovative seed treatment methods in the management of seedborne pathogens. Food Secur. 2023, 15, 1365–1382. [Google Scholar] [CrossRef]
- Milošević, D.; Ignjatov, M.; Nikolić, Z.; Tamindžić, G.; Miljaković, D.; Marinković, J.; Červenski, J. Molecular characterization of Fusarium proliferatum and F. equiseti of Pisum sativum seed. Legume Res. 2023, 46, 233–237. [Google Scholar] [CrossRef]
- Ji, F.; He, D.; Olaniran, A.O.; Mokoena, M.P.; Xu, J.; Shi, J. Occurrence, toxicity, production and detection of Fusarium mycotoxin: A review. Food Prod. Process. Nutr. 2019, 1, 6. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Saad, A.M.; Soliman, S.M.; Salem, H.M.; Ahmed, A.I.; Mahmood, M.; El-Tahan, A.M.; Ebrahim, A.A.M.; Abd El-Mageed, T.A.; Negm, S.H.; et al. Plant growth promoting microorganisms as biocontrol agents of plant diseases: Mechanisms, challenges and future perspectives. Front. Plant Sci. 2022, 13, 923880. [Google Scholar] [CrossRef]
- Karačić, V.; Miljaković, D.; Marinković, J.; Ignjatov, M.; Milošević, D.; Tamindžić, G.; Ivanović, M. Bacillus species: Excellent biocontrol agents against tomato diseases. Microorganisms 2024, 12, 457. [Google Scholar] [CrossRef]
- Miljaković, D.; Marinković, J.; Balešević-Tubić, S. The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms 2020, 8, 1037. [Google Scholar] [CrossRef] [PubMed]
- Hashem, A.; Tabassum, B.; Abd-Allah, E.F. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J. Biol. Sci. 2019, 26, 1291–1297. [Google Scholar] [CrossRef] [PubMed]
- Chakraborti, S.; Bera, K.; Sadhukhan, S.; Dutta, P. Bio-priming of seeds: Plant stress management and its underlying cellular, biochemical and molecular mechanisms. Plant Stress 2022, 3, 100052. [Google Scholar] [CrossRef]
- Srivastava, S.; Tyagi, R.; Sharma, S. Seed biopriming as a promising approach for stress tolerance and enhancement of crop productivity: A review. J. Sci. Food. Agric. 2024, 104, 1244–1257. [Google Scholar] [CrossRef] [PubMed]
- Rajendra Prasad, S.; Kamble, U.R.; Sripathy, K.V.; Udaya Bhaskar, K.; Singh, D.P. Seed bio-priming for biotic and abiotic stress management. In Microbial Inoculants in Sustainable Agricultural Productivity; Singh, D., Singh, H., Prabha, R., Eds.; Springer: New Delhi, India, 2016; pp. 211–228. [Google Scholar]
- Mitra, D.; Mondal, R.; Khoshru, B.; Shadangi, S.; Das Mohapatra, P.K.; Panneerselvam, P. Rhizobacteria mediated seed bio-priming triggers the resistance and plant growth for sustainable crop production. Curr. Res. Microb. Sci. 2021, 2, 100071. [Google Scholar] [CrossRef] [PubMed]
- Tamindžić, G.; Ignjatov, M.; Miljaković, D.; Červenski, J.; Milošević, D.; Nikolić, Z.; Vasiljević, S. Seed priming treatments to improve heat stress tolerance of garden pea (Pisum sativum L.). Agriculture 2023, 13, 439. [Google Scholar] [CrossRef]
- Arafa, S.A.; Attia, K.A.; Niedbała, G.; Piekutowska, M.; Alamery, S.; Abdelaal, K.; Alateeq, T.K.; Ali, M.A.M.; Elkelish, A.; Attallah, S.Y. Seed priming boost adaptation in pea plants under drought stress. Plants 2021, 10, 2201. [Google Scholar] [CrossRef] [PubMed]
- Mazhar, M.W.; Ishtiaq, M.; Maqbool, M.; Ullah, F.; Sayed, S.R.M.; Mahmoud, E.A. Seed priming with iron oxide na-noparticles improves yield and antioxidant status of garden pea (Pisum sativum L.) grown under drought stress. S. Afr. J. Bot. 2023, 162, 577–587. [Google Scholar] [CrossRef]
- Cappuccino, J.G.; Welsh, C.T. Microbiology: A Laboratory Manual; Pearson: London, UK, 2016; p. 560. [Google Scholar]
- Ignjatov, M.; Popović, T.; Milošević, D.; Vasić, M.; Nikolić, Z.; Tamindžić, G.; Ivanović, Ž. Occurrence, identification and phylogenetic analysis of Fusarium proliferatum on bean seed (Phaseolus vulgaris L.) in Serbia. Ratar. Povrt. 2016, 53, 42–45. [Google Scholar] [CrossRef]
- Ignjatov, M.; Milošević, D.; Nikolić, Z.; Balešević-Tubić, S.; Petrović, K.; Bjelić, D.; Marinković, J. Fusarium graminearum as the causal agents of soybean seed rot. In Proceedings of the International Bioscience Conference and VI International PSU-UNS Bioscience Conference, Novi Sad, Serbia, 18–20 June 2016; pp. 308–309. [Google Scholar]
- Leslie, J.F.; Summerell, B.A. The Fusarium Laboratory Manual; Blackwell Publishing: Hoboken, NJ, USA, 2006; p. 388. [Google Scholar]
- Zouaoui, M.; Essghaier, B.; Weslati, M.; Smiri, M.; Hajlaoui, M.R.; Sadfi Zouaoui, N. Biological control of clementine branch canker caused by Phytophthora citrophthora. Phytopathol. Mediterr. 2019, 58, 547–558. [Google Scholar] [CrossRef]
- Dimkić, I.; Živković, S.; Berić, T.; Ivanović, Ž.; Gavrilović, V.; Stanković, S.; Fira, Đ. Characterization and evaluation of two Bacillus strains, SS-12.6 and SS-13.1, as potential agents for the control of phytopathogenic bacteria and fungi. Biol. Control 2013, 65, 312–321. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Aydi Ben Abdallah, R.; Stedel, C.; Garagounis, C.; Nefzi, A.; Jabnoun-Khiareddine, H.; Papadopoulou, K.K.; Daami-Remadi, M. Involvement of lipopeptide antibiotics and chitinase genes and induction of host defense in suppression of Fusarium wilt by endophytic Bacillus spp. in tomato. Crop Prot. 2017, 99, 45–58. [Google Scholar] [CrossRef]
- Ashe, S.; Maji, U.J.; Sen, R.; Mohanty, S.; Maiti, N.K. Specific oligonucleotide primers for detection of endoglucanase positive Bacillus subtilis by PCR. 3 Biotech 2014, 4, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Bjelić, D.; Ignjatov, M.; Marinković, J.; Milošević, D.; Nikolić, Z.; Gvozdanović-Varga, J.; Karaman, M. Bacillus isolates as potential biocontrol agents of Fusarium clove rot of garlic. Zemdirbyste 2018, 105, 369–376. [Google Scholar] [CrossRef]
- Miljaković, D.; Marinković, J.; Tamindžić, G.; Đorđević, V.; Ignjatov, M.; Milošević, D.; Nikolić, Z. Effect of plant growth promoting Bacillus spp. on germination and seedling growth of soybean. Legume Res. 2022, 45, 487–491. [Google Scholar] [CrossRef]
- International Seed Testing Association (ISTA). Rules for Testing Seeds; ISTA: Zurich, Switzerland, 2022. [Google Scholar]
- Knežević, M.M.; Stajković-Srbinović, O.S.; Assel, M.; Milić, M.D.; Mihajlovski, K.R.; Delić, D.I.; Buntić, A.V. The ability of a new strain of Bacillus pseudomycoides to improve the germination of alfalfa seeds in the presence of fungal infection or chromium. Rhizosphere 2021, 18, 100353. [Google Scholar] [CrossRef]
- Miljaković, D.; Marinković, J.; Tamindžić, G.; Ðordević, V.; Tintor, B.; Milošević, D.; Ignjatov, M.; Nikolić, Z. Bio-Priming of Soybean with Bradyrhizobium japonicum and Bacillus megaterium: Strategy to improve seed germination and the initial seedling growth. Plants 2022, 11, 1927. [Google Scholar] [CrossRef]
- Lević, J.; Stanković, S.; Krnjaja, V.; Bočarov-Stančić, A.; Ivanović, D. Distribution frequency and incidence of seed-borne pathogens of some cereals and industrial crops in Serbia. Pestic. Phytomed. 2012, 27, 33–40. [Google Scholar] [CrossRef]
- Souza, R.D.; Ambrosini, A.; Passaglia, L.M.P. Plant growth-promoting bacteria as inoculants in agricultural soils. Genet. Mol. Biol. 2015, 38, 401–419. [Google Scholar] [CrossRef] [PubMed]
- Blanco, R.; Aveling, T.A.S. Seed-borne Fusarium pathogens in agricultural crops. Acta Hortic. 2018, 1204, 161–170. [Google Scholar] [CrossRef]
- Ekwomadu, T.I.; Mwanza, M. Fusarium fungi pathogens, identification, adverse effects, disease management, and global food security: A review of the latest research. Agriculture 2023, 13, 1810. [Google Scholar] [CrossRef]
- Dimkić, I.; Berić, T.; Stević, T.; Pavlović, S.; Šavikin, K.; Fira, Đ.; Stanković, S. Additive and synergistic effects of Bacillus spp. isolates and essential oils on the control of phytopathogenic and saprophytic fungi from medicinal plants and marigold seeds. Biol. Control 2015, 87, 6–13. [Google Scholar] [CrossRef]
- Khan, N.; Martínez-Hidalgo, P.; Ice, T.A.; Maymon, M.; Humm, E.A.; Nejat, N.; Sanders, E.R.; Kaplan, D.; Hirsch, A.M. Antifungal activity of Bacillus species against Fusarium and analysis of the potential mechanisms used in biocontrol. Front. Microbiol. 2018, 9, 2363. [Google Scholar] [CrossRef]
- Zhang, B.; Dong, C.; Shang, Q.; Han, Y.; Li, P. New insights into membrane-active action in plasma membrane of fungal hyphae by the lipopeptide antibiotic Bacillomycin L. Biochim. Biophys. Acta Biomembr. 2013, 1828, 2230–2237. [Google Scholar] [CrossRef]
- Stoll, A.; Salvatierra-Martínez, R.; González, M.; Araya, M. The role of surfactin production by Bacillus velezens is on colonization, biofilm formation on tomato root and leaf surfaces and subsequent protection (ISR) against Botrytis cinerea. Microorganisms 2021, 9, 2251. [Google Scholar] [CrossRef] [PubMed]
- Blacutt, A.A.; Mitchell, T.R.; Bacon, C.W.; Gold, S.E. Bacillus mojavensis RRC101 lipopeptides provoke physiological and metabolic changes during antagonism against Fusarium verticillioides. MPMI 2016, 29, 713–723. [Google Scholar] [CrossRef]
- Cao, Y.; Pi, H.; Chandrangsu, P.; Li, Y.; Wang, Y.; Zhou, H.; Xiong, H.; Helmann, J.D.; Cai, Y. Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum. Sci. Rep. 2018, 8, 4360. [Google Scholar] [CrossRef]
- Hanif, A.; Zhang, F.; Li, P.; Li, C.; Xu, Y.; Zubair, M.; Zhang, M.; Jia, D.; Zhao, X.; Liang, J.; et al. Fengycin produced by Bacillus amyloliquefaciens FZB42 inhibits Fusarium graminearum growth and mycotoxins biosynthesis. Toxins 2019, 11, 295. [Google Scholar] [CrossRef] [PubMed]
- Slama, H.B.; Cherif-Silini, H.; Chenari Bouket, A.; Qader, M.; Silini, A.; Yahiaoui, B.; Alenezi, F.N.; Luptakova, L.; Triki, M.A.; Vallat, A.; et al. Screening for Fusarium antagonistic bacteria from contrasting niches designated the endophyte Bacillus halotolerans as plant warden against fusarium. Front. Microbiol. 2019, 9, 3236. [Google Scholar] [CrossRef] [PubMed]
- Cardarelli, M.; Woo, S.L.; Rouphael, Y.; Colla, G. Seed treatments with microorganisms can have a biostimulant effect by influencing germination and seedling growth of crops. Plants 2022, 11, 259. [Google Scholar] [CrossRef]
- Spaepen, S.; Vanderleyden, J.; Remans, R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 2007, 31, 425–448. [Google Scholar] [CrossRef]
- Köhl, J.; Kolnaar, R.; Ravensberg, W.J. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Front. Plant Sci. 2019, 10, 845. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, Z.; Wu, J.; Chen, L.; Dong, W. Isolated Bacillus subtilis strain 330-2 and its antagonistic genes identified by the removing PCR. Sci. Rep. 2017, 7, 1777. [Google Scholar] [CrossRef] [PubMed]
- Riaz, R.; Khan, A.; Khan, W.J.; Jabeen, Z.; Yasmin, H.; Naz, R.; Nosheen, A.; Hassan, M.N. Vegetable associated Bacillus spp. suppress the pea (Pisum sativum L.) root rot caused by Fusarium solani. Biol. Control 2021, 158, 104610. [Google Scholar] [CrossRef]
- Naik, M.; Monalisa, S.P.; Beura, J.K.; Tarai, R.K. Effect of biopriming on seed borne diseases, yield and quality of garden pea (Pisum sativum L.). Ecol. Environ. Conserv. 2016, 22, 287–295. [Google Scholar]
- Singh, P.; Vaishnav, A.; Liu, H.; Xiong, C.; Singh, H.B.; Singh, B.K. Seed biopriming for sustainable agriculture and ecosystem restoration. Microb. Biotechnol. 2023, 16, 2212–2222. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, A.; Turgay, O.C.; Farooq, M.; Hayat, R. Seed biopriming with plant growth promoting rhizobacteria: A review. FEMS Microbiol. Ecol. 2016, 92, fiw112. [Google Scholar] [CrossRef] [PubMed]
- Adhikary, S.; Naskar, M.K.; Biswas, B. Seed priming—One small step for farmer, one giant leap for food security: Application and exploration. J. Pharmacogn. Phytochem. 2021, 10, 409–412. [Google Scholar] [CrossRef]
- Rocha, I.; Ma, Y.; Souza-Alonso, P.; Vosátka, M.; Freitas, H.; Oliveira, R.S. Seed coating: A tool for delivering beneficial microbes to agricultural crops. Front. Plant Sci. 2019, 10, 1357. [Google Scholar] [CrossRef]
Isolate | Fungal Growth Inhibition (%) | Isolate | Fungal Growth Inhibition (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PS1 | P1 | PS18 | S1 | Average | PS1 | P1 | PS18 | S1 | Average | ||
B33 | 13.3 cde | 23.3 n | – | – | 9.15 | B56 | – | – | – | – | – |
B34 | 12.2 de | 28.9 k–n | 7.78 hi | – | 12.2 | B57 | 13.3 cde | 28.9 k–n | 7.78 hi | 24.4 d–j | 18.6 |
B35 | 30.0 a–e | 36.7 e–m | 22.2 b–i | 30.0 c–i | 29.7 | B58 | 34.4 a–e | 45.6 a–g | 25.6 a–h | – | 26.4 |
B36 | 20.0 cde | 30.0 j–n | 10.0 ghi | 28.9 c–j | 22.2 | B59 | – | 46.7 a–g | – | 33.3 a–g | 20.0 |
B37 | 27.8 a–e | 27.8 l–n | 14.4 f–i | 28.9 c–j | 24.7 | B60 | 23.3 a–e | 35.6 f–n | 15.6 f–i | 33.3 a–g | 27.0 |
B38 | 28.9 a–e | 34.4 g–n | 22.2 b–i | 31.1 c–h | 29.2 | B61 | – | 48.9 a–e | – | 24.4 d–j | 18.3 |
B39 | 21.1 b–e | 24.4 mn | 11.1 f–i | 23.3 e–j | 19.9 | B62 | 10.0 de | 28.9 k–n | 3.33 i | 31.1 c–h | 18.3 |
B40 | 25.6 a–e | 35.6 f–n | 6.67 hi | 26.7 d–j | 23.6 | B63 | 17.8 cde | 32.2 h–n | 10.0 ghi | 31.1 c–h | 22.8 |
B41 | 30.0 a–e | 35.6 f–n | 24.4 b–h | 13.3 jk | 25.8 | B64 | 26.7 a–e | 47.8 a–f | 16.7 e–i | 14.4 ijk | 26.4 |
B42 | 42.2 abc | 37.8 d–l | 41.1 ab | 37.8 a–e | 39.7 | B65 | 7.78 e | 46.7 a–g | 2.22 i | 36.7 a–f | 23.3 |
B43 | 42.2 abc | 43.3 a–h | 38.9 abc | 47.8 ab | 43.1 | B66 | 52.2 a | 40.0 c–l | 37.8 a–d | 48.9 a | 44.7 |
B44 | 51.1 a | 47.8 a–f | 36.7 a–e | 40.0 a–d | 43.9 | B67 | – | 36.7 e–m | – | – | 9.17 |
B45 | – | 24.4 mn | – | 18.9 g–k | 10.8 | B68 | 21.1 b–e | 53.3 ab | 12.2 f–i | 36.7 a–f | 30.8 |
B46 | 35.6 a–e | 55.6 a | 31.1 a–f | 40.0 a–d | 40.6 | B69 | 7.78 e | 28.9 k–n | – | 36.7 a–f | 18.3 |
B47 | – | 31.1 i–n | – | 38.9 a–e | 17.5 | B70 | 24.4 a–e | 52.2 abc | 16.7 e–i | – | 23.3 |
B48 | 27.8 a–e | 38.9 d–l | 21.1 b–i | 36.7 a–f | 31.1 | B71 | 21.1 b–e | 44.4 a–h | 13.3 f–i | 27.8 c–j | 26.6 |
B49 | 12.2 de | 36.7 e–m | – | 25.6 d–j | 18.6 | B72 | 33.3 a–e | 52.2 abc | 21.1 b–i | 21.1 f–j | 31.9 |
B50 | 50.0 ab | 45.6 a–g | 45.6 a | 40.0 a–d | 45.3 | B73 | 17.8 cde | 31.1 i–n | 13.3 f–i | – | 15.5 |
B51 | 28.9 a–e | 48.9 a–e | 14.4 f–i | 3.33 k | 23.8 | B74 | 30.0 a–e | 47.8 a–f | 20.0 c–i | 28.9 c–j | 31.7 |
B52 | – | – | – | – | – | B75 | 37.8 a–d | 41.1 b–k | 5.56 hi | 43.3 abc | 31.9 |
B53 | 14.4 cde | 23.3 n | 14.4 f–i | 16.7 h–k | 17.2 | B76 | 35.6 a–e | 42.2 b–j | 28.9 a–g | 33.3 a–g | 35.0 |
B54 | 25.6 a–e | 27.8 l–n | 21.1 b–i | 32.2 b–h | 26.7 | B77 | 24.4 a–e | 53.3 ab | 24.4 b–h | 43.3 abc | 36.3 |
B55 | 21.1 b–e | 50.0 a–d | 17.8 d–i | 26.7 d–j | 28.9 | B78 | 28.9 a–e | 42.2 b–j | 25.6 a–h | 27.8 c–j | 31.1 |
Isolate | Species | Accesion Number | Rhizosphere | Locality | GPS Coordinates |
---|---|---|---|---|---|
B42 | B. velezensis | OL636363 | Common bean | Đurđevo, South Bačka District, Serbia | 45°19′28″ N 20°03′52″ E |
B43 | B. subtilis | OR875367 | Soybean | Rimski šančevi, South Bačka District, Serbia | 45°19′10″ N 19°50′22″ E |
B44 | B. mojavensis | OR875368 | Maize | Orom, North Banat District, Serbia | 45°58′59″ N 19°49′59″ E |
B46 | B. mojavensis | OR875369 | Soybean | Lipar, West Bačka District, Serbia | 45°36′31″ N 19° 21′31″ E |
B50 | B. amyloliquefaciens | OR875370 | Garden pea | Rimski šančevi, South Bačka District, Serbia | 45°19′10″ N 19°50′22″ E |
B66 | B. halotolerans | OR875371 | Soybean | Mali Iđoš, North Bačka district, Serbia | 45°42′43″ N 19°39′26″ E |
Isolate | Lytic Enzymes | Cyclic Lipopeptides * | |||||
---|---|---|---|---|---|---|---|
Cellulase | Chitinase * | Endoglucanase * | Surfactin | Bacillomycin | Iturin | Fengycin | |
B. velezensis B42 | +++ | − | + | − | + | + | − |
B. subtilis B43 | +++ | − | + | + | − | − | − |
B. mojavensis B44 | +++ | − | − | + | − | − | + |
B. mojavensis B46 | +++ | − | − | + | − | − | + |
B. amyloliquefaciens B50 | +++ | − | + | − | + | − | − |
B. halotolerans B66 | ++ | − | − | − | − | − | − |
Isolate | IAA (µg mL−1 ± SD) at 250 µg mL−1 L-Tryptophan | IAA (µg mL−1 ± SD) at 500 µg mL−1 L-Tryptophan | P Solubilization | P Mineralization | Siderophores |
---|---|---|---|---|---|
B. velezensis B42 | 2.60 ± 0.10 d | 7.07 ± 0.21 d | – | + | + |
B. subtilis B43 | 14.73 ± 0.31 a | 15.70 ± 0.26 a | – | ++ | + |
B. mojavensis B44 | 1.87 ± 0.06 d | 2.80 ± 0.75 e | – | + | + |
B. mojavensis B46 | 5.15 ± 0.05 c | 8.35 ± 0.05 c | – | ++ | ++ |
B. amyloliquefaciens B50 | 8.27 ± 0.75 b | 11.00 ± 0.36 b | – | + | ++ |
B. halotolerans B66 | 2.27 ± 0.23 d | 6.67 ± 0.12 d | – | + | + |
Treatment | Final Germination (%) | Shoot Length (mm) | Root Length (mm) | Shoot Dry Weight (g) | Root Dry Weight (g) | Seedling Vigor Index |
---|---|---|---|---|---|---|
Control | 90.67 abc | 39.50 b | 103.50 c | 0.174 c | 0.182 b | 1296.43 c |
B. velezensis B42 | 92.00 abc | 40.17 b | 102.83 c | 0.182 bc | 0.188 ab | 1315.70 c |
B. subtilis B43 | 95.00 a | 43.00 b | 127.83 a | 0.197 ab | 0.200 ab | 1622.08 a |
B. mojavensis B44 | 92.67 ab | 35.67 c | 104.00 c | 0.178 bc | 0.198 ab | 1294.65 c |
B. mojavensis B46 | 89.00 bc | 42.33 b | 118.17 b | 0.189 abc | 0.199 ab | 1428.57 b |
B. amyloliquefaciens B50 | 93.33 ab | 51.50 a | 118.67 b | 0.208 a | 0.210 a | 1588.00 a |
B. halotolerans B66 | 87.33 c | 40.33 b | 117.33 b | 0.189 abc | 0.197 ab | 1376.80 bc |
p | 0.0012 | 0.0000 | 0.0000 | 0.0029 | 0.0451 | 0.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miljaković, D.; Marinković, J.; Tamindžić, G.; Milošević, D.; Ignjatov, M.; Karačić, V.; Jakšić, S. Bio-Priming with Bacillus Isolates Suppresses Seed Infection and Improves the Germination of Garden Peas in the Presence of Fusarium Strains. J. Fungi 2024, 10, 358. https://doi.org/10.3390/jof10050358
Miljaković D, Marinković J, Tamindžić G, Milošević D, Ignjatov M, Karačić V, Jakšić S. Bio-Priming with Bacillus Isolates Suppresses Seed Infection and Improves the Germination of Garden Peas in the Presence of Fusarium Strains. Journal of Fungi. 2024; 10(5):358. https://doi.org/10.3390/jof10050358
Chicago/Turabian StyleMiljaković, Dragana, Jelena Marinković, Gordana Tamindžić, Dragana Milošević, Maja Ignjatov, Vasiljka Karačić, and Snežana Jakšić. 2024. "Bio-Priming with Bacillus Isolates Suppresses Seed Infection and Improves the Germination of Garden Peas in the Presence of Fusarium Strains" Journal of Fungi 10, no. 5: 358. https://doi.org/10.3390/jof10050358
APA StyleMiljaković, D., Marinković, J., Tamindžić, G., Milošević, D., Ignjatov, M., Karačić, V., & Jakšić, S. (2024). Bio-Priming with Bacillus Isolates Suppresses Seed Infection and Improves the Germination of Garden Peas in the Presence of Fusarium Strains. Journal of Fungi, 10(5), 358. https://doi.org/10.3390/jof10050358