Transcriptomic and Metabolomic Analyses of Soybean Protein Isolate on Monascus Pigments and Monacolin K Production
Abstract
:1. Introduction
2. Material and Methods
2.1. Strain and Culture Condition
2.2. Analysis of pH and Biomass
2.3. Analysis of MPs and MK Production
2.4. Analysis of Monosodium Glutamate and Nitrogen Content in the Fermentation Broth of Monascus spp.
2.5. Analysis of Protease Activity
2.6. Analysis of Soluble Protein and Polypeptide
2.7. Analysis of Free Amino Acids (FAAs)
2.8. Comparative Transcriptomic Analysis
2.9. Real-Time Quantitative PCR (RT-qPCR) Validation of RNA-Seq Data
2.10. Untargeted Metabolomic Analysis
2.11. Statistical Analysis
3. Results
3.1. Effects of SPI on the Growth, MPs, and MK Production of Monascus spp.
3.2. Analysis of Monosodium Glutamate, Nitrogen Content, Protease Activity, Soluble Protein, Polypeptides, and Free Amino Acids
3.3. Analysis of the Transcriptomic Data
3.4. Effect of SPI on the Expression of Genes Related to MK Biosynthesis
3.5. Analysis of the Metabolomic Response
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, S.S.; Liu, X.; Wang, Y.L.; Xie, J.H.; Gao, H.; Li, X.J.; Huang, Z.B. Metabolomics analysis based on UHPLC-Q-TOF-MS/MS reveals effects of genistein on reducing mycotoxin citrinin production by Monascus aurantiacus Li AS3.4384. LWT 2020, 130, 109613. [Google Scholar] [CrossRef]
- Tong, A.J.; Lu, J.Q.; Huang, Z.R.; Huang, Q.Z.; Zhang, Y.Y.; Farag, M.A.; Liu, B.; Zhao, C. Comparative transcriptomics discloses the regulatory impact of carbon/nitrogen fermentation on the biosynthesis of Monascus kaoliang pigments. Food Chem. X 2022, 13, 100250. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.Y.; Gong, P.F.; Liu, Y.T.; Luo, Q.Q.; Chen, W.; Wang, C.T. Linoleic acid functions as a quorum-sensing molecule in Monascus purpureus–Saccharomyces cerevisiae co-culture. Yeast 2023, 40, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Gong, P.F.; Shi, R.Y.; Liu, Y.T.; Luo, Q.Q.; Wang, C.T.; Chen, W. Recent advances in Monascus pigments produced by Monascus purpureus: Biosynthesis, fermentation, function, and application. LWT 2023, 185, 115162. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, N.; Chen, M.X.; Wang, H.J.; Shi, J.C.; Wang, B.; Sun, B.G.; Wang, C.T. Metabolomics analysis of the effect of glutamic acid on monacolin K synthesis in Monascus purpureus. Front. Microbiol. 2020, 11, 610471. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.R.; Chen, Z.T.; Wen, Q.Y.; Xiong, Z.X.; Cao, X.H.; Zheng, Z.H.; Zhang, Y.X.; Huang, Z.W. An overview on the biosynthesis and metabolic regulation of monacolin K/lovastatin. Food Funct. 2020, 11, 5738–5748. [Google Scholar] [CrossRef] [PubMed]
- Farawahida, A.H.; Palmer, J.; Flint, S. Monascus spp. and citrinin: Identification, selection of Monascus spp. isolates, occurrence, detection and reduction of citrinin during the fermentation of red fermented rice. Int. J. Food Microbiol. 2022, 379, 109829. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.S.; Chiu, S.H.; Chen, C.C.; Lin, C.H. Investigation of monacolin K, yellow pigments, and citrinin production capabilities of Monascus purpureus and Monascus ruber (Monascus pilosus). J. Food Drug Anal. 2023, 31, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.F.; Li, L.; Ding, C.F.; Li, Z.J.; Ding, W.T.; Liu, H.H.; Wang, N.F.; Wang, C.L.; Guo, Q.B. Disruption of UDP-galactopyranose mutase expression: A novel strategy for regulation of galactomannan biosynthesis and Monascus pigments secretion in Monascus purpureus M9. Int. J. Biol. Macromol. 2024, 259, 129369. [Google Scholar] [CrossRef]
- Gong, Y.X.; Li, S.F.; Liu, Q.R.; Chen, F.S.; Shao, Y.C. CRISPR/Cas9 system is a suitable gene targeting editing tool to filamentous fungus Monascus pilosus. Appl. Microbiol. Biot. 2024, 108, 154. [Google Scholar] [CrossRef]
- Chen, D.; Li, H. Mannitol improves Monascus pigment biosynthesis with rice bran as a substrate in Monascus purpureus. Front. Microbiol. 2023, 14, 1300461. [Google Scholar] [CrossRef]
- Lu, F.; Alenyorege, E.A.; Ouyang, N.N.; Qi, Z.A.; Ma, H.L. Simulated natural and high temperature solid-state fermentation of soybean meal: A comparative study regarding microorganisms, functional properties and structural characteristics. LWT 2022, 159, 113125. [Google Scholar] [CrossRef]
- Yin, S.; Yang, D.M.; Zhu, Y.Y.; Huang, B.Z. Methionine and S-Adenosylmethionine regulate Monascus pigments biosynthesis in Monascus purpureus. Front. Microbiol. 2022, 13, 921540. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.H.; Zhang, J.; Lu, G.G.; Wang, F.H.; Shu, L.; Xu, H.M.; Li, Z.J.; Wang, Y.R.; Guo, Q.B.; Wu, S.F.; et al. Comparative metabolomics analysis reveals the metabolic regulation mechanism of yellow pigment overproduction by Monascus using ammonium chloride as a nitrogen source. Appl. Microbiol. Biot. 2021, 105, 6369–6379. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.F.; Hu, T.T.; Yang, S.Z.; Tian, X.F.; Wu, Z.Q. Genetic responses to adding nitrates to improve hydrophilic yellow pigment in Monascus fermentation. Appl. Microbiol. Biot. 2023, 107, 1341–1359. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Wang, Y.H.; Zhang, J.; Xu, H.M.; Bai, J.; Zhang, H.J.; Jiang, X.L.; Yuan, J.; Lu, G.G.; Jiang, L.Y.; et al. Integrative metabolomic and transcriptomic analyses uncover metabolic alterations and pigment diversity in Monascus in response to different nitrogen sources. mSystems 2021, 6, e0080721. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Chen, M.X.; Zang, Y.M.; Wang, H.J.; Wei, X.Y.; Zhu, Q.Q.; Yang, X.L.; Sun, B.G.; Wang, C.T. Effect of arginine supplementation on monacolin K yield of Monascus purpureus. J. Food Compos. Anal. 2021, 106, 104252. [Google Scholar] [CrossRef]
- Feng, Y.L. Identification and Fermentation Characteristics Study of Monascus pilosus MS-1. Ph.D. Thesis, Huazhong Agricultural University, Wuhan, China, 2014. [Google Scholar]
- Feng, Y.L.; Shao, Y.C.; Zhou, Y.X.; Chen, F.S. Effects of glycerol on pigments and monacolin K production by the high-monacolin K-producing but citrinin-free strain, Monascus pilosus MS-1. Eur. Food Res. Technol. 2015, 240, 635–643. [Google Scholar] [CrossRef]
- Shi, J.; Zhao, W.; Lu, J.; Wang, W.J.; Yu, X.; Feng, Y.L. Insight into Monascus pigments production promoted by glycerol based on physiological and transcriptome analyses. Process Biochem. 2021, 102, 141–149. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, H.M.; Su, Z.J.; Xu, F.; Yu, X.; Feng, Y.L. Enhancing monacolin K yield of red yeast rice by adding glucose and substrates from soybean. Food Ferment. Ind. 2021, 47, 182–187. [Google Scholar] [CrossRef]
- GB 5009.43-2016; National Food Safety Standard Determination of Sodium Glutamate (Monosodium glutamate) in Monosodium Glutamate. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2016.
- Shi, C. Study on the Effect of Solid-State Fermentation Substrate on Monascus Statin and Pigments Yield. Master’s Thesis, Tianjin University of Science and Technology, Tianjin, China, 2019. [Google Scholar]
- GB/T 23527-2009; Protease Preparations. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2009.
- Ma, J.G.; Zhu, X.Q.; Shi, L.; Ni, C.L.; Hou, J.C.; Cheng, J.J. Enhancement of soluble protein, polypeptide production and functional properties of heat-denatured soybean meal by fermentation of Monascus purpureus 04093. CyTA–J. Food 2019, 17, 1014–1022. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Mou, D.H.; Li, Y. High performance liquid chromatographic analysis of free amino acids in raspberry using pre-column derivatization with 2,4-Dinitrofluorobenzene. Food Sci. 2015, 36, 178–182. [Google Scholar] [CrossRef]
- Qin, X.L.; Xie, B.; Han, H.L.; Zong, X.L.; Hu, Y.L.; Yu, X.; Feng, Y.L. Effect of soybean protein isolate on monacolin K and Monascus pigments production by Monascus spp. Food Ferment. Ind. 2023, 1–10. [Google Scholar]
- Yin, S.; Zhu, Y.Y.; Zhang, B.; Huang, B.Z.; Jia, R. Diverse effects of amino acids on Monascus pigments biosynthesis in Monascus purpureus. Front. Microbiol. 2022, 13, 951266. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liang, J.; Yang, L.; Chai, S.Y.; Zhang, C.X.; Sun, B.G.; Wang, C.T. Glutamic acid promotes monacolin K production and monacolin K biosynthetic gene cluster expression in Monascus. AMB Express 2017, 7, 22. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.Q.; Zhang, H.; Wang, H.J.; Li, Y.H.; Jiao, Z.; Shi, J.C.; Wang, C.T.; Zhang, C. Effects of arginine and other substances on synthesis of monacolin K and Monascus pigment of Monascus purpureus. J. Food Sci. Tech. 2021, 39, 96–103. [Google Scholar] [CrossRef]
- Chen, D.; Chen, M.H.; Wu, S.F.; Li, Z.J.; Yang, H.; Wang, C.L. The molecular mechanisms of Monascus purpureus M9 responses to blue light based on the transcriptome analysis. Sci. Rep. 2017, 7, 5537. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liang, J.; Zhang, A.A.; Hao, S.; Zhang, H.; Zhu, Q.Q.; Sun, B.G.; Wang, C.T. Overexpression of monacolin K biosynthesis genes in the Monascus purpureus azaphilone polyketide pathway. J. Agr. Food Chem. 2019, 67, 2563–2569. [Google Scholar] [CrossRef]
- Lin, L.; Wu, S.F.; Li, Z.J.; Ren, Z.Y.; Wang, C.L. High expression level of mok E enhances the production of monacolin K in Monascus. Food Biotechnol. 2018, 32, 35–46. [Google Scholar] [CrossRef]
- Chen, Y.P.; Yuan, G.F.; Hsieh, S.Y.; Lin, Y.S.; Wang, W.Y.; Liaw, L.L.; Tseng, C.P. Identification of the mokH gene encoding transcription factor for the upregulation of monacolin K biosynthesis in Monascus pilosus. J. Agr. Food Chem. 2010, 58, 287–293. [Google Scholar] [CrossRef]
- Zhang, B.B.; Xing, H.B.; Jiang, B.J.; Chen, L.; Xu, G.R.; Jiang, Y.; Zhang, D.Y. Using millet as substrate for efficient production of monacolin K by solid-state fermentation of Monascus ruber. J. Biosci. Bioeng. 2018, 125, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.L.; Shao, Y.C.; Zhou, Y.X.; Chen, F.S. Production and optimization of monacolin K by citrinin-free Monascus pilosus MS-1 in solid-state fermentation using non-glutinous rice and soybean flours as substrate. Eur. Food Res. Technol. 2014, 239, 629–636. [Google Scholar] [CrossRef]
- He, S.S.; Wang, Y.L.; Xie, J.H.; Gao, H.; Li, X.J.; Huang, Z.B. 1H-NMR-based metabolomic study of the effects of flavonoids on citrinin production by Monascus. Food Res. Int. 2020, 137, 109532. [Google Scholar] [CrossRef] [PubMed]
- Li, W.L.; Hong, J.L.; Lu, J.Q.; Tong, S.G.; Ni, L.; Liu, B.; Lv, X.C. Comparative transcriptomic and metabolomic analyses reveal the regulatory effect and mechanism of tea extracts on the biosynthesis of Monascus pigments. Foods 2022, 11, 3159. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhang, X.H.; Wu, Z.Q.; Wang, Z.L. Investigation of relationship between lipid and Monascus pigment accumulation by extractive fermentation. J. Biotechnol. 2015, 212, 167–173. [Google Scholar] [CrossRef]
- Zhu, X.D.; Zhou, Z.J.; Guo, G.J.; Li, J.D.; Yan, H.; Li, F. Proteomics and metabolomics analysis of the lignin degradation mechanism of lignin-degrading fungus Aspergillus fumigatus G-13. Anal. Methods 2023, 15, 1062–1076. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.L.; Liu, Y.B.; Li, L.; Gao, M.X. iTRAQ-based quantitative proteomic analysis reveals changes in metabolite biosynthesis in Monascus purpureus in response to a low-frequency magnetic field. Toxins 2018, 10, 440. [Google Scholar] [CrossRef]
- Agboyibor, C.; Kong, W.B.; Zhang, A.M.; Niu, S.Q. Nutrition regulation for the production of Monascus red and yellow pigment with submerged fermentation by Monascus purpureus. Biocatal. Agric. Biotech. 2019, 21, 101276. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, H.H.; Shu, L.; Xu, H.M.; Cheng, Y.; Mao, Z.T.; Liu, B.; Liao, X.P.; Huang, D. Metabolomics analysis coupled with weighted gene co-expression network analysis unravels the associations of tricarboxylic acid cycle-intermediates with edible pigments produced by Monascus purpureus (Hong Qu). Foods 2022, 11, 2168. [Google Scholar] [CrossRef]
- Mei, Q.; Xu, Z.N.; Wu, Q.Y.; Qin, L.K.; Zeng, H.Y.; Zhu, Y. Analysis of metabolites of coix seed fermented by Monascus purpureus. Food Biosci. 2022, 50, 102054. [Google Scholar] [CrossRef]
- Huang, J.; Liao, N.Q.; Li, H.M. Linoleic acid enhance the production of moncolin K and red pigments in Monascus ruber by activating mokH and mokA, and by accelerating cAMP-PkA pathway. Int. J. Biol. Macromol. 2018, 109, 950–954. [Google Scholar] [CrossRef] [PubMed]
Group | ID | Metabolite | Fold Change | log2FC | p-Value | VIP | Regulated |
---|---|---|---|---|---|---|---|
CI vs. SI | pos_861 | DIMBOA-Glc | 64.31 | 6.01 | 1.47 × 10−6 | 1.20 | up |
pos_6619 | Tetradecanoylcarnitine | 0.51 | −0.97 | 2.82 × 10−6 | 1.20 | down | |
pos_2962 | 10-Deoxymethymycin | 12.68 | 3.66 | 1.55 × 10−5 | 1.20 | up | |
pos_1904 | L-gamma-glutamyl-L-valine | 40.57 | 5.34 | 1.90 × 10−5 | 1.20 | up | |
pos_5448 | 9,10-12,13-Diepoxyoctadecanoate | 0.50 | −1.00 | 2.55 × 10−5 | 1.20 | down | |
pos_6607 | Vanillyl alcohol | 0.46 | −1.11 | 3.13 × 10−5 | 1.20 | down | |
pos_2485 | 6′-Oxokanamycin C | 9.01 | 3.17 | 3.24 × 10−5 | 1.20 | up | |
pos_849 | 5,6-Epoxytetraene | 21.41 | 4.42 | 3.32 × 10−5 | 1.20 | up | |
pos_763 | 2(alpha-D-Mannosyl)-D-glycerate | 8.77 | 3.13 | 3.37 × 10−5 | 1.20 | up | |
pos_2339 | 1-(2-Furanylmethyl)-1H-pyrrole | 6.56 | 2.71 | 3.45 × 10−5 | 1.20 | up | |
pos_987 | Pterolactam | 46.45 | 5.54 | 3.66 × 10−5 | 1.20 | up | |
pos_6640 | 5,6-DHET | 0.46 | −1.11 | 4.67 × 10−5 | 1.19 | down | |
pos_6494 | α-CEHC | 0.48 | −1.05 | 4.91 × 10−5 | 1.19 | down | |
pos_5923 | N,N-dimethyl-Safingol | 0.43 | −1.22 | 4.95 × 10−5 | 1.20 | down | |
pos_2342 | Gentioflavine | 2.46 | 1.30 | 5.57 × 10−5 | 1.20 | up | |
CE vs. SE | pos_3760 | Secobarbital | 10.38 | 3.38 | 1.29 × 10−8 | 1.15 | up |
pos_3330 | N-Glycoloyl-neuraminate | 0.01 | −6.66 | 3.73 × 10−8 | 1.15 | down | |
pos_513 | 4-(4-Deoxy-alpha-D-gluc-4-enuronosyl)-D-galacturonate | 0.02 | −5.37 | 2.37 × 10−7 | 1.15 | down | |
pos_4237 | Novobiocic acid | 0.02 | −5.83 | 1.14 × 10−6 | 1.15 | down | |
pos_4321 | Gibberellin A24 | 0.06 | −3.95 | 4.86 × 10−6 | 1.15 | down | |
pos_3233 | Hexylglutathione | 13.23 | 3.73 | 8.45 × 10−6 | 1.15 | up | |
pos_4667 | Priverogenin A | 4.67 × 108 | 28.80 | 9.76 × 10−6 | 1.15 | up | |
pos_3242 | Methyl succinate | 6.36 | 2.67 | 9.98 × 10−6 | 1.15 | up | |
pos_7119 | N, N-dimethyl arachidonoyl amine | 0.59 | −0.75 | 1.10 × 10−5 | 1.15 | down | |
pos_3711 | 5-Oxopentanoate | 6.94 × 107 | 26.05 | 1.21 × 10−5 | 1.15 | up | |
pos_2819 | Piperidione | 1.97 | 0.98 | 1.22 × 10−5 | 1.15 | up | |
pos_544 | (11Z,14Z,17Z,20Z,23Z)-Hexacosapentaenoyl-CoA | 0.05 | −4.44 | 1.28 × 10−5 | 1.15 | down | |
pos_2676 | 3-Methyldioxyindole | 0.13 | −3.00 | 1.30 × 10−5 | 1.15 | down | |
pos_5026 | Phe Ala Ile Pro | 2.40 | 1.27 | 1.88 × 10−5 | 1.15 | up | |
pos_2066 | GDP-valienol | 0.02 | −5.90 | 2.26 × 10−5 | 1.15 | down |
Group | ID | Metabolite | Fold Change | log2FC | p-Value | VIP | Regulated |
---|---|---|---|---|---|---|---|
CI vs. SI | neg_2428 | Nadolol | 63.32 | 5.98 | 1.03 × 10−6 | 1.20 | up |
neg_1245 | Reduced coenzyme F420 | 4.87 | 2.28 | 1.76 × 10−6 | 1.20 | up | |
neg_4963 | Thiamine | 306.84 | 8.26 | 2.79 × 10−6 | 1.20 | up | |
neg_5554 | 2,3-Dehydro-gibberellin A9 | 0.09 | −3.45 | 5.37 × 10−6 | 1.20 | down | |
neg_3006 | Geldanamycin | 11.76 | 3.56 | 5.86 × 10−6 | 1.20 | up | |
neg_2431 | N-Formylmethionine | 26.36 | 4.72 | 8.62 × 10−6 | 1.20 | up | |
neg_1223 | Flavine mononucleotide (FMN) | 0.39 | −1.34 | 2.04 × 10−5 | 1.20 | down | |
neg_2901 | Triamcinolone Diacetate | 44.73 | 5.48 | 2.13 × 10−5 | 1.20 | up | |
neg_5570 | 4-Allyl-2-methoxyphenol | 28.65 | 4.84 | 2.74 × 10−5 | 1.20 | up | |
neg_2806 | dTDP-L-olivose | 10.17 | 3.35 | 2.82 × 10−5 | 1.20 | up | |
neg_5541 | Fumitremorgin C | 2.13 × 108 | 27.66 | 2.97 × 10−5 | 1.20 | up | |
neg_6257 | 5-Aminopentanamide | 1.98 | 0.98 | 3.37 × 10−5 | 1.20 | up | |
neg_2782 | Phenylacetylglycine | 5.05 | 2.34 | 3.47 × 10−5 | 1.20 | up | |
neg_697 | Pyroglutamic acid | 0.20 | −2.33 | 3.50 × 10−5 | 1.20 | down | |
neg_5703 | Gibberellin A44 diacid | 4.46 | 2.16 | 3.53 × 10−5 | 1.20 | up | |
CE vs. SE | neg_1676 | 2′-Deoxyadenosine | 218.85 | 7.77 | 3.72 × 10−8 | 1.10 | up |
neg_6845 | Tylosin | 0.48 | −1.05 | 1.10 × 10−6 | 1.10 | down | |
neg_1510 | UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-L-lysyl-D-alanine | 0.35 | −1.52 | 1.12 × 10−6 | 1.10 | down | |
neg_3166 | Linamarin | 28.44 | 4.83 | 2.27 × 10−6 | 1.10 | up | |
neg_2405 | gamma-glutamyl-ethylamide | 8.52 | 3.09 | 2.70 × 10−6 | 1.10 | up | |
neg_2784 | O-BENZYL-l-SERINE | 4.53 | 2.18 | 3.94 × 10−6 | 1.10 | up | |
neg_1104 | 3′-UMP | 8.39 | 3.07 | 4.01 × 10−6 | 1.10 | up | |
neg_1727 | 3,4-Dihydroxyphthalate | 0.10 | −3.29 | 4.33 × 10−6 | 1.10 | down | |
neg_2997 | Ciprofloxacin | 2.80 × 109 | 31.38 | 6.50 × 10−6 | 1.10 | up | |
neg_5639 | Abacavir | 0.14 | −2.79 | 6.72 × 10−6 | 1.10 | down | |
neg_1598 | S (8)-aminomethyldihydrolipoamide | 10.73 | 3.42 | 8.09 × 10−6 | 1.10 | up | |
neg_4048 | all-trans-4-Hydroxyretinoic acid | 4.21 | 2.07 | 8.64 × 10−6 | 1.09 | up | |
neg_1457 | C-1027 Chromophore | 0.23 | −2.09 | 8.69 × 10−6 | 1.10 | down | |
neg_3690 | 3-Ketosucrose | 13.89 | 3.80 | 8.85 × 10−6 | 1.10 | up | |
neg_5289 | N-Succinyl-L,L-2,6-diaminopimelate | 0.24 | −2.09 | 1.13 × 10−5 | 1.10 | down |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, X.; Han, H.; Zhang, J.; Xie, B.; Zhang, Y.; Liu, J.; Dong, W.; Hu, Y.; Yu, X.; Feng, Y. Transcriptomic and Metabolomic Analyses of Soybean Protein Isolate on Monascus Pigments and Monacolin K Production. J. Fungi 2024, 10, 500. https://doi.org/10.3390/jof10070500
Qin X, Han H, Zhang J, Xie B, Zhang Y, Liu J, Dong W, Hu Y, Yu X, Feng Y. Transcriptomic and Metabolomic Analyses of Soybean Protein Isolate on Monascus Pigments and Monacolin K Production. Journal of Fungi. 2024; 10(7):500. https://doi.org/10.3390/jof10070500
Chicago/Turabian StyleQin, Xueling, Haolan Han, Jiayi Zhang, Bin Xie, Yufan Zhang, Jun Liu, Weiwei Dong, Yuanliang Hu, Xiang Yu, and Yanli Feng. 2024. "Transcriptomic and Metabolomic Analyses of Soybean Protein Isolate on Monascus Pigments and Monacolin K Production" Journal of Fungi 10, no. 7: 500. https://doi.org/10.3390/jof10070500
APA StyleQin, X., Han, H., Zhang, J., Xie, B., Zhang, Y., Liu, J., Dong, W., Hu, Y., Yu, X., & Feng, Y. (2024). Transcriptomic and Metabolomic Analyses of Soybean Protein Isolate on Monascus Pigments and Monacolin K Production. Journal of Fungi, 10(7), 500. https://doi.org/10.3390/jof10070500