Advanced Fungal Biotechnologies in Accomplishing Sustainable Development Goals (SDGs): What Do We Know and What Comes Next?
Abstract
:1. Introduction
2. Fungal Biotechnologies and SDGs—How Far We Have Come
2.1. Fungal ‘High-Value’ Products to Achieve Global Food Security, Tackle Hunger and Malnutrition
2.2. Harnessing Pharmaceutical Metabolites from Fungi in Healthcare
2.3. Novel Fungal Cell Factories for the Production of Bioactive Metabolites
2.4. Fungi-Based Bioremediation for Environmental Subsistence
2.5. Addressing Climate Changes via Fungal Biotechnologies
3. Achievements and Prospects in the Present Decade: What Do We Know and What Comes Next?
4. The Road Ahead: Future Directions in a Fungal Bio-Based Economy
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Antonelli, A.; Smith, R.J.; Simmonds, M.S.J. Unlocking the properties of plants and fungi for sustainable development. Nat. Plants 2019, 5, 1100–1102. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, P.; Thakkar, S.; Dufossé, L. Antimicrobials from Endophytes as novel therapeutics to counter drug-resistant pathogens. Crit. Rev. Biotechnol. 2024, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, P.; Mishra, B.N.; Sangwan, N.S. β-glucosidases from the fungus Trichoderma: Efficient cellulose machinery in biotechnological application. Biomed. Res. Int. 2013, 2013, 203735. [Google Scholar] [CrossRef] [PubMed]
- Abhilash, P.C.; Dubey, R.K.; Tripathi, V.; Gupta, V.K.; Singh, H.B. Plant growth-promoting microorganisms for environmental sustainability. Trends Biotechnol. 2016, 34, 847–850. [Google Scholar] [CrossRef] [PubMed]
- Hawksworth, D.L.; Lücking, R. Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol. Spectr. 2017, 5, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Cairns, T.C.; Nai, C.; Meyer, V. How a fungus shapes biotechnology: 100 years of Aspergillus niger research. Fungal Biol. Biotechnol. 2018, 5, 13. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, J.A.; Barbosa, B.V.R.; Martins, B.d.A.; Guirlanda, C.P.; Moura, M.A.F. Use of the versatility of fungal metabolism to meet modern demands for healthy aging, functional foods, and sustainability. J. Fungi 2020, 6, 223. [Google Scholar] [CrossRef] [PubMed]
- Meyer, V.; Andersen, M.R.; Brakhage, A.A.; Braus, G.H.; Caddick, M.X.; Cairns, T.C.; de Vries, R.P.; Haarmann, T.; Hansen, K.; Hertz-Fowler, C.; et al. Current challenges of research on flamentous fungi in relation to human welfare and a sustainable bio-economy: A white paper. Fungal Biol. Biotechnol. 2016, 3, 6. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, P.; Dufossé, L. Focus and insights into the synthetic biology-mediated chassis of economically important fungi for the production of high-value metabolites. Microorganisms 2023, 11, 1141. [Google Scholar] [CrossRef]
- Skellam, E. Strategies for engineering natural product biosynthesis in Fungi. Trends Biotechnol. 2019, 37, 416–427. [Google Scholar] [CrossRef]
- Fungal genomes scoured for drugs. Nat. Biotechnol. 2022, 40, 628. [CrossRef]
- Pavarini, D.P.; da Silva, D.B.; Carollo, C.A.; Portella, A.P.F.; Latansio-Aidar, S.R.; Cavalin, P.O.; Oliveira, V.C.; Rosado, B.H.P.; Aidar, M.P.M.; Bolzani, V.S.; et al. Application of MALDI-MS analysis of Rainforest chemodiversity: A keystone for biodiversity conservation and sustainable use. J. Mass Spectrom. 2012, 47, 1482–1485. [Google Scholar] [CrossRef]
- Liang, M.-H.; Wang, L.; Wang, Q.; Zhu, J.; Jiang, J.G. High-value bioproducts from microalgae: Strategies and progress. Crit. Rev. Food Sci. Nutr. 2019, 59, 2423–2441. [Google Scholar] [CrossRef]
- Grigoriev, I.V.; Nikitin, R.; Haridas, S.; Kuo, A.; Ohm, R.; Otillar, R.; Riley, R.; Salamov, A.; Zhao, X.; Korzeniewski, F.; et al. MycoCosm portal: Gearing up for 1000 fungal genomes. Nucleic Acids Res. 2014, 42, D699–D704. [Google Scholar] [CrossRef] [PubMed]
- Stajich, J.E.; Harris, T.; Brunk, B.P.; Brestelli, J.; Fischer, S.; Harb, O.S.; Kissinger, J.C.; Li, W.; Nayak, V.; Pinney, D.F.; et al. FungiDB: An integrated functional genomics database for fungi. Nucleic Acids Res. 2012, 40, D675–D681. [Google Scholar] [CrossRef] [PubMed]
- Cavicchioli, R.; Ripple, W.J.; Timmis, K.N.; Azam, F.; Bakken, L.R.; Baylis, M.; Behrenfeld, M.J.; Boetius, A.; Boyd, P.W.; Classen, A.T.; et al. Scientists’ warning to humanity: Microorganisms and climate change. Nat. Rev. Microbiol. 2019, 17, 569–586. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, K.; Chen, Y.; Tan, T.; Nielsen, J. Third-generation biorefineries as the means to produce fuels and chemicals from CO2. Nat. Catal. 2020, 3, 274–288. [Google Scholar] [CrossRef]
- Rosenboom, J.-G.; Langer, R.; Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 2022, 7, 117–137. [Google Scholar] [CrossRef]
- Diaz-Rodriguez, A.M.; Gastelum, L.A.S.; Pablos, C.M.F.; Parra-Cota, F.I.; Santoyo, G.; Puente, M.L.; Bhattacharya, D.; Mukherjee, J.; Santos-Villalobos, S.d.L. The current and future role of microbial culture collections in food security worldwide. Front. Sustain. Food Syst. 2021, 4, 101. [Google Scholar] [CrossRef]
- Field, K.J.; Daniell, T.; Johnson, D.; Helgason, T. Mycorrhizal mediation of sustainable development goals. Plants People Planet 2021, 3, 430–432. [Google Scholar] [CrossRef]
- Pérez-Moreno, J.; Guerin-Laguette, A.; Rinaldi, A.C.; Yu, F.; Verbeken, A.; Hernández-Santiago, F.; Martínez-Reyes, M. Edible mycorrhizal fungi of the world: What is their role in forest sustainability, food security, biocultural conservation and climate change? Plants People Planet 2021, 3, 471–490. [Google Scholar] [CrossRef]
- Frew, A. Contrasting effects of commercial and native arbuscular mycorrhizal fungal inoculants on plant biomass allocation, nutrients, and phenolics. Plants People Planet 2020, 3, 536–540. [Google Scholar] [CrossRef]
- Thirkell, T.J.; Campbell, M.; Driver, J.; Pastok, D.; Merry, B.; Field, K.J. Cultivar-dependent increases in mycorrhizal nutrient acquisition by barley in response to elevated CO2. Plants People Planet 2020, 3, 553–566. [Google Scholar] [CrossRef]
- Watts-Williams, S.J.; Gilbert, S.E. Arbuscular mycorrhizal fungi affect the concentration and distribution of nutrients in the grain differently in barley compared with wheat. Plants People Planet 2020, 3, 567–577. [Google Scholar] [CrossRef]
- Johnson, L.J.A.N.; Gónzalez-Chávez, M.C.A.; Carrillo-González, R.; Porras-Alfaro, A.; Mueller, G.M. Vanilla aerial and terrestrial roots host rich communities of orchid mycorrhizal and ectomycorrhizal fungi. Plants People Planet 2020, 3, 541–552. [Google Scholar] [CrossRef]
- IPCC. Climate change 2021: The physical science basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, P.V., Zhai, A., Pirani, S.L., Connors, C., Péan, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M.I., Gomis, M., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Brito, I.; Carvalho, M.; Goss, M.J. Managing the functional diversity of arbuscular mycorrhizal fungi for the sustainable intensification of crop production. Plants People Planet 2021, 3, 491–505. [Google Scholar] [CrossRef]
- Cobb, A.B.; Duell, E.B.; Haase, K.B.; Miller, R.M.; Wu, Y.Q.; Wilson, G.W.T. Utilizing mycorrhizal responses to guide selective breeding for agricultural sustainability. Plants People Planet 2021, 3, 578–587. [Google Scholar] [CrossRef]
- Verbruggen, E.; Struyf, E.; Vicca, S. Can arbuscular mycorrhizal fungi speed up carbon sequestration by enhanced weathering? Plants People Planet 2021, 3, 445–453. [Google Scholar] [CrossRef]
- Vuong, P.; Chong, S.; Kaur, P. The little things that matter: How bioprospecting microbial biodiversity can build towards the realization of United Nations Sustainable Development Goals. NPJ Biodivers. 2022, 1, 4. [Google Scholar] [CrossRef]
- Liu, L.; Chen, Z.; Liu, W.; Ke, X.; Tian, X.; Chu, J. Cephalosporin C biosynthesis and fermentation in Acremonium chrysogenum. Appl. Microbiol. Biotechnol. 2022, 106, 6413–6426. [Google Scholar] [CrossRef]
- Drugs.com. Lentinan. Available online: https://www.drugs.com/npp/lentinan.html (accessed on 21 June 2024).
- Browne, A.G.P.; Fisher, M.C.; Henk, D.A. Species-specific PCR to describe local-scale distributions of four cryptic species in the Penicillium chrysogenum complex. Fungal Ecol. 2013, 6, 419–429. [Google Scholar] [CrossRef]
- Stossel, T.P. The discovery of statins. Cell 2008, 134, 903–905. [Google Scholar] [CrossRef]
- van den Berg, M.A. Impact of the Penicillium chrysogenum genome on industrial production of metabolites. Appl. Microbiol. Biotechnol. 2011, 92, 45–53. [Google Scholar] [CrossRef]
- Anand, S.; Singh, K.S.; Aggarwal, D. Expanding Avenues for Probiotic Yeast. In Microbial Cell Factories, 1st ed.; Sharma, D., Saharan, B.S., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 125–141. [Google Scholar]
- Boruta, T.; Bizukojc, M. Production of lovastatin and itaconic acid by Aspergillus terreus: A comparative perspective. World J. Microbiol. Biotechnol. 2017, 33, 34. [Google Scholar] [CrossRef] [PubMed]
- Richter, L.; Wanka, F.; Boecker, S.; Storm, D.; Kurt, T.; Vural, O.; Süßmuth, R.; Meyer, V. Engineering of Aspergillus niger for the production of secondary metabolites. Fungal Biol. Biotechnol. 2014, 1, 4. [Google Scholar] [CrossRef] [PubMed]
- Kraševec, N.; Milunovic, T.; Lasnik, M.A.; Lukancic, I.; Komel, R.; Porekar, V.G. Human granulocyte colony-stimulating factor (G-CSF) produced in the filamentous fungus Aspergillus niger. Acta Chim. Slov. 2014, 61, 709–717. [Google Scholar]
- Kuivanen, J.; Wang, Y.J.; Richard, P. Engineering Aspergillus niger for galactaric acid production: Elimination of galactaric acid catabolism by using RNA sequencing and CRISPR/Cas9. Microb. Cell Fact. 2016, 15, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Mir, R.A.; Kaushik, P.S.; Chowdery, R.A.; Anuradha, M. Elicitation of forskolin in cultures of Rhizactonia bataticola-a phytochemical synthesizing endophytic fungi. Int. Pharm. Pharmaceut. Sci. 2015, 7, 185–189. [Google Scholar]
- Maehara, S.; Simanjuntak, P.; Ohashi, K.; Shibuya, H. Composition of endophytic fungi living in Cinchona ledgeriana (Rubiaceae). J. Nat. Med. 2010, 64, 227–230. [Google Scholar] [CrossRef]
- Kaul, S.; Ahmed, M.; Zargar, K.; Sharma, P.; Dhar, M.K. Prospecting endophytic fungal assemblage of Digitalis lanata Ehrh. (foxglove) as a novel source of digoxin: A cardiac glycoside. 3 Biotech 2013, 3, 335–340. [Google Scholar] [CrossRef]
- Nanou, K.; Roukas, T. Waste cooking oil: A new substrate for carotene production by Blakeslea trispora in submerged fermentation. Bioresour. Technol. 2016, 203, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Mantzouridou, F.T.; Naziri, E. Scale translation from shaken to diffused bubble aerated systems for lycopene production by Blakeslea trispora under stimulated conditions. Appl. Microbiol. Biotechnol. 2017, 101, 1845–1856. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, V.; Katyal, P.; Poonia, A.K.; Kaur, J.; Puniya, A.K.; Panwar, H. Natural pigment from Monascus: The production and therapeutic significance. J. Appl. Microbiol. 2021, 133, 18–38. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xiao, W.; Wang, Y.; Liu, H.; Li, X.; Yuan, Y. Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering. Microb. Cell Fact. 2016, 15, 113. [Google Scholar] [CrossRef] [PubMed]
- Procópio, D.P.; Lee, J.W.; Shin, J.; Tramontina, R.; Ávila, P.F.; Brenelli, L.B.; Squina, F.M.; Damasio, A.; Rabelo, S.C.; Goldbeck, R.; et al. Metabolic engineering of Saccharomyces cerevisiae for second-generation ethanol production from xylo-oligosaccharides and acetate. Sci. Rep. 2023, 13, 19182. [Google Scholar] [CrossRef]
- Runguphan, W.; Keasling, J.D. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab. Eng. 2014, 21, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Paramasivan, K.; Mutturi, S. Progress in terpene synthesis strategies through the engineering of Saccharomyces cerevisiae. Crit. Rev. Biotechnol. 2017, 37, 974–989. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Wang, Y.; Wang, J.; Yang, Y.; Hao, L. Evaluation of the antioxidant activity of extracellular polysaccharides from Morchella esculenta. Food Funct. 2013, 4, 871–879. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, C.; Ren, L.; Guo, H.; Li, Y. Production of pork sausages using Pleaurotus eryngii with different treatments as replacements for pork back fat. J. Food Sci. 2019, 84, 3091–3098. [Google Scholar] [CrossRef]
- Finnigan, T.J.A.; Wall, B.T.; Wilde, P.J.; Stephens, F.B.; Taylor, S.L.; Freedman, M.R. Mycoprotein: The future of nutritious nonmeat protein, a symposium review. Curr. Dev. Nutr. 2019, 3, nzz021. [Google Scholar] [CrossRef]
- Barzee, T.J.; Cao, L.; Pan, Z.; Zhang, R. Fungi for future foods. J. Future Foods 2021, 1, 25–37. [Google Scholar] [CrossRef]
- Patricia, M. Cheese: Exploring Taste and Tradition; Gibbs Smith: Layton, UT, USA, 2010; p. 12. ISBN 9781423606512. [Google Scholar]
- Caron, T.; Piver, M.L.; Péron, A.C.; Lieben, P.; Lavigne, R.; Brunel, S.; Roueyre, D.; Place, M.; Bonnarme, P.; Giraud, T.; et al. Strong effect of Penicillium roqueforti populations on volatile and metabolic compounds responsible for aromas, flavor and texture in blue cheeses. Int. J. Food Microbiol. 2021, 354, 109174. [Google Scholar] [CrossRef] [PubMed]
- Jo, C.; Zhang, J.; Tam, J.M.; Church, G.M.; Khalil, A.S.; Segrè, D.; Tang, T.C. Unlocking the magic in mycelium: Using synthetic biology to optimize filamentous fungi for biomanufacturing and sustainability. Mater. Today Bio 2023, 19, 100560. [Google Scholar] [CrossRef]
- Chai, K.F.; Ng, K.R.; Samarasiri, M.; Chen, W.N. Precision fermentation to advance fungal food fermentations. Curr. Opin. Food Sci. 2022, 47, 100881. [Google Scholar] [CrossRef]
- Bamforth, C.W.; Cook, D.J. Food, Fermentation, and Micro-Organisms: Second Edition; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2019. [Google Scholar]
- Allwood, J.G.; Wakeling, L.T.; Bean, D.C. Fermentation and the microbial community of Japanese koji and miso: A review. J. Food Sci. 2021, 86, 2194–2207. [Google Scholar] [CrossRef] [PubMed]
- Papagianni, M. Advances in citric acid fermentation by Aspergillus niger: Biochemical aspects, membrane transport and modeling. Biotechnol. Adv. 2007, 25, 244–263. [Google Scholar] [CrossRef] [PubMed]
- Larroude, M.; Celinska, E.; Back, A.; Thomas, S.; Nicaud, J.M.; Ledesma-Amaro, R. A synthetic biology approach to transform Yarrowia lipolytica into a competitive biotechnological producer of b-carotene. Biotechnol. Bioeng. 2018, 115, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Pollmann, H.; Breitenbach, J.; Sandmann, G. Engineering of the carotenoid pathway in Xanthophyllomyces dendrorhous leading to the synthesis of zeaxanthin. Appl. Microbiol. Biotechnol. 2017, 101, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, T.; Sakuradani, E.; Okuda, T.; Kikukawa, H.; Ando, A.; Kishino, S.; Izumi, Y.; Bamba, T.; Shima, J.; Ogawa, J. Metabolic engineering of oleaginous fungus Mortierella alpina for high production of oleic and linoleic acids. Bioresour. Technol. 2017, 247, 1610–1615. [Google Scholar] [CrossRef]
- Lu, X.; Brennan, M.A.; Serventi, L.; Liu, J.; Guan, W.; Brennan, C.S. Addition of mushroom powder to pasta enhances the antioxidant content and modulates the predictive glycaemic response of pasta. Food Chem. 2018, 264, 199–209. [Google Scholar] [CrossRef]
- Becker, J.; Tehrani, H.H.; Ernst, P.; Blank, L.M.; Wierckx, N. An optimized Ustilago maydis for Itaconic acid production at maximal theoretical yield. J. Fungi 2020, 7, 20. [Google Scholar] [CrossRef]
- Rosa, J.C.C.; Colombo, L.T.; Alvim, M.C.T.; Avonce, N.; Dijck, P.V.; Passos, F.M.L. Metabolic engineering of Kluyveromyces lactis for L-ascorbic acid (vitamin C) biosynthesis. Microb. Cell Fact. 2013, 12, 59. [Google Scholar] [CrossRef]
- Fitz, E.; Gamauf, C.; Seiboth, B.; Wanka, F. Deletion of the small GTPase rac1 in Trichoderma reesei provokes hyperbranching and impacts growth and cellulase production. Fungal Biol. Biotechnol. 2019, 6, 16. [Google Scholar] [CrossRef] [PubMed]
- Mycotex: Textile Made from Mushroom Mycelium. Available online: https://materialdistrict.com/article/mycotex-textile-mushroom-mycelium/ (accessed on 21 June 2024).
- Haneef, M.; Ceseracciu, L.; Canale, C.; Bayer, I.S.; Heredia-Guerrero, J.A.; Athanassiou, A. Advanced materials from fungal mycelium: Fabrication and tuning of physical properties. Sci. Rep. 2017, 7, 41292. [Google Scholar] [CrossRef]
- Somacal, S.; Pinto, V.S.; Vendruscolo, R.G.; Somacal, S.; Wagner, R.; Ballus, C.A.; Kuhn, R.C.; Mazutti, M.A.; Menezes, C.R. Maximization of microbial oil containing polyunsaturated fatty acid production by Umbelopsis (Mortierella) isabellina. Biocatal. Agric. Biotechnol. 2020, 30, 101831. [Google Scholar] [CrossRef]
- Mattern, D.J.; Valiante, V.; Horn, F.; Petzke, L.; Brakhage, A.A. Rewiring of the Austinoid biosynthetic pathway in filamentous fungi. ACS Chem. Biol. 2017, 12, 2927–2933. [Google Scholar] [CrossRef] [PubMed]
- Mascarin, G.M.; Jaronski, S.T. The production and uses of Beauveria bassiana as a microbial insecticide. World J. Microbiol. Biotechnol. 2016, 32, 177. [Google Scholar] [CrossRef]
- Mascarin, G.M.; Lopes, R.B.; Delalibera, Í., Jr.; Fernandes, É.K.K.; Luz, C.; Faria, M. Current status and perspectives of fungal entomopathogens used for microbial control of arthropod pests in Brazil. J. Invertebr. Pathol. 2019, 165, 46–53. [Google Scholar] [CrossRef]
- Djonovic, S.; Pozo, M.J.; Dangott, L.J.; Howell, C.R.; Kenerley, C.M. Sm1, a proteinaceous elicitor by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol. Plant-Microbe Interact. 2006, 19, 838–853. [Google Scholar] [CrossRef]
- Garnica-Vergara, A.; Barrera-Ortiz, S.; Muñoz-Parra, E.; Raya-González, J.; Méndez-Bravo, A.; Macías-Rodríguez, L.; Ruiz-Herrera, L.F.; López-Bucio, J. The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning. New Phytol. 2015, 209, 1496–1512. [Google Scholar] [CrossRef]
- Vinale, F.; Marra, R.; Scala, F.; Ghisalberti, E.L.; Lorito, M.; Sivasithamparam, K. Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett. Appl. Microbiol. 2006, 43, 143–148. [Google Scholar] [CrossRef] [PubMed]
- El-Saadony, M.T.; Saad, A.M.; Soliman, S.M.; Salem, H.M.; Ahmed, A.I.; Mahmood, M.; El-Tahan, A.M.; Ebrahim, A.A.M.; El-Mageed, T.A.A.; Negm, S.H.; et al. Plant growth-promoting microorganisms as biocontrol agents of plant diseases: Mechanisms, challenges and future perspectives. Front. Plant Sci. 2022, 13, 923880. [Google Scholar] [CrossRef] [PubMed]
- Marumo, S.; Katayama, M.; Komori, E.; Ozaki, Y.; Natsume, M.; Kondo, S. Microbial production of Abscisic acid by Botrytis cinerea. Agri. Biol. Chem. 1982, 46, 1967–1968. [Google Scholar] [CrossRef]
- Shanthiyaa, V.; Saravanakumar, D.; Rajendran, L.; Karthikeyan, G.; Prabakar, K.; Raguchander, T. Use of Chaetomium globosum for biocontrol of potato late blight disease. Crop Prot. 2013, 52, 33–38. [Google Scholar] [CrossRef]
- Kusari, S.; Hertweck, C.; Spiteller, M. Chemical ecology of endophytic fungi: Origins of secondary metabolites. Chem. Biol. 2012, 19, 792–798. [Google Scholar] [CrossRef] [PubMed]
- Khoury, C.K.; Bjorkman, A.D.; Dempewolf, H.; Ramirez-Villegas, J.; Guarino, L.; Jarvis, A.; Struik, P.C. Increasing homogeneity in global food supplies and the implications for food security. Proc. Natl. Acad. Sci. USA 2014, 111, 4001–4006. [Google Scholar] [CrossRef] [PubMed]
- Oaklander, M. Many Foods Subsidized By the Government Are Unhealthy. 2016. Available online: http://time.com/4393109/food-subsidies-obesity (accessed on 5 March 2024).
- Tiwari, P. Sustainable agriculture and nanotechnologies for food and nutraceutical production—An update. In Plant and Nanoparticles; Chen, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 315–338. [Google Scholar]
- Tiwari, P.; Bae, H. Endophytic fungi: Key insights, emerging prospects, and challenges in natural product drug discovery. Microorganisms 2022, 10, 360. [Google Scholar] [CrossRef]
- Tiwari, P.; Seogchan, K.; Bae, H. Plant-endophyte associations: Rich yet under-explored sources of novel bioactive molecules and applications. Microbiol. Res. 2023, 266, 127241. [Google Scholar] [CrossRef]
- Mallikarjuna, N.; Yellamma, K. Genetic and metabolic engineering of microorganisms for the production of various food products. Recent Dev. Appl. Microbiol. Biochem. 2019, 60, 167–182. [Google Scholar]
- Tiwari, P.; Khare, T.; Shriram, V.; Bae, H.; Kumar, V. Plant synthetic biology for producing potent phyto-antimicrobials to combat antimicrobial resistance. Biotechnol. Adv. 2021, 48, 107729. [Google Scholar] [CrossRef]
- Roth, M.G.; Westrick, N.M.; Baldwin, T.T. Fungal biotechnology: From yesterday to tomorrow. Front. Fungal Biol. 2023, 4, 1135263. [Google Scholar] [CrossRef] [PubMed]
- Hashempour-Baltork, F.; Khosravi-Darani, K.; Hosseini, H.; Farshi, P.; Reihani, S.F.S. mycoproteins as safe meat substitutes. J. Clean. Prod. 2020, 253, 119958. [Google Scholar] [CrossRef]
- Derbyshire, E.J.; Delange, J. Fungal protein—What is it and what is the health evidence? A systematic review focusing on mycoprotein. Front. Sustain. Food Syst. 2021, 5, 581682. [Google Scholar] [CrossRef]
- Souza Filho, P.F.; Andersson, D.; Ferreira, J.A.; Taherzadeh, M.J. Mycoprotein: Environmental impact and health aspects. World J. Microbiol. Biotechnol. 2019, 35, 147. [Google Scholar] [CrossRef] [PubMed]
- Vega Oliveros, C. Comparación de la Producción de Metabolitos Secundarios Bioactivos con dos Fuentes de Carbono en la Fermentación Líquida de Una Especie de Pleurotus y su uso Potencial en un Alimento de Tipo Funcional. Ph.D. Thesis, Universidad Nacional de Colombia, Bogotá, DC, Colombia, 2016. [Google Scholar]
- Tiwari, P. Endophytes: Types, Potential Uses and Mechanisms of Action; Nova Publishers: Hauppauge, NY, USA, 2022; ISBN 979-8-88697-205-4. [Google Scholar]
- Li, R.; Zhang, J.; Zhang, T.H. Immunomodulatory activities of polysaccharides from Ganoderma on immune effector cells. Food Chem. 2020, 340, 127933. [Google Scholar]
- Wen, L.; Gao, Q.; Ma, C.W.; Ge, Y.; You, L.; Liu, R.H.; Fu, X.; Liu, D. Effect of polysaccharides from Tremella fuciformis on UV-induced photoaging. J. Func. Foods. 2016, 20, 400–441. [Google Scholar] [CrossRef]
- Jeong, S.C.; Koyyalamudi, S.R.; Jeong, Y.T.; Song, C.H.; Pang, G. Macrophage immunomodulating and antitumor activities of polysaccharides isolated from Agaricus bisporus white button mushrooms. J. Med. Food 2012, 15, 58–65. [Google Scholar] [CrossRef]
- Ojwach, J.; Adetunji, A.I.; Mutanda, T.; Mukaratirwa, S. Oligosaccharides production from coprophilous fungi: An emerging functional food with potential health-promoting properties. Biotechnol. Rep. 2022, 33, e00702. [Google Scholar] [CrossRef] [PubMed]
- Challa, S.; Dutta, T.; Neelapu, N.R.R. Fungal White Biotechnology Applications for Food Security: Opportunities and Challenges. In Recent Advancement in White Biotechnology through Fungi; Yadav, A., Singh, S., Mishra, S., Gupta, A., Eds.; Fungal Biology; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Valverde, M.E.; Hernandez-Perez, T.; Paredes-Lopez, O. Edible mushrooms: Improving human health and promoting quality life. Int. J. Microbiol. 2015, 2015, 376387. [Google Scholar] [CrossRef]
- Mattila, P.; Konko, K.; Eurola, M.; Pihlava, J.M.; Astola, J.; Vahteristo, L.; Hietaniemi, V.; Kumpulainen, J.; Valtonen, M.; Piironen, V. Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. J. Agric. Food Chem. 2001, 49, 2343–2348. [Google Scholar] [CrossRef]
- Kalac, P. A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. J. Sci. Food Agric. 2013, 93, 209. [Google Scholar] [CrossRef] [PubMed]
- Aida, F.M.; Shuhaimi, M.; Yazid, M.; Maaruf, A.G. Mushroom as a potential source of prebiotics: A review. Trends Food Sci. Technol. 2009, 20, 567–575. [Google Scholar] [CrossRef]
- Cheung, P.C. Mini-review on edible mushrooms as source of dietary fiber: Preparation and health benefits. Food Sci. Hum. Wellness 2013, 2, 162–166. [Google Scholar] [CrossRef]
- Available online: https://www.grandviewresearch.com/industry-analysis/mushroom-market (accessed on 20 June 2024).
- Tian, Y.; Nichols, R.G.; Roy, P.; Gui, W.; Smith, P.B.; Zhang, J.; Lin, Y.; Weaver, V.; Cai, J.; Patterson, A.D.; et al. Prebiotic effects of white button mushroom (Agaricus bisporus) feeding on succinate and intestinal gluconeogenesis in C57BL/6 mice. J. Funct. Foods 2018, 45, 223–232. [Google Scholar] [CrossRef]
- Singh, I.; Thakur, P. Impact of fungi on the world economy and its sustainability: Current status and potentials. In Fungal Resources for Sustainable Economy; Singh, I., Ed.; Springer Nature: Singapore, 2023. [Google Scholar] [CrossRef]
- Aly, A.H.; Debbab, A.; Proksch, P. Fifty years of drug discovery from fungi. Fungal Divers. 2011, 50, 3–19. [Google Scholar] [CrossRef]
- Singh, V.K.; Tiwari, R.; Kumar, A.; Gupta, R.; Kumar, R. Therapeutic potential of fungal endophyte-derived bioactive compound in Protozoan diseases. In Endophytic Fungi Fungal Biology; Singh, B.P., Abdel-Azeem, A.M., Gautam, V., Singh, G., Singh, S.K., Eds.; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Prescott, T.A.K.; Hill, R.; Mas-Claret, E.; Gaya, E.; Burns, E. Fungal drug discovery for chronic disease: History, new discoveries and new approaches. Biomolecules 2023, 13, 986. [Google Scholar] [CrossRef] [PubMed]
- Bushley, K.E.; Raja, R.; Jaiswal, P.; Cumbie, J.S.; Nonogaki, M.; Boyd, A.E.; Owensby, C.A.; Knaus, B.J.; Elser, J.; Miller, D.; et al. The genome of Tolypocladium inflatum: Evolution, organization, and expression of the cyclosporin biosynthetic gene cluster. PLoS Genet. 2013, 9, e1003496. [Google Scholar] [CrossRef] [PubMed]
- Freedman, R.; Yu, R.; Sarkis, A.W.; Hedstrom, L. A structural determinant of mycophenolic acid resistance in eukaryotic inosine 5′-monophosphate dehydrogenases. Protein Sci. 2020, 29, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Chew, W.S.; Wang, W.; Herr, D.R. To fingolimod and beyond: The rich pipeline of drug candidates that target S1P signaling. Pharmacol. Res. 2016, 113, 521–532. [Google Scholar] [CrossRef]
- Haarmann, T.; Rolke, Y.; Giesbert, S.; Tudzynski, P. Ergot: From witchcraft to biotechnology. Mol. Plant Pathol. 2009, 10, 563–577. [Google Scholar] [CrossRef]
- Ozery, M.; Wadhwa, R. StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Endo, A. Monacolin K, a new hypocholesterolemic agent produced by a Monascus species. J. Antibiot. 1979, 32, 852–854. [Google Scholar] [CrossRef]
- Alberts, A.W.; Chen, J.; Kuron, G.; Hunt, V.; Huff, J.; Hoffman, C.; Rothrock, J.; Lopez, M.; Joshua, H.; Harris, E.; et al. Mevinolin: A highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc. Natl. Acad. Sci. USA 1980, 77, 3957–3961. [Google Scholar] [CrossRef] [PubMed]
- Subhan, M.; Faryal, R.; Macreadie, I. Exploitation of Aspergillus terreus for the production of natural statins. J. Fungi 2016, 2, 13. [Google Scholar] [CrossRef] [PubMed]
- Gomes, N.G.M.; Lefranc, F.; Kijjoa, A.; Kiss, R. Can some marine-derived fungal metabolites become actual anticancer agents? Mar. Drugs 2015, 13, 3950–3991. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, P.; Bose, S.K.; Park, K.-I.; Dufosse, L.; Fouillaud, M. Plant-microbe interactions under the extreme habitats and their potential applications. Microorganisms 2024, 12, 448. [Google Scholar] [CrossRef] [PubMed]
- Meyer, V.; Cairns, T.; Barthel, L.; King, R.; Kunz, P.; Schmideder, S.; Müller, H.; Briesen, H.; Dinius, A.; Krull, R. Understanding and controlling filamentous growth of fungal cell factories: Novel tools and opportunities for targeted morphology engineering. Fungal Biol. Biotechnol. 2021, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- El-Gendi, H.; Saleh, A.K.; Badierah, R.; Redwan, E.M.; El-Maradny, Y.A.; El-Fakharany, E.M. A Comprehensive insight into fungal enzymes: Structure, classification, and their role in mankind’s challenges. J. Fungi 2021, 8, 23. [Google Scholar] [CrossRef] [PubMed]
- Cairns, T.C.; Zheng, X.; Zheng, P.; Sun, J.; Meyer, V. Moulding the mould: Understanding and reprogramming filamentous fungal growth and morphogenesis for next generation cell factories. Biotechnol. Biofuels 2019, 12, 77. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 2012, 75, 311–335. [Google Scholar] [CrossRef]
- Yuan, Y.; Cheng, S.; Bian, G.; Yan, P.; Ma, Z.; Dai, W.; Chen, R.; Fu, S.; Huang, H.; Chi, H.; et al. Efficient exploration of terpenoid biosynthetic gene clusters in filamentous fungi. Nat. Catal. 2022, 5, 277–287. [Google Scholar] [CrossRef]
- Wang, Q.; Zhong, C.; Xiao, H. Genetic Engineering of filamentous fungi for efficient protein expression and secretion. Front. Bioeng. Biotechnol. 2020, 8, 293. [Google Scholar] [CrossRef]
- Booking, S.P.; Wiebe, M.G.; Robson, G.D.; Hansen, K.; Christiansen, L.H.; Trinci, A.P.J. Effect of branch frequency in Aspergillus oryzae on protein secretion and culture viscosity. Biotechnol. Bioeng. 1999, 65, 638–648. [Google Scholar] [CrossRef]
- He, R.; Li, C.; Ma, L.; Zhang, D.; Chen, S. Effect of highly branched hyphal morphology on the enhanced production of cellulase in Trichoderma reesei DES-15. Biotech 2016, 6, 214. [Google Scholar] [CrossRef]
- Dymond, J.S.; Richardson, S.M.; Coombes, C.E.; Babatz, T.; Muller, H.; Annaluru, N.; Blake, W.J.; Schwerzmann, J.W.; Dai, J.; Lindstrom, D.L.; et al. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature 2011, 477, 471–476. [Google Scholar] [CrossRef]
- Shao, Y.; Lu, N.; Wu, Z.; Cai, C.; Wang, S.; Zhang, L.-L.; Zhou, F.; Xiao, S.; Liu, L.; Zeng, X.; et al. Creating a functional single-chromosome yeast. Nature 2018, 560, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Sun, X.; Cormack, B.P.; Boeke, J.D. Karyotype engineering by chromosome fusion leads to reproductive isolation in yeast. Nature 2018, 560, 392–396. [Google Scholar] [CrossRef]
- Zheng, X.; Zheng, P.; Zhang, K.; Cairns, T.C.; Meyer, V.; Sun, J.; Ma, Y. 5S rRNA promoter for guide RNA expression enabled highly efficient CRISPR/Cas9 genome editing in Aspergillus niger. ACS Synthetic Biol. 2018, 8, 1568–1574. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Chen, L.; Jiang, Y.; Zhou, Z.; Zou, G. Effcient genome editing in flamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discov. 2015, 1, 15007. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Gao, R.; Li, J.; Lin, L.; Zhao, J.; Sun, W.; Tian, C. Development of a genome editing CRISPR/Cas9 system in thermophilic fungal Myceliophthora species and its application to hyper-cellulase production strain engineering. Biotechnol. Biofuels 2017, 10, 1. [Google Scholar] [CrossRef]
- Katayama, T.; Tanaka, Y.; Okabe, T.; Nakamura, H.; Fujii, W.; Kitamoto, K.; Maruyama, J.I. Development of a genome editing technique using the CRISPR/Cas9 system in the industrial flamentous fungus Aspergillus oryzae. Biotechnol. Lett. 2016, 38, 637–642. [Google Scholar] [CrossRef]
- Pohl, C.; Kiel, J.A.K.W.; Driessen, A.J.M.; Bovenberg, R.A.L.; Nygard, Y. CRISPR/Cas9 based genome editing of Penicillium chrysogenum. ACS Synth. Biol. 2016, 5, 754–764. [Google Scholar] [CrossRef] [PubMed]
- Dijk, J.W.A.; Wang, C.C.C. Heterologous expression of fungal secondary metabolite pathways in the Aspergillus nidulans host system. Methods Enzymol. 2016, 575, 127–142. [Google Scholar] [PubMed]
- McLean, K.J.; Hans, M.; Meijrink, B.; van Scheppingen, W.B.; Vollebregt, A.; Tee, K.L.; van der Laan, J.-M.; Leys, D.; Munro, A.W.; Berg, M.A.v.D. Single-step fermentative production of the cholesterol-lowering drug pravastatin via reprogramming of Penicillium chrysogenum. Proc. Natl. Acad. Sci. USA 2015, 112, 2847–2852. [Google Scholar] [CrossRef] [PubMed]
- Steiniger, C.; Hofmann, S.; Mainz, A.; Kaiser, M.; Voigt, K.; Meyer, V.; Süssmuth, R.D. Harnessing fungal nonribosomal cyclodepsipeptide synthetases for mechanistic insights and tailored engineering. Chem. Sci. 2017, 8, 7834–7843. [Google Scholar] [CrossRef] [PubMed]
- Geib, E.; Brock, M. ATNT: An enhanced system for expression of polycistronic secondary metabolite gene clusters in Aspergillus niger. Fungal Biol. Biotechnol. 2017, 4, 13. [Google Scholar] [CrossRef]
- Jorgensen, T.R.; Goosen, T.; Hondel, C.; Ram, A.F.J.; Iversen, J.J.L. Transcriptomic comparison of Aspergillus niger growing on two different sugars reveals coordinated regulation of the secretory pathway. BMC Genomics 2009, 10, 44. [Google Scholar] [CrossRef] [PubMed]
- Wanka, F.; Cairns, T.; Boecker, S.; Berens, C.; Happel, A.; Zheng, X.; Sun, J.; Krappmann, S.; Meyer, V. Tet-On, or Tet-Of, that is the question: Advanced conditional gene expression in Aspergillus. Fungal Genet. Biol. 2016, 89, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Schmideder, S.; Barthel, L.; Friedrich, T.; Thalhammer, M.; Kovačević, T.; Niessen, L.; Meyer, V.; Briesen, H. An X-ray microtomography-based method for detailed analysis of the three-dimensional morphology of fungal pellets. Biotechnol. Bioeng. 2019, 116, 1355–1365. [Google Scholar] [CrossRef] [PubMed]
- Tomer, A.; Singh, R.; Singh, S.K.; Dwivedi, S.A.; Reddy, C.U.; Keloth, M.R.A.; Rachel, R. Role of fungi in bioremediation and environmental sustainability. In Mycoremediation and Environmental Sustainability; Prasad, R., Nayak, S.C., Kharwar, R.N., Dubey, N.K., Eds.; Fungal Biology; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Bisht, J.; Harsh, N.S.; Palni, L.M.; Agnihotri, V.; Kumar, A. Biodegradation of chlorinated organic pesticides endosulfan and chlorpyrifos in soil extract broth using fungi. Remediat. J. 2019, 29, 63–77. [Google Scholar] [CrossRef]
- Tiwari, P.; Muhammad, A.; Bae, H. Endophyte-mediated bioremediation—An efficient biological strategy in ecological subsistence and agriculture. In Endophytic and Arbuscular Mycorrhizal Fungi and Their Role in Sustainable Agriculture; Erwin, D.J., Ed.; Nova Publishers: Hauppauge, NY, USA, 2023; ISBN 979-8-88697-766-0. [Google Scholar]
- Tiwari, P.; Bae, H. Trends in harnessing plant Endophytic microbiome for heavy metal mitigation in plants: A perspective. Plants 2023, 12, 1515. [Google Scholar] [CrossRef]
- Alaux, P.-L.; Zhang, Y.; Gilbert, L.; Johnson, D. Can common mycorrhizal fungal networks be managed to enhance ecosystem functionality? Plant People Planet 2021, 3, 433–444. [Google Scholar] [CrossRef]
- Friesen, M.L.; Porter, S.S.; Stark, S.C.; von Wettberg, E.J.; Sachs, J.L.; Martinez-Romero, E. Microbially mediated plant functional traits. Annu. Rev. Ecol. Evol. Syst. 2011, 42, 23–46. [Google Scholar] [CrossRef]
- Ceci, A.; Pinzari, F.; Russo, F.; Persiani, A.M.; Gadd, G.M. Roles of saprotrophic fungi in biodegradation or transformation of organic and inorganic pollutants in co-contaminated sites. Appl. Microbiol. Biotechnol. 2019, 103, 53–68. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Srivastava, J. Mycoremediation: A novel approach to rescue soil from heavy metal contamination. In Mycoremediation and Environmental Sustainability; Prasad, R., Nayak, S.C., Kharwar, R.N., Dubey, N.K., Eds.; Fungal Biology; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Prasad, R. (Ed.) Mycoremediation and Environmental Sustainability, Volume 1; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Prasad, R. (Ed.) Mycoremediation and Environmental Sustainability, Volume 2; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Redman, R.S.; Kim, Y.O.; Woodward, C.J.; Greer, C.; Espino, L.; Doty, S.L.; Rodriguez, R.J. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: A strategy for mitigating impacts of climate change. PLoS ONE 2011, 6, e14823. [Google Scholar] [CrossRef] [PubMed]
- Echeveria, L.; Gilmore, S.; Harrison, S.; Heinz, K.; Chang, A.; Nunz-Conti, G.; Cosi, F.; Singh, P.; Bond, T. Versatile Bio-Organism Detection Using Microspheres for Future Biodegradation and Bioremediation Studies. In Laser Resonators, Microresonators, and Beam Control XXII; Kudryashov, A.V., Paxton, A.H., Ilchenko, V.S., Armani, A.M., Eds.; SPIE Proceedings; SPIE: Bellingham, WC, USA, 2020; Volume 11266. [Google Scholar]
- Claus, H. Microbial degradation of 2,4,6-trinitrotoluene in vitro and in natural environments. In Biological Remediation of Explosive Residues; Singh, S.N., Ed.; Springer: Cham, Switzerland, 2014; pp. 15–38. [Google Scholar]
- Kumar, M.; Prasad, R.; Goyal, P.; Teotia, P.; Tuteja, N.; Varma, A.; Kumar, V. Environmental biodegradation of xenobiotics: Role of potential microfora. In Xenobiotics in the Soil Environment: Monitoring, Toxicity and Management; Hashmi, M.Z., Kumar, V., Varma, A., Eds.; Springer: Cham, Switzerland, 2017; pp. 319–334. [Google Scholar]
- Quintella, C.M.; Mata, A.M.; Lima, L.C. Overview of bioremediation with technology assessment and emphasis on fungal bioremediation of oil contaminated soils. J. Environ. Manag. 2019, 241, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Lien, P.J.; Ho, H.J.; Lee, T.H.; Lai, W.L.; Kao, C.M. Effects of Aquifer Heterogeneity and Geochemical Variation on Petroleum-Hydrocarbon Biodegradation at a Gasoline Spill Site; Advanced materials research 1079; Trans Tech Publications Ltd.: Wollerau, Switzerland, 2015; pp. 584–588. [Google Scholar]
- Roccuzzo, S.; Beckerman, A.P.; Trögl, J. New perspectives on the bioremediation of endocrine disrupting compounds from wastewater using algae-, bacteria- and fungi-based technologies. Int. J. Environ. Sci. Technol. 2020, 18, 89–106. [Google Scholar] [CrossRef]
- Yadav, A.N.; Mishra, S.; Singh, S.; Gupta, A. (Eds.) Recent Advancement in White Biotechnology through Fungi; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Singh, S.; Kumar, V.; Dhanjal, D.S.; Datta, S.; Bhatia, D.; Dhiman, J.; Samuela, J.; Prasad, R.; Singh, J. A sustainable paradigm of sewage sludge biochar: Valorization, opportunities, challenges and future prospects. J. Clean. Prod. 2020, 269, 122259. [Google Scholar] [CrossRef]
- Tyagi, M.; da Fonseca, M.M.; de Carvalho, C.C. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 2011, 22, 231–241. [Google Scholar] [CrossRef]
- Li, Y.; Fu, K.; Gao, S.; Wu, Q.; Fan, L.; Li, Y.; Chen, J. Increased virulence of transgenic Trichoderma koningi strains to the Asian corn borer larvae by over expressing heterologous chit42 gene with chitin-binding domains. J. Environ. Sci. Health 2013, 48, 376–383. [Google Scholar] [CrossRef]
- The Role of Fungi in Fighting Climate Change; and Why They Are At Risk 2021. Available online: https://www.cnbctv18.com/environment/explained-the-role-of-fungi-in-fighting-climate-change-and-why-they-are-at-risk-11664192.htm (accessed on 20 June 2024).
- Available online: https://www.weforum.org/agenda/2022/07/fungi-forests-carbon-climate (accessed on 20 June 2024).
- Tiwari, P.; Bajpai, M.; Singh, L.K.; Mishra, S.; Yadav, A.N. Phytohormones producing fungal communities: Metabolic engineering for abiotic stress tolerance in plants. In Agriculturally Important Fungi for Sustainable Agriculture; Gupta, V.K., Tuohy, M., Eds.; Springer: Cham, Switzerland, 2020; pp. 171–197. [Google Scholar]
- Tiwari, P.; Bajpai, M.; Singh, L.K.; Yadav, A.; Bae, H. Portraying fungal mechanisms in stress tolerance: Perspective for sustainable agriculture. In Springer-Nature Book on Recent Trends in Mycological Research, Vol 1: Agricultural and Medical Perspective; Springer: Berlin/Heidelberg, Germany, 2021; pp. 269–292. [Google Scholar]
- Niego, A.G.T.; Rapior, S.; Thongklang, N.; Raspé, O.; Hyde, K.D.; Mortimer, P. Reviewing the contributions of macrofungi to forest ecosystem processes and services. Fungal Biol. Rev. 2023, 44, 100294. [Google Scholar] [CrossRef]
- Boddy, L. Fungi, Ecosystems, and Global Change. In The Fungi, 3rd ed.; Academic Press: New York, NY, USA, 2016; pp. 361–400. [Google Scholar]
- Muhammad Adil, T.P.; Chen, J.-T.; Kanwal, S. Major bioactive metabolites and antimicrobial potential of Orchidaceae Fungal endophytes. In Advances in Orchid Biology, Biotechnology, and Omics; Tiwari, P., Chen, J., Eds.; Springer Publishers: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Li, G.; Jian, T.; Liu, X.; Lv, Q.; Zhang, G.; Ling, J. Application of metabolomics in fungal research. Molecules 2022, 27, 7365. [Google Scholar] [CrossRef]
- Ijoma, G.N.; Heri, S.M.; Matambo, T.S.; Tekere, M. Trends and applications of omics technologies to functional characterization of enzymes and protein metabolites produced by fungi. J. Fungi 2021, 7, 700. [Google Scholar] [CrossRef] [PubMed]
- Caesar, L.K.; Butun, F.A.; Robey, M.T.; Ayon, N.J.; Gupta, R.; Dainko, D.; Bok, J.W.; Nickles, G.; Stankey, R.J.; Johnson, D.; et al. Correlative metabologenomics of 110 fungi reveals metabolite–gene cluster pairs. Nat. Chem. Biol. 2023, 19, 846–854. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Zhang, Q.; Miao, R.; Lin, J.; Feng, R.; Ni, Y.; Li, W.; Yang, D.; Zhao, X. Application of omics technology in the research on edible fungi. Curr. Res. Food Sci. 2022, 6, 100430. [Google Scholar] [CrossRef]
- Lange, L. Fungal enzymes and yeasts for conversion of plant biomass to bioenergy and high-value products. Microbiol. Spectr. 2017, 5, 1029–1048. [Google Scholar] [CrossRef]
- Mycorena. Creating Green Protein with No Plants. Available online: https://mycorena.com/ (accessed on 20 June 2024).
- Attias, N.; Danai, O.; Abitbol, T.; Tarazi, E.; Ezov, N.; Pereman, I.; Grobman, Y.J. Mycelium bio-composites in industrial design and architecture: Comparative review and experimental design. J. Clean. Prod. 2020, 246, 119037. [Google Scholar] [CrossRef]
- Lange, L. The importance of fungi and mycology for addressing major global challenges. IMA Fungus 2014, 5, 463–471. [Google Scholar] [CrossRef]
- Novoa, C.; Dhoke, G.V.; Mate, D.M.; Martinez, R.; Haarmann, T.; Schreiter, M.; Eidner, J.; Schwerdtfeger, R.; Lorenz, P.; Davari, M.D.; et al. Know Volution of a fungal laccase toward alkaline pH. ChemBioChem 2019, 20, 1458–1466. [Google Scholar] [CrossRef]
Fungal Species | High-Value Product | Biotechnological/ Economic Utilities | References |
---|---|---|---|
Fungal high-value metabolites in medicinal applications | |||
Acremonium chrysogenum | β-lactam antibiotics (cephalosporins) | Pharmaceutical value | [31] |
Lentiana edodes | Lentinan | As chemotherapy adjuvant in healthcare | [32] |
Penicillium rubens P. solitum P. chrysogenum | Penicillin Mevastatin β-lactam antibiotics (penicillins) | Pharmaceutical value Statins are widely used in lowering blood cholesterol levels Antibiotics in healthcare | [33,34,35] |
Saccharomyces boulardii | Probiotics | Health supplements | [36] |
Aspergillus terreus A. niger | Secondary metabolites (lovastatin) Secondary metabolites (enniatins) Human granulocyte colony-stimulating factor (G-CSF) Galactaric acid | Pharmaceutical value Enhanced production of high-value metabolites High protein titre for medicinal applications Efficiently produce galactaric acid for industrial applications | [37,38,39,40] |
Rhizoctonia bataticola | Forskolin | Anti-HIV, anti-tumor, therapeutic application | [41] |
Phomopsis sp. | Quinine | Antimalarial, used in malaria treatment | [42] |
Alternaria sp. | Digoxin | Cardiotonic, therapeutic application | [43] |
Fungal species in food industries/food applications | |||
Blakeslea trispora | Carotene Lycopene | Food pigments for application in food sector | [44,45] |
Monascus anka | Monascus pigments | Food pigments as natural food colorants | [46] |
S. cerevisiae | Lycopene (carotenoid) Ethanol Production of fatty acid-derived biofuels Terpene production | Food pigment for use in food sector Biofuel production Industrial applications Genetic engineering for enhanced terpene production | [47,48,49,50] |
Morchella esculenta | Polysaccharides | As food (nutritional) supplement | [51] |
Pleaurotus eryngii | Pork sausage (food component) | Used as food component | [52] |
Fusarium venenatum Fusarium sp. | Quorn (meat substitute) Dairy-free cream cheese | Nutritional food (high amino acid and fiber, fungal protein) Food industries | [53,54] |
Penicillium camemberti P. roquefortii | Production of cheese Blue cheese | Food industries --- | [55,56] |
Mushroom mycelium | Plant-based bacon | Alternative food product | [57] |
Aspergillus sp. A. oryzae A. sojae A. niger | Fermented meat Soy sauce Miso Jiuqu Citric acid Enzymes | Alternative meat source, high protein content Traditional fermented food --- Food industries | [58,59,60,61] |
Yarrowia lipolytica | β-carotenoid | High metabolite yield for food sector application | [62] |
Xanthophyllomyces dendrorhous | Zeaxanthin | Food pigment usage in food industry | [63] |
Mortierella alpina | Linoleic and oleic acids | Food industry | [64] |
L. edodes | Pasta (functional food) | Nutritional supplements | [65] |
Fungal metabolites for industrial applications | |||
Ustilago maydis | Itaconic acid | Bio-based building block in the polymer industry, pharmaceutical value | [66] |
Kluyveromyces lactis | L-ascorbic acid (vitamin C) | Enhanced production for industrial applications | [67] |
Trichoderma reesei | Enzyme (cellulase) | Enhanced production for industrial applications | [68] |
Schizophyllum commune | Textiles | Industrial application | [69] |
Ganoderma lucidum | Composite material, construction material | Biomaterials to reduce environmental pollution | [70] |
Umbelopsis isabellina | Constituents of biodiesel (polyunstaturated fatty acids) | Biofuel production, energy source | [71] |
Fungal metabolites for agricultural applications | |||
A. nidulans | Insecticides (austinoids) | Production of austenoid derivatives including 7-hydroxydehydroaustin, 1,2-dihydro-7-hydroxydehydroaustin, 1,2-dehydro-precalidodehydroaustin, calidodehydroaustin, etc. | [72] |
Beauveria bassiana | Mycoinsecticides | Integrated pest management, biocontrol of arthropod pests | [73,74] |
Trichoderma spp. T. harzianum T22 T. harzianum TC39 | Auxin-like metabolites, proteinaceous compounds Azaphilone, harzianolide, 1-hydroxy-3-methylanthraquinone and harzianopyridone | Regulate plant growth and development, agricultural applications Biocontrol agents, suppress the growth of plant pathogens | [75,76,77] |
Gliocladium virens | Antifungal compounds gliovirin, viridiol, valinotrocin, viridin, gliotoxin, and heptelidic acid | Protect agricutural crops from multiple pathogens, bicontrol functions | [78] |
Botrytis cinerea | Abscisic acid | Phytohormone regulates abiotic stresses, application in agriculture | [79] |
Chaetomium globosum Cg-7, C. globosum Cg-6 C. globosum Cg-5 | Chaetoglobosin | Reduce post-harvest diseases in multiple fruits | [80] |
Eupenicillium parvum | Azadirachtin A and B | For the control of insects, biocontrol functions | [81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiwari, P.; Park, K.-I. Advanced Fungal Biotechnologies in Accomplishing Sustainable Development Goals (SDGs): What Do We Know and What Comes Next? J. Fungi 2024, 10, 506. https://doi.org/10.3390/jof10070506
Tiwari P, Park K-I. Advanced Fungal Biotechnologies in Accomplishing Sustainable Development Goals (SDGs): What Do We Know and What Comes Next? Journal of Fungi. 2024; 10(7):506. https://doi.org/10.3390/jof10070506
Chicago/Turabian StyleTiwari, Pragya, and Kyeung-Il Park. 2024. "Advanced Fungal Biotechnologies in Accomplishing Sustainable Development Goals (SDGs): What Do We Know and What Comes Next?" Journal of Fungi 10, no. 7: 506. https://doi.org/10.3390/jof10070506
APA StyleTiwari, P., & Park, K. -I. (2024). Advanced Fungal Biotechnologies in Accomplishing Sustainable Development Goals (SDGs): What Do We Know and What Comes Next? Journal of Fungi, 10(7), 506. https://doi.org/10.3390/jof10070506