Candida albicans Mannosidases, Dfg5 and Dcw1, Are Required for Cell Wall Integrity and Pathogenesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Growth Conditions
2.2. Light and Fluorescence Microscopy Analysis
2.3. Scanning Electron Microscopy (SEM) Analysis
2.4. Quantitative Real Time PCR (qRT-PCR) Analysis
2.5. Mouse Model Protocol for Oral Candidiasis
2.6. Statistical Analysis
3. Results
3.1. DFG5 and DCW1 Mutations Result in a Cell Separation Defect Identical to the hog1 Mutant, Confirmed by Light, Fluorescence, and Electron Microscopy
3.2. Chitinase Treatment Results in Reversal of Cell Separation Phenotype for dfg5/dcw1 Mutants
3.3. Dfg5 and Dcw1 Affect Gene Expression of Chitin Synthases CHS1, CHS2, CHS3, and CHS8
3.4. DFG5/DCW1 Conditional Knockout Mutations Result in Decreased Levels of Cst20, a Positive Transcriptional Regulator of Hyphal Morphogenesis
3.5. DFG5 /DCW1 Conditional Knockout Mutations Result in Increased Levels of TUP1, RBF1, MIG1, RFG1, and NRG1, Negative Transcriptional Regulators of Hyphal Morphogenesis
3.6. DFG5/DCW1 Mutations Cause Defects in the In Vivo Virulence and Pathogenesis of C. albicans in a Mouse Model of Oral Candidiasis
4. Discussion
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patil, S.; Rao, R.S.; Majumdar, B.; Anil, S. Clinical appearance of oral candida infection and therapeutic strategies. Front. Microbiol. 2015, 17, 1391. [Google Scholar] [CrossRef] [PubMed Central]
- Jayachandran, A.L.; Katragadda, R.; Thyagarajan, R.; Vajravelu, L.; Manikesi, S.; Kaliappan, S.; Jayachandran, B. Oral Candidiasis among cancer patients attending a tertiary care hospital in Chennai, South India: An evaluation of clinicomycological association and antifungal susceptibility pattern. Can. J. Infect. Dis. Med. Microbiol. 2016, 1, 8758461. [Google Scholar] [CrossRef]
- Chaffin, W.L. Candida albicans cell wall proteins. Microbiol. Mol. Biol. Rev. 2008, 72, 495–544. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lenardon, M.D.; Whitton, R.K.; Munro, C.A.; Marshall, D.; Gow, N.A. Individual chitin synthase enzymes synthesize microfibrils of differing structure at specific locations in the Candida albicans cell wall. Mol. Microbiol. 2007, 66, 1164–1173. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Munro, C.A.; Winter, K.; Buchan, A.; Henry, K.; Becker, J.M.; Brown, A.J.; Bulawa, C.E.; Gow, N.A. Chs1 of Candida albicans is an essential chitin synthase required for synthesis of the septum and for cell integrity. Mol. Microbiol. 2001, 39, 1414–1426. [Google Scholar] [CrossRef] [PubMed]
- Munro, C.A.; Gow, N.A. Chitin synthesis in human pathogenic fungi. Med. Mycol. 2001, 39 (Suppl. S1), 41–53. [Google Scholar] [CrossRef] [PubMed]
- Munro, C.A.; Schofield, D.A.; Gooday, G.W.; Gow, N.A.R. Regulation of chitin synthesis during dimorphic growth of Candida albicans. Microbiology 1998, 144 Pt 2, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Cullen, P.J.; Edgerton, M. Unmasking fungal pathogens by studying MAPK-dependent cell wall regulation in Candida albicans. Virulence 2016, 7, 502–505. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kitagaki, H.; Wu, H.; Shimoi, H.; Ito, K. Two homologous genes, DCW1 (YKL046c) and DFG5, are essential for cell growth and encode glycosylphosphatidylinositol (GPI)-anchored membrane proteins required for cell wall biogenesis in Saccharomyces cerevisiae. Mol. Microbiol. 2002, 46, 1011–1022. [Google Scholar] [CrossRef] [PubMed]
- Kitagaki, H.; Ito, K.; Shimoi, H. A temperature-sensitive dcw1 mutant of Saccharomyces cerevisiae is cell cycle arrested with small buds which have aberrant cell walls. Eukaryot. Cell 2004, 3, 1297–1306. [Google Scholar] [CrossRef] [PubMed]
- Maddi, A.; Fu, C.; Free, S.J. The Neurospora crassa dfg5 and dcw1 genes encode α-1,6-mannanases that function in the incorporation of glycoproteins into the cell wall. PLoS ONE 2012, 7, e38872. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Spreghini, E.; Davis, D.A.; Subaran, R.; Kim, M.; Mitchell, A.P. Roles of Candida albicans Dfg5p and Dcw1p cell surface proteins in growth and hypha formation. Eukaryot. Cell 2003, 2, 746–755. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nasution, O.; Lee, J.; Srinivasa, K.; Choi, I.G.; Lee, Y.M.; Kim, E.; Choi, W.; Kim, W. Loss of Dfg5 glycosylphosphatidylinositol-anchored membrane protein confers enhanced heat tolerance in Saccharomyces cerevisiae. Environ. Microbiol. 2015, 17, 2721–2734. [Google Scholar] [CrossRef] [PubMed]
- Atanasova, L.; Moreno-Ruiz, D.; Grünwald-Gruber, C.; Hell, V.; Zeilinger, S. The GPI-Anchored GH76 Protein Dfg5 Affects Hyphal Morphology and Osmoregulation in the Mycoparasite Trichoderma atroviride and Is Interconnected With MAPK Signaling. Front. Microbiol. 2021, 10, 601113. [Google Scholar] [CrossRef] [PubMed]
- Ao, J.; Chinnici, J.L.; Maddi, A.; Free, S.J. The N-Linked Outer Chain Mannans and the Dfg5p and Dcw1p Endo-α-1,6-Mannanases Are Needed for Incorporation of Candida albicans Glycoproteins into the Cell Wall. Eukaryot. Cell 2015, 14, 792–803. [Google Scholar] [CrossRef] [PubMed Central]
- Mancuso, R.; Chinnici, J.; Tsou, C.; Busarajan, S.; Munnangi, R.; Maddi, A. Functions of Candida albicans cell wall glycosidases Dfg5p and Dcw1p in biofilm formation and HOG MAPK pathway. PeerJ 2018, 6, e5685. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lenardon, M.D.; Munro, C.A.; Gow, N.A. Chitin synthesis and fungal pathogenesis. Curr. Opin. Microbiol. 2010, 13, 416–423. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Heilmann, C.J.; Sorgo, A.G.; Mohammadi, S.; Sosinska, G.J.; de Koster, C.G.; Brul, S.; de Koning, L.J.; Klis, F.M. Surface stress induces a conserved cell wall stress response in the pathogenic fungus Candida albicans. Eukaryot. Cell 2013, 12, 254–264. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liesche, J.; Marek, M.; Günther-Pomorski, T. Cell wall staining with Trypan blue enables quantitative analysis of morphological changes in yeast cells. Front. Microbiol. 2015, 6, 107. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Walker, L.A.; Munro, C.A.; de Bruijn, I.; Lenardon, M.D.; McKinnon, A.; Gow, N.A. Stimulation of chitin synthesis rescues Candida albicans from echinocandins. PLoS Pathog. 2008, 4, e1000040. [Google Scholar] [CrossRef] [PubMed Central]
- Chinnici, J.; Yerke, L.; Tsou, C.; Busarajan, S.; Mancuso, R.; Sadhak, N.D.; Kim, J.; Maddi, A. Candida albicans cell wall integrity transcription factors regulate polymicrobial biofilm formation with Streptococcus gordonii. PeerJ 2019, 7, e7870. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Finkel, J.S.; Xu, W.; Huang, D.; Hill, E.M.; Desai, J.V.; Woolford, C.A.; Nett, J.E.; Taff, H.; Norice, C.T.; Andes, D.R.; et al. Portrait of Candida albicans Adherence Regulators. Cowen LE, ed. PLoS Pathog. 2012, 8, e1002525. [Google Scholar] [CrossRef] [PubMed]
- Munro, C.A.; Whitton, R.K.; Hughes, H.B.; Rella, M.; Selvaggini, S.; Gow, N.A. CHS8-a fourth chitin synthase gene of Candida albicans contributes to in vitro chitin synthase activity, but is dispensable for growth. Fungal Genet. Biol. 2003, 40, 146–158. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, Y.; Ohno, H.; Kohno, S.; Miyazaki, Y. Micafungin alters the expression of genes related to cell wall integrity in Candida albicans biofilms. Jpn. J. Infect. Dis. 2010, 63, 355–357. [Google Scholar] [CrossRef] [PubMed]
- Solis, N.V.; Filler, S.G. Mouse model of oropharyngeal candidiasis. Nat. Protoc. 2012, 7, 637–642. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Villa, S.; Hamideh, M.; Weinstock, A.; Qasim, M.N.; Hazbun, T.R.; Sellam, A.; Hernday, A.D.; Thangamani, S. Transcriptional control of hyphal morphogenesis in Candida albicans. FEMS Yeast Res. 2020, 1, foaa005. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Biswas, S.; Van Dijck, P.; Datta, A. Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans. Microbiol. Mol. Biol. Rev. 2007, 71, 348–376. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Klis, F.M.; Boorsma, A.; De Groot, P.W. Cell wall construction in Saccharomyces cerevisiae. Yeast 2006, 23, 185–202. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Kravets, A.; Bethlendy, G.; Welle, S.; Rustchenko, E. Chromosome 5 monosomy of Candida albicans controls susceptibility to various toxic agents, including major antifungals. Antimicrob. Agents Chemother. 2013, 57, 5026–5036. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, K.K.; Maccallum, D.M.; Jacobsen, M.D.; Walker, L.A.; Odds, F.C.; Gow, N.A.; Munro, C.A. Elevated cell wall chitin in Candida albicans confers echinocandin resistance in vivo. Antimicrob. Agents Chemother. 2012, 56, 208–217. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Perrine-Walker, F. Caspofungin resistance in Candida albicans: Genetic factors and synergistic compounds for combination therapies. Braz. J. Microbiol. 2022, 53, 1101–1113. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Han, Q.; Wang, N.; Pan, C.; Wang, Y.; Sang, J. Elevation of cell wall chitin via Ca2+–calcineurin-mediated PKC signaling pathway maintains the viability of Candida albicans in the absence of β-1,6-glucan synthesis. Mol. Microbiol. 2019, 112, 960–972. [Google Scholar] [CrossRef] [PubMed]
Strain | Genotype | Phenotype | Mice Infection |
---|---|---|---|
SC5314 | Wild type | Wild type | Group 1 Balb/c (N = 5) |
DAY185 | URA Reintegrated | Parental | Group 2 Balb/c (N = 5) |
ES1 | dfg5:dfg5::dcw1:DCW1 | DFG5 knockout strain with one copy of DCW1 | Group 3 Balb/c (N = 5) |
ES195 | dfg5:dfg5::dcw1:dcw1::MET3-DFG5 | No DFG5 repression/2 mM methionine and 5 mM cysteine not added | Group 4 Balb/c (N = 5) |
ES195+M/C | dfg5:dfg5::dcw1:dcw1::MET3-DFG5 + 2 mM Methionine and 5 mM Cysteine | Conditional DFG5/DCW1 mutant/5 mM methionine and 2 mM cysteine added for 1 h to medium for 85% DFG5 repression | Group 5 Balb/c (N = 5) Mice were provided drinking water with 5 mM methionine and 2 mM cysteine from day 0 to day 5 |
HOG1 | hog1:hog1 | Hog1 knockout | None |
Primers | Sequences (5′ TO 3′) | Tm | Source |
---|---|---|---|
EFB1-F | ATTGAACGAATTCTTGGCTGAC | 63.0 °C | Munro et al., 2003 [23] |
EFB1-R | CATCTTCTTCAACAGCAGCTTG | 63.0 °C | |
CHS1-F | GACAGTGGCAGTGACGATG | 63.5 °C | Munro et al., 2003 [23] |
CHS1-R | CAGCTTTGAGGTTGCTGC | 62.3 °C | |
CHS2-F | GGGAAAGATTCATGGAAGAAAATTG | 62.0 °C | Kaneko et al., 2010 [24] |
CHS2-R | TGCTTGTGCTCTTTCATTAATCTTTG | 63.7 °C | |
CHS3-F | TACGCTACTCCACCACATCAA | 64.0 °C | Munro et al., 2003 [23] |
CHS3-R | AAGAATACAAGAAATCAACCCTA | 58.8 °C | |
CHS8-F | GCCTTGTCTCCTTTACAACC | 61.6 °C | Munro et al., 2003 [23] |
CHS8-R | CTTGATGGTGGTACCACGTC | 63.3 °C | |
CST20-F | CACCAAGAACACCAACATCC | 62.1 °C | This study |
CST20-R | GACACACTCATGGAAGAAAGC | 62.1 °C | |
HST7-F | GCCAGCATTATCAAAATAGCCA | 62.5 °C | qPrimerDB (ID#71336) |
HST7-R | GTAAGATTTTCAGCACCGATCC | 62.3 °C | |
CPH1-F | TATGACGCTTCTGGGTTTCC | 62.9 °C | This study |
CPH1-R | GTGGAATCATGCCAATCATAGC | 62.8 °C | |
CPH2-F | GATTAGCAAAGTGGATGGTGTC | 62.3 °C | qPrimerDB (ID#KHC73180) |
CPH2-R | CACATGATTTTGTCCGTCAACT | 62.4 °C | |
TEC1-F | TCACCTTATGCTCAATATGGCA | 62.8 °C | qPrimerDB (ID#KHC78996) |
TEC1-R | GTGTTGGCTATTATGCGTGTAG | 62.3 °C | |
EFG1-F | ACAATGCAACAACCAACTCC | 62.3 °C | This study |
EFG1-R | TGTTACTCGTGGTCTGATTCC | 62.4 °C | |
RIM101-F | ATTGAAGCCTTTCCATTGTGAC | 62.6 °C | qPrimerDB (ID#KHC841161) |
RIM101-R | TAGTTGCATTCATCGAGTTTGC | 62.5 °C | |
TUP1-F | TAGACATTGCCAAAGCCAACC | 64.3 °C | This study |
TUP1-R | CAACTGACGAGTGGTCTAAGG | 63.0 °C | |
RBF1-F | CGACAAAGAATTGCTTACACCA | 62.4 °C | qPrimerDB (ID#KHC73426) |
RFB1-R | CAGGTGCATGATTATGTTGAGG | 62.4 °C | |
RFG1-F | GGTGGTGGTAGTATATCAGGTG | 62.5 °C | qPrimerDB (ID#KHC71224) |
RFG1-R | CTGTTGCTGTTGTTGTTGTAGT | 62.5 °C | |
MIG1-F | GCTTGTACATTTCCAGGTTGTG | 63.0 °C | This study |
MIG1-R | CCGTTTCCTTGAACTTGGATTG | 63.0 °C | |
NRG1-F | GTCGTCAAACAATAACACCCAA | 62.4 °C | qPrimerDB (ID#KHC72092) |
NRG1-R | ATTATCTTGACGAGCAAAACGG | 62.3 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razmi, M.; Kim, J.; Chinnici, J.; Busarajan, S.; Vuppalapaty, H.; Lankipalli, D.; Li, R.; Maddi, A. Candida albicans Mannosidases, Dfg5 and Dcw1, Are Required for Cell Wall Integrity and Pathogenesis. J. Fungi 2024, 10, 525. https://doi.org/10.3390/jof10080525
Razmi M, Kim J, Chinnici J, Busarajan S, Vuppalapaty H, Lankipalli D, Li R, Maddi A. Candida albicans Mannosidases, Dfg5 and Dcw1, Are Required for Cell Wall Integrity and Pathogenesis. Journal of Fungi. 2024; 10(8):525. https://doi.org/10.3390/jof10080525
Chicago/Turabian StyleRazmi, Maryam, Jaewon Kim, Jennifer Chinnici, Sujay Busarajan, Hema Vuppalapaty, Deepika Lankipalli, Rui Li, and Abhiram Maddi. 2024. "Candida albicans Mannosidases, Dfg5 and Dcw1, Are Required for Cell Wall Integrity and Pathogenesis" Journal of Fungi 10, no. 8: 525. https://doi.org/10.3390/jof10080525
APA StyleRazmi, M., Kim, J., Chinnici, J., Busarajan, S., Vuppalapaty, H., Lankipalli, D., Li, R., & Maddi, A. (2024). Candida albicans Mannosidases, Dfg5 and Dcw1, Are Required for Cell Wall Integrity and Pathogenesis. Journal of Fungi, 10(8), 525. https://doi.org/10.3390/jof10080525