PCR-Based Microarray Enhances Diagnosis of Culture-Negative Biopsied Tissue in Patients with Invasive Mold Infections: Real-World Experience in a Tertiary Medical Center
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setting
2.2. DNA Extraction and ITS Amplification for Mold
2.3. Fabrication of Membrane Assays and Hybridization Procedures
2.4. Data Collection
2.5. Definition
3. Results
3.1. Tissue Samples, Quality, and Mold Species Identified Using PCR/Microarray
3.2. Comparison of PCR/Microarray Results, Histological Findings, Growth of Molds, and Diagnosis of IMIs in Different Types of Specimens
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Webb, B.J.; Ferraro, J.P.; Rea, S.; Kaufusi, S.; Goodman, B.E.; Spalding, J. Epidemiology and Clinical Features of Invasive Fungal Infection in a US Health Care Network. Open Forum Infect. Dis. 2018, 5, ofy187. [Google Scholar] [CrossRef]
- Wickes, B.L.; Wiederhold, N.P. Molecular diagnostics in medical mycology. Nat. Commun. 2018, 9, 5135. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, C.R.; Huang, L.; Bouchara, J.P.; Barton, R.; Li, H.C.; Chang, T.C. Identification of medically important molds by an oligonucleotide array. J. Clin. Microbiol. 2005, 43, 3760–3768. [Google Scholar] [CrossRef] [PubMed]
- Leaw, S.N.; Chang, H.C.; Barton, R.; Bouchara, J.P.; Chang, T.C. Identification of medically important Candida and non-Candida yeast species by an oligonucleotide array. J. Clin. Microbiol. 2007, 45, 2220–2229. [Google Scholar] [CrossRef] [PubMed]
- Donatin, E.; Drancourt, M. DNA microarrays for the diagnosis of infectious diseases. Med. Mal. Infect. 2012, 42, 453–459. [Google Scholar] [CrossRef]
- Bissonnette, L.; Bergeron, M.G. Next revolution in the molecular theranostics of infectious diseases: Microfabricated systems for personalized medicine. Expert Rev. Mol. Diagn. 2006, 6, 433–450. [Google Scholar] [CrossRef]
- Su, S.C.; Vaneechoutte, M.; Dijkshoorn, L.; Wei, Y.F.; Chen, Y.L.; Chang, T.C. Identification of non-fermenting Gram-negative bacteria of clinical importance by an oligonucleotide array. J. Med. Microbiol. 2009, 58, 596–605. [Google Scholar] [CrossRef]
- Fukushima, M.; Kakinuma, K.; Hayashi, H.; Nagai, H.; Ito, K.; Kawaguchi, R. Detection and identification of Mycobacterium species isolates by DNA microarray. J. Clin. Microbiol. 2003, 41, 2605–2615. [Google Scholar] [CrossRef]
- Han, H.W.; Hsu, M.M.; Choi, J.S.; Hsu, C.K.; Hsieh, H.Y.; Li, H.C.; Chang, H.C.; Chang, T.C. Rapid detection of dermatophytes and Candida albicans in onychomycosis specimens by an oligonucleotide array. BMC Infect Dis. 2014, 14, 581. [Google Scholar] [CrossRef]
- Li, H.C.; Bouchara, J.P.; Hsu, M.M.; Barton, R.; Chang, T.C. Identification of dermatophytes by an oligonucleotide array. J. Clin. Microbiol. 2007, 45, 3160–3166. [Google Scholar] [CrossRef]
- Leaw, S.N.; Chang, H.C.; Sun, H.F.; Barton, R.; Bouchara, J.P.; Chang, T.C. Identification of medically important yeast species by sequence analysis of the internal transcribed spacer regions. J. Clin. Microbiol. 2006, 44, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.J.; Liu, W.L.; Chang, T.C.; Li, M.C.; Ko, W.C.; Wu, C.J.; Chuang, Y.C.; Lai, C.C. Multiple Brain Abscesses Due to Aspergillus fumigatus in a Patient with Liver Cirrhosis: A Case Report. Medicine 2016, 95, e2813. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.T.; Vaneechoutte, M.; Huang, A.H.; Teng, L.J.; Chen, H.M.; Su, S.L.; Chang, T.C. Identification of clinically important anaerobic bacteria by an oligonucleotide array. J. Clin. Microbiol. 2010, 48, 1283–1290. [Google Scholar] [CrossRef] [PubMed]
- Boch, T.; Reinwald, M.; Postina, P.; Cornely, O.A.; Vehreschild, J.J.; Heußel, C.P.; Heinz, W.J.; Hoenigl, M.; Eigl, S.; Lehrnbecher, T.; et al. Identification of invasive fungal diseases in immunocompromised patients by combining an Aspergillus specific PCR with a multifungal DNA-microarray from primary clinical samples. Mycoses 2015, 58, 735–745. [Google Scholar] [CrossRef] [PubMed]
- Wehrle-Wieland, E.; Affolter, K.; Goldenberger, D.; Tschudin Sutter, S.; Halter, J.; Passweg, J.; Tamm, M.; Khanna, N.; Stolz, D. Diagnosis of invasive mold diseases in patients with hematological malignancies using Aspergillus, Mucorales, and panfungal PCR in BAL. Transpl. Infect. Dis. 2018, 20, e12953. [Google Scholar] [CrossRef] [PubMed]
- Bouchara, J.P.; Hsieh, H.Y.; Croquefer, S.; Barton, R.; Marchais, V.; Pihet, M.; Chang, T.C. Development of an oligonucleotide array for direct detection of fungi in sputum samples from patients with cystic fibrosis. J. Clin. Microbiol. 2009, 47, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Hung, W.T.; Su, S.L.; Shiu, L.Y.; Chang, T.C. Rapid identification of allergenic and pathogenic molds in environmental air by an oligonucleotide array. BMC Infect Dis. 2011, 11, 91. [Google Scholar] [CrossRef] [PubMed]
- Tung, S.K.; Teng, L.J.; Vaneechoutte, M.; Chen, H.M.; Chang, T.C. Array-based identification of species of the genera Abiotrophia, Enterococcus, Granulicatella, and Streptococcus. J. Clin. Microbiol. 2006, 44, 4414–4424. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.C.; Huang, A.H.; Tsen, H.Y.; Wong, H.C.; Chang, T.C. Use of oligonucleotide array for identification of six foodborne pathogens and Pseudomonas aeruginosa grown on selective media. J. Food Prot. 2005, 68, 2278–2286. [Google Scholar] [CrossRef]
- Lai, C.C.; Tsai, H.Y.; Chang, T.C.; Hsueh, P.R. Catheter-related fungemia caused by Candida dubliniensis. J. Microbiol. Immunol. Infect. 2013, 46, 306–308. [Google Scholar] [CrossRef]
- Aittakorpi, A.; Kuusela, P.; Koukila-Kahkola, P.; Vaara, M.; Petrou, M.; Gant, V.; Maki, M. Accurate and rapid identification of Candida spp. frequently associated with fungemia by using PCR and the microarray-based Prove-it Sepsis assay. J. Clin. Microbiol. 2012, 50, 3635–3640. [Google Scholar] [CrossRef]
- Safavieh, M.; Coarsey, C.; Esiobu, N.; Memic, A.; Vyas, J.M.; Shafiee, H.; Asghar, W. Advances in Candida detection platforms for clinical and point-of-care applications. Crit. Rev. Biotechnol. 2017, 37, 441–458. [Google Scholar] [CrossRef]
- Kuo, M.T.; Hsu, S.L.; You, H.L.; Kuo, S.F.; Fang, P.C.; Yu, H.J.; Chen, A.; Tseng, C.Y.; Lai, Y.H.; Chen, J.L. Diagnosing Fungal Keratitis and Simultaneously Identifying Fusarium and Aspergillus Keratitis with a Dot Hybridization Array. J. Fungi 2022, 8, 64. [Google Scholar] [CrossRef] [PubMed]
- Arvanitis, M.; Anagnostou, T.; Fuchs, B.B.; Caliendo, A.M.; Mylonakis, E. Molecular and nonmolecular diagnostic methods for invasive fungal infections. Clin. Microbiol. Rev. 2014, 27, 490–526. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, J.P.; Chen, S.C.; Kauffman, C.A.; Steinbach, W.J.; Baddley, J.W.; Verweij, P.E.; Clancy, C.J.; Wingard, J.R.; Lockhart, S.R.; Groll, A.H.; et al. Revision and Update of the Consensus Definitions of Invasive Fungal Disease From the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin. Infect. Dis. 2020, 71, 1367–1376. [Google Scholar] [CrossRef]
- White, P.L.; Posso, R.B.; Barnes, R.A. Analytical and Clinical Evaluation of the PathoNostics AsperGenius Assay for Detection of Invasive Aspergillosis and Resistance to Azole Antifungal Drugs Directly from Plasma Samples. J. Clin. Microbiol. 2017, 55, 2356–2366. [Google Scholar] [CrossRef]
- Rath, P.M.; Steinmann, J. Overview of Commercially Available PCR Assays for the Detection of Aspergillus spp. DNA in Patient Samples. Front. Microbiol. 2018, 9, 740. [Google Scholar] [CrossRef] [PubMed]
- Ala-Houhala, M.; Koukila-Kahkola, P.; Antikainen, J.; Valve, J.; Kirveskari, J.; Anttila, V.J. Clinical use of fungal PCR from deep tissue samples in the diagnosis of invasive fungal diseases: A retrospective observational study. Clin. Microbiol. Infect. 2018, 24, 301–305. [Google Scholar] [CrossRef]
- Pelzer, B.W.; Seufert, R.; Koldehoff, M.; Liebregts, T.; Schmidt, D.; Buer, J.; Rath, P.M.; Steinmann, J. Performance of the AsperGenius(R) PCR assay for detecting azole resistant Aspergillus fumigatus in BAL fluids from allogeneic HSCT recipients: A prospective cohort study from Essen, West Germany. Med. Mycol. 2020, 58, 268–271. [Google Scholar] [CrossRef]
- Lamoth, F.; Kontoyiannis, D.P. Therapeutic Challenges of Non-Aspergillus Invasive Mold Infections in Immunosuppressed Patients. Antimicrob. Agents Chemother. 2019, 63, e01244-19. [Google Scholar] [CrossRef]
- Mohanty, B.; Ansari, Z.; Prasad, A.; Gupta, M.; Kumar, A. Mucormycosis and aspergillosis: The deadly duo in COVID-19—A case report. J. Family Med. Prim. Care 2022, 11, 6529–6532. [Google Scholar] [CrossRef] [PubMed]
- Miao, Q.; Ma, Y.; Wang, Q.; Pan, J.; Zhang, Y.; Jin, W.; Yao, Y.; Su, Y.; Huang, Y.; Wang, M.; et al. Microbiological Diagnostic Performance of Metagenomic Next-generation Sequencing When Applied to Clinical Practice. Clin. Infect. Dis. 2018, 67, S231–S240. [Google Scholar] [CrossRef]
- Qi, C.; Hountras, P.; Pickens, C.O.; Walter, J.M.; Kruser, J.M.; Singer, B.D.; Seed, P.; Green, S.J.; Wunderink, R.G. Detection of respiratory pathogens in clinical samples using metagenomic shotgun sequencing. J. Med. Microbiol. 2019, 68, 996–1002. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.R.; Sundararaju, S.; Tang, P.; Tsui, K.M.; Lopez, A.P.; Janahi, M.; Tan, R.; Tilley, P. A metagenomics-based diagnostic approach for central nervous system infections in hospital acute care setting. Sci. Rep. 2020, 10, 11194. [Google Scholar] [CrossRef]
- Bupha-Intr, O.; Butters, C.; Reynolds, G.; Kennedy, K.; Meyer, W.; Patil, S.; Bryant, P.; Morrissey, C.O. Australasian Antifungal Guidelines Steering Committee. Consensus guidelines for the diagnosis and management of invasive fungal disease due to moulds other than Aspergillus in the haematology/oncology setting, 2021. Intern. Med. J. 2021, 51 (Suppl. S7), 177–219. [Google Scholar] [CrossRef] [PubMed]
- Thompson, G.R., 3rd; Young, J.H. Aspergillus Infections. N. Engl. J. Med. 2021, 385, 1496–1509. [Google Scholar] [CrossRef] [PubMed]
- Guegan, H.; Prat, E.; Robert-Gangneux, F.; Gangneux, J.P. Azole Resistance in Aspergillus fumigatus: A Five-Year Follow Up Experience in a Tertiary Hospital with a Special Focus on Cystic Fibrosis. Front. Cell Infect. Microbiol. 2020, 10, 613774. [Google Scholar] [CrossRef] [PubMed]
- Escribano, P.; Rodriguez-Sanchez, B.; Diaz-Garcia, J.; Martin-Gomez, M.T.; Ibanez-Martinez, E.; Rodriguez-Mayo, M.; Pelaez, T.; de la Pedrosa, E.G.-G.; Tejero-Garcia, R.; Marimon, J.M.; et al. Azole resistance survey on clinical Aspergillus fumigatus isolates in Spain. Clin. Microbiol. Infect. 2021, 27, 1170.e1–1170.e7. [Google Scholar] [CrossRef]
- Van Der Linden, J.W.; Warris, A.; Verweij, P.E. Aspergillus species intrinsically resistant to antifungal agents. Med. Mycol. 2011, 49 (Suppl. S1), S82–S89. [Google Scholar] [CrossRef]
Patient Characteristics | No. (%) |
---|---|
Age, years (mean ± SD) | 52.0 ± 20.1 |
Male | 44 (59.5) |
30-day mortality | 5 (6.8) |
Diabetes | 17 (23.0) |
Hypertension | 14 (18.9) |
Malignancy | 24 (32.4) |
Autoimmune diseases | 18 (24.3) |
HIV infection | 4 (5.4) |
Chronic kidney disease | 8 (10.8) |
End-stage renal disease with regular hemodialysis | 4 (5.4) |
Cardiovascular disease | 18 (24.3) |
Cirrhosis | 2 (2.7) |
Chemotherapy | 9 (12.2) |
Use of steroid | 3 (4.1) |
Immunocompromised status by EORTC/MSGERC criteria | 25 (33.8) |
Patient Characteristics |
---|
Cunninghamella bertholletiae (1) |
Aspergillus fumigatus (3) |
Aspergillus niger (1) |
Aspergillus terrus (1) |
Aspergillus flavus (2) |
Tissue Samples (Total No.) | No. (%) of Positive PCR Result | Molds Based on the PCR Result/MI Category |
---|---|---|
Bone and joint (20) | 1 (5) | Aspergillus fumigatus/clinical suspicion |
Lung/pleura (17) | 2 (11.8) | Cunninghamella bertholletiae/proven and Aspergillus niger/probable |
Lymph node (15) | 2 (13.3) | Aspergillus fumigatus/clinical suspicion; |
Aspergillus niger/contamination | ||
Valve/pericardium/aorta (5) | 0 | |
Liver (4) | 1 (25) | Aspergillus fumigatus/proven |
Bone marrow (4) | 0 | |
Sinus (3) | 1 (33.3) | Aspergillus flavus/proven |
Middle ear (2) | 1 (50) | Aspergillus flavus/possible |
Others (10) | 0 | |
Total (80) | 8 (10.0) | 3 proven, 1 probable, 1 possible, 2 clinical suspicion, 1 contamination |
Age */Sex | Specimen/Biopsy Method | Category of IMI | Underlying Diseases | Hyphae Observed in Histological Finding | Fungal Culture | Microarray Result | Treatment Adjusted by Microarray Finding | Primary Antifungal Treatment | Outcome |
---|---|---|---|---|---|---|---|---|---|
57/M | Lung/CT-guide biopsy | Proven | AML | Yes | No growth | Cunninghamella bertholletiae | Yes | Posaconazole | Expired |
72/M | Liver/sono-guide biopsy | Proven | HHV-8-associated multicentric Castleman disease, Kaposi’s sarcoma | Yes | Not done | Aspergillus fumigatus | No | Amphotericin B, voriconazole, posaconazole | Under control with chronic suppressive therapy |
52/F | Paranasal sinus/surgical biopsy | Proven | MDS, haplo-identical allogeneic peripheral blood stem cell transplantation, GVHD | Yes | No growth | Aspergillus flavus | No | Amphotericin B, voriconazole | Expired |
60/M | Lung/surgical biopsy | Proven | Chronic kidney disease, cirrhosis, aortic dissection | Yes | No growth | Negative | No | Liposomal amphotericin B | Expired |
63/M | Lung/CT-guide biopsy | Probable | AML | No | No growth; serum GM:2.6 (positive) | Aspergillus niger | No | Voriconazole | Cured |
89/F | Middle ear/surgical biopsy | Possible | ESRD, DM, HTN, Alzheimer’s diseases | No | Aspergillus species | Aspergillus flavus | No | Voriconazole | Expired |
80/F | Para-nasal sinus/surgical biopsy | Possible | Nasal lymphoma, lung adenocarcinoma | No | No growth | Negative | No | Liposomal amphotericin B, voriconazole | Cured |
18/M | Lung/CT-guided biopsy | Possible | AML, chronic GVHD | No | No growth | Negative | No | Voriconazole | Cured |
61/F | Hip joint/surgical biopsy | Clinical suspicion | End-stage renal disease, DM aortic stenosis | No | No growth | Aspergillus fumigatus | Yes | Voriconazole | Cured |
63/F | Lymph node/surgical biopsy | Clinical suspicion | Sjogren syndrome | No | No growth | A. fumigatus | Yes | Voriconazole | Cured |
Number of Positive Patients/Sensitivity (%) | |||
---|---|---|---|
PCR | Culture | Histology | |
IMI (n = 10) | 7/70% | 1/10% | 4/40% |
Proven (n = 4) | 3/75% | 0/0% | 4/100% |
Probable (n = 1) | 1/100% | 0/0% | 0/0% |
Possible (n = 3) | 1/33.3% | 1/33.3% | 0/0% |
Clinical suspicion IMI (n = 2) | 2/100% | 0/0% | 0/0% |
Number of Positive Patients/Specificity (%) | |||
Non-IMI (n = 64) | 3/95.7% | 2/96.3% | 0/100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jan, H.-E.; Tsai, C.-S.; Cia, C.-T.; Lee, C.-C.; Chen, Y.-W.; Lee, N.-Y.; Li, C.-W.; Li, M.-C.; Syue, L.-S.; Lo, C.-L.; et al. PCR-Based Microarray Enhances Diagnosis of Culture-Negative Biopsied Tissue in Patients with Invasive Mold Infections: Real-World Experience in a Tertiary Medical Center. J. Fungi 2024, 10, 530. https://doi.org/10.3390/jof10080530
Jan H-E, Tsai C-S, Cia C-T, Lee C-C, Chen Y-W, Lee N-Y, Li C-W, Li M-C, Syue L-S, Lo C-L, et al. PCR-Based Microarray Enhances Diagnosis of Culture-Negative Biopsied Tissue in Patients with Invasive Mold Infections: Real-World Experience in a Tertiary Medical Center. Journal of Fungi. 2024; 10(8):530. https://doi.org/10.3390/jof10080530
Chicago/Turabian StyleJan, Hao-En, Chin-Shiang Tsai, Cong-Tat Cia, Ching-Chi Lee, Ying-Wen Chen, Nan-Yao Lee, Chia-Wen Li, Ming-Chi Li, Ling-Shan Syue, Ching-Lung Lo, and et al. 2024. "PCR-Based Microarray Enhances Diagnosis of Culture-Negative Biopsied Tissue in Patients with Invasive Mold Infections: Real-World Experience in a Tertiary Medical Center" Journal of Fungi 10, no. 8: 530. https://doi.org/10.3390/jof10080530
APA StyleJan, H.-E., Tsai, C.-S., Cia, C.-T., Lee, C.-C., Chen, Y.-W., Lee, N.-Y., Li, C.-W., Li, M.-C., Syue, L.-S., Lo, C.-L., Chang, T.-C., Wu, C.-J., Ko, W.-C., & Chen, P.-L. (2024). PCR-Based Microarray Enhances Diagnosis of Culture-Negative Biopsied Tissue in Patients with Invasive Mold Infections: Real-World Experience in a Tertiary Medical Center. Journal of Fungi, 10(8), 530. https://doi.org/10.3390/jof10080530