Impact of the Biocontrol Product, Esquive® WP, on the Indigenous Grapevine Wood Microbiome after a 6-Year Application Period
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Experimental Vineyards
2.2. Sampling and Experimental Setup
2.3. Necroses Image-Analyses
2.4. Wood DNA Extraction
2.5. DNA Sequencing and Data Analysis
2.6. Bacterial and Fungal Taxonomy Distribution and Statistical Analysis
2.7. Quantification of T. atroviride Strain I-1237 Using Quantitative PCR Amplification
3. Results
3.1. Quantification of Internal Wood Necrosis
3.2. Assessment of T. atroviride Strain I-1237 Wood Colonization
3.3. Sequencing Dataset Description
3.4. Analysis of Wood Microbial Community
3.5. Vineyard Location/Cultivar Highly Influenced the Fungal and Bacterial Wood Microbiome
3.6. Effect of Esquive® WP Treatment on Wood Microbial Community Composition
3.6.1. Esquive® WP Affects Temporary Wood Microbial Diversity Two Months Post Treatments
3.6.2. Esquive® WP Affects Temporary Wood Microbial Abundance Two Months Post Treatments
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019, 33, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Thambugala, K.M.; Daranagama, D.A.; Phillips, A.J.L.L.; Kannangara, S.D.; Promputtha, I. Fungi vs. fungi in biocontrol: An overview of fungal antagonists applied against fungal plant pathogens. Front. Cell. Infect. Microbiol. 2020, 10, 604923. [Google Scholar] [CrossRef] [PubMed]
- Alamoudi, S.A. Using some microorganisms as biocontrol agents to manage phytopathogenic fungi: A comprehensive review. J. Plant Pathol. 2024, 106, 3–21. [Google Scholar] [CrossRef]
- Boro, M.; Sannyasi, S.; Chettri, D.; Verma, A.K. Microorganisms in biological control strategies to manage microbial plant pathogens: A review. Arch. Microbiol. 2022, 204, 666. [Google Scholar] [CrossRef] [PubMed]
- Harman, G.E. Overview of mechanisms and uses of Trichoderma spp. Phytopathology 2006, 96, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Hossain, K. Trichoderma spp.: A biocontrol agent for sustainable management of plant diseases. Pak. J. Bot. 2014, 46, 1489–1493. [Google Scholar]
- Puyam, A. Advent of Trichoderma as a bio-control agent—A review. J. Appl. Nat. Sci. 2016, 8, 1100–1109. [Google Scholar] [CrossRef]
- Ghazanfar, M.U.; Raza, M.; Raza, W.; Qamar, M.I. Trichoderma as potential biocontrol agent, its exploitation in agriculture: A review. Plant Prot. 2018, 2, 109–135. [Google Scholar]
- Asghar, W.; Craven, K.D.; Kataoka, R.; Mahmood, A.; Asghar, N.; Raza, T.; Iftikhar, F. The application of Trichoderma spp., an old but new useful fungus, in sustainable soil health intensification: A comprehensive strategy for addressing challenges. Plant Stress 2024, 12, 100455. [Google Scholar] [CrossRef]
- Ferreira, F.V.; Musumeci, M.A. Trichoderma as biological control agent: Scope and prospects to improve efficacy. World J. Microbiol. Biotechnol. 2021, 37, 90. [Google Scholar] [CrossRef]
- Gajera, H.; Domadiya, R.; Patel, S.; Kapopara, M.; Golakiya, B. Molecular mechanism of Trichoderma as bio-control agents against phytopathogen system–a review. Curr. Res. Microbiol. Biotechnol. 2013, 1, 133–142. [Google Scholar]
- Singh, A.; Shukla, N.; Kabadwal, B.C.; Tewari, A.K.; Kumar, J. Review on plant-Trichoderma-pathogen interaction. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2382–2397. [Google Scholar] [CrossRef]
- Kredics, L.; Büchner, R.; Balázs, D.; Allaga, H.; Kedves, O.; Racić, G.; Varga, A.; Nagy, V.D.; Vágvölgyi, C.; Sipos, G. Recent Advances in the Use of Trichoderma-containing multicomponent microbial inoculants for pathogen control and plant growth promotion. World J. Microbiol. Biotechnol. 2024, 40, 162. [Google Scholar] [CrossRef]
- Bertsch, C.; Ramírez-Suero, M.; Magnin-Robert, M.; Larignon, P.; Chong, J.; Abou-Mansour, E.; Spagnolo, A.; Clément, C.; Fontaine, F. Grapevine Trunk Diseases: Complex and Still Poorly Understood. Plant Pathol. 2013, 62, 243–265. [Google Scholar] [CrossRef]
- Gramaje, D.; Úrbez-Torres, J.R.; Sosnowski, M.R. Managing Grapevine Trunk Diseases with Respect to Etiology and Epidemiology: Current strategies and future prospects. Plant Dis. 2018, 102, 12–39. [Google Scholar] [CrossRef] [PubMed]
- Mondello, V.; Songy, A.; Battiston, E.; Pinto, C.; Coppin, C.; Trotel-Aziz, P.; Clément, C.; Mugnai, L.; Fontaine, F. Grapevine Trunk Diseases: A Review of Fifteen Years of Trials for Their Control with Chemicals and Biocontrol Agents. Plant Dis. 2018, 102, 1189–1217. [Google Scholar] [CrossRef] [PubMed]
- Mesguida, O.; Haidar, R.; Yacoub, A.; Dreux-Zigha, A.; Berthon, J.-Y.; Guyoneaud, R.; Attard, E.; Rey, P. Microbial Biological Control of Fungi Associated with Grapevine Trunk Diseases: A Review of Strain Diversity, Modes of Action, and Advantages and Limits of Current Strategies. J. Fungi 2023, 9, 638. [Google Scholar] [CrossRef]
- Bruez, E.; Lecomte, P.; Grosman, J.; Doublet, B.; Bertsch, C.; Ugaglia, A.; Teissedre, P.-L.; Costa, J.-P.D.; Guerin-Dubrana, L.; Rey, P. Overview of Grapevine Trunk Diseases in France in the 2000s. Phytopathol. Mediterr. 2013, 262–275. [Google Scholar] [CrossRef]
- De La Fuente, M.; Fontaine, F.; Gramaje, D.; Armengol, J.; Smart, R.E.; Nagy, Z.A.; Borgo, M.; Rego, C.; Corio-Costet, M.-F. Grapevine Trunk Diseases—A Review, 1st ed.; OIV: Paris, France, 2016; ISBN 979-10-91799-60-7. [Google Scholar]
- Rolshausen, P.E.; Mahoney, N.E.; Molyneux, R.J.; Gubler, W.D. A reassessment of the species concept in Eutypa lata, the causal agent of Eutypa dieback of grapevine. Phytopathology 2006, 96, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Urbez-Torres, J.R. The status of Botryosphaeriaceae species infecting grapevines. Phytopathol. Mediterr. 2011, 50, 5–45. [Google Scholar] [CrossRef]
- Billones-Baaijens, R.; Savocchia, S. A review of Botryosphaeriaceae species associated with grapevine trunk diseases in Australia and New Zealand. Australas. Plant Pathol. 2019, 48, 3–18. [Google Scholar] [CrossRef]
- Azevedo-Nogueira, F.; Rego, C.; Gonçalves, H.M.R.; Fortes, A.M.; Gramaje, D.; Martins-Lopes, P. The Road to Molecular Identification and Detection of Fungal Grapevine Trunk Diseases. Front. Plant Sci. 2022, 13, 960289. [Google Scholar] [CrossRef] [PubMed]
- Claverie, M.; Notaro, M.; Fontaine, F.; Wery, J. Current Knowledge on Grapevine Trunk Diseases with Complex Etiology: A Systemic Approach. Phytopathol. Mediterr. 2020, 59, 29–53. [Google Scholar] [CrossRef]
- Mounier, E.; Cortes, F.; Cadious, M.; Pajot, E. The benefits of Trichoderma atroviride I-1237 for the protection of grapevines against trunk diseases: From the nursery to the vineyard. Phytopathol. Mediterr. 2014, 53, 591–592. [Google Scholar] [CrossRef]
- Reis, P.; Letousey, P.; Rego, C. Trichoderma atroviride strain I-1237 protects pruning wounds against grapevine wood pathogens. Phytopathol. Mediterr. 2017, 56, 580. [Google Scholar] [CrossRef]
- Leal, C.; Bujanda, R.; Manzanares, B.L.; Ojeda, S.; Berbegal, M.; Llop, A.V.; Santestena, L.G.; Palacios, J.; Gramaje, D. Evaluating treatments for the protection of grapevine pruning wounds from natural infection by trunk disease fungi. In Plant Disease; The American Phytopathological Society (APS): St. Paul, MN, USA, 2024. [Google Scholar] [CrossRef]
- del Pilar Martínez-Diz, M.; Díaz-Losada, E.; Díaz-Fernández, Á.; Bouzas-Cid, Y.; Gramaje, D. Protection of grapevine pruning wounds against Phaeomoniella chlamydospora and Diplodia seriata by commercial biological and chemical methods. Crop. Prot. 2021, 143, 105465. [Google Scholar] [CrossRef]
- Reis, P.; Mondello, V.; Diniz, I.; Alves, A.; Rego, C.; Fontaine, F. Effect of the combined treatments with LC2017 and Trichoderma atroviride strain I-1237 on disease development and defense responses in vines infected by Lasiodiplodia theobromae. Agronomy 2022, 12, 996. [Google Scholar] [CrossRef]
- Khattab, I.M.; Sahi, V.P.; Baltenweck, R.; Maia-Grondard, A.; Hugueney, P.; Bieler, E.; Dürrenberger, M.; Riemann, M.; Nick, P. Ancestral Chemotypes of Cultivated Grapevine with Resistance to Botryosphaeriaceae-related Dieback Allocate Metabolism towards Bioactive Stilbenes. New Phytol. 2021, 229, 1133–1146. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Pouzoulet, J.; Mailhac, N.; Couderc, C.; Besson, X.; Daydé, J.; Lummerzheim, M.; Jacques, A. A Method to Detect and Quantify Phaeomoniella Chlamydospora and Phaeoacremonium Aleophilum DNA in Grapevine-Wood Samples. Appl. Microbiol. Biotechnol. 2013, 97, 10163–10175. [Google Scholar] [CrossRef]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME Allows Analysis of High-Throughput Community Sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed]
- Parada, A.E.; Needham, D.M.; Fuhrman, J.A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 2016, 18, 1403–1414. [Google Scholar] [CrossRef] [PubMed]
- Escudié, F.; Auer, L.; Bernard, M.; Mariadassou, M.; Cauquil, L.; Vidal, K.; Maman, S.; Hernandez-Raquet, G.; Combes, S.; Pascal, G. FROGS: Find, Rapidly, OTUs with Galaxy Solution. Bioinformatics 2018, 34, 1287–1294. [Google Scholar] [CrossRef] [PubMed]
- Bernard, M.; Rué, O.; Mariadassou, M.; Pascal, G. FROGS: A Powerful Tool to Analyse the Diversity of Fungi with Special Management of Internal Transcribed Spacers. Brief. Bioinform. 2021, 22, bbab318. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef]
- Mahé, F.; Rognes, T.; Quince, C.; de Vargas, C.; Dunthorn, M. Swarm: Robust and fast clustering method for amplicon-based studies. Peer J. 2014, 2, e593. [Google Scholar] [CrossRef] [PubMed]
- Glynou, K.; Nam, B.; Thines, M.; Macia-Vicente, J.G. Facultative root-colonizing fungi dominate endophytic assemblages in roots of nonmycorrhizal Microthlaspi species. New Phytol. 2018, 217, 1190e1202. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Abarenkov, K.; Henrik Nilsson, R.; Larsson, K.H.; Alexander, I.J.; Eberhardt, U.; Erland, S.; Kõljalg, U. The UNITE database for molecular identification of fungi–recent updates and future perspectives. New Phytol. 2010, 186, 281–285. [Google Scholar] [CrossRef]
- Dhariwal, A.; Chong, J.; Habib, S.; King, I.L.; Agellon, L.B.; Xia, J. MicrobiomeAnalyst: A Web-Based Tool for Comprehensive Statistical, Visual and Meta-Analysis of Microbiome Data. Nucleic. Acids Res. 2017, 45, W180–W188. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.; Liu, P.; Zhou, G.; Xia, J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat. Protoc. 2020, 15, 799–821. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhou, G.; Ewald, J.; Pang, Z.; Shiri, T.; Xia, J. MicrobiomeAnalyst 2.0: Comprehensive Statistical, Functional and Integrative Analysis of Microbiome Data. Nucleic Acids Res. 2023, 51, W310–W318. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.J. Permutational Multivariate Analysis of Variance (PERMANOVA). In Wiley StatsRef: Statistics Reference Online; Balakrishnan, N., Everitt, T.C.B., Piegorsch, W., Ruggeri, F., Teugels, J.L., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 1–15. [Google Scholar]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome. Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [PubMed]
- Cordier, C.; Edel-Hermann, V.; Martin-Laurent, F.; Blal, B.; Steinberg, C.; Alabouvette, C. SCAR-Based Real Time PCR to Identify a Biocontrol Strain (T1) of Trichoderma atroviride and Study Its Population Dynamics in Soils. J. Microbiol. Methods 2007, 68, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Langa-Lomba, N.; Grimplet, J.; Sánchez-Hernández, E.; Martín-Ramos, P.; Casanova-Gascón, J.; Julián-Lagunas, C.; González-García, V. Metagenomic Study of Fungal Microbial Communities in Two PDO Somontano Vineyards (Huesca, Spain): Effects of Age, Plant Genotype, and Initial Phytosanitary Status on the Priming and Selection of Their Associated Microorganisms. Plants 2023, 12, 2251. [Google Scholar] [CrossRef] [PubMed]
- Del Frari, G.; Gobbi, A.; Aggerbeck, M.R.; Oliveira, H.; Hansen, L.H.; Ferreira, R.B. Characterization of the Wood Mycobiome of Vitis Vinifera in a Vineyard Affected by Esca. Spatial Distribution of Fungal Communities and Their Putative Relation with Leaf Symptoms. Front. Plant Sci. 2019, 10, 910. [Google Scholar] [CrossRef] [PubMed]
- Del Frari, G.; Aggerbeck, M.R.; Gobbi, A.; Ingrà, C.; Volpi, L.; Nascimento, T.; Ferrandino, A.; Hansen, L.H.; Ferreira, R.B. Pruning Wound Protection Products Induce Alterations in the Wood Mycobiome Profile of Grapevines. J. Fungi 2023, 9, 488. [Google Scholar] [CrossRef] [PubMed]
- Bettenfeld, P.; Fontaine, F.; Trouvelot, S.; Fernandez, O.; Courty, P.-E. Woody Plant Declines. What’s Wrong with the Microbiome? Trends Plant Sci. 2020, 25, 381–394. [Google Scholar] [CrossRef]
- Bruez, E.; Vallance, J.; Gautier, A.; Laval, V.; Compant, S.; Maurer, W.; Sessitsch, A.; Lebrun, M.-H.; Rey, P. Major Changes in Grapevine Wood Microbiota Are Associated with the Onset of Esca, a Devastating Trunk Disease. Environ. Microbiol. 2020, 18, 5189–5206. [Google Scholar] [CrossRef]
- Bekris, F.; Vasileiadis, S.; Papadopoulou, E.; Samaras, A.; Testempasis, S.; Gkizi, D.; Tavlaki, G.; Tzima, A.; Paplomatas, E.; Markakis, E.; et al. Grapevine Wood Microbiome Analysis Identifies Key Fungal Pathogens and Potential Interactions with the Bacterial Community Implicated in Grapevine Trunk Disease Appearance. Environ. Microbiome 2021, 16, 23. [Google Scholar] [CrossRef] [PubMed]
- Paolinelli, M.; Escoriaza, G.; Cesari, C.; Garcia-Lampasona, S.; Hernandez-Martinez, R. Characterization of Grapevine Wood Microbiome Through a Metatranscriptomic Approach. Microb. Ecol. 2022, 83, 658–668. [Google Scholar] [CrossRef] [PubMed]
- Nerva, L.; Garcia, J.F.; Favaretto, F.; Giudice, G.; Moffa, L.; Sandrini, M.; Cantu, D.; Zanzotto, A.; Gardiman, M.; Velasco, R.; et al. The Hidden World within Plants: Metatranscriptomics Unveils the Complexity of Wood Microbiomes. J. Exp. Bot. 2022, 73, 2682–2697. [Google Scholar] [CrossRef] [PubMed]
- Adejoro, D.O.; Jones, E.E.; Ridgway, H.J.; Mundy, D.C.; Vanga, B.R.; Bulman, S.R. Grapevines Escaping Trunk Diseases in New Zealand Vineyards Have a Distinct Microbiome Structure. Front. Microbiol. 2023, 14, 1231832. [Google Scholar] [CrossRef] [PubMed]
- Bettenfeld, P.; Cadena I Canals, J.; Jacquens, L.; Fernandez, O.; Fontaine, F.; Van Schaik, E.; Courty, P.-E.; Trouvelot, S. The Microbiota of the Grapevine Holobiont: A Key Component of Plant Health. J. Adv. Res. 2022, 40, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Cobos, R.; Ibañez, A.; Diez-Galán, A.; Calvo-Peña, C.; Ghoreshizadeh, S.; Coque, J.J.R. The Grapevine Microbiome to the Rescue: Implications for the Biocontrol of Trunk Diseases. Plants 2022, 23, 840. [Google Scholar] [CrossRef] [PubMed]
- Mugnai, L.; Graniti, A.; Surico, G. Esca (Black Measles) and Brown Wood-Streaking: Two Old and Elusive Diseases of Grapevines. Plant Dis. 1999, 83, 404–418. [Google Scholar] [CrossRef] [PubMed]
- Liminana, J.-M.; Pacreau, G.; Boureau, F.; Menard, E.; David, S.; Himonnet, C.; Fermaud, M.; Goutouly, J.-P.; Lecomte, P.; Dumot, V. Inner Necrosis in Grapevine Rootstock Mother Plants in the Cognac Area (Charentes, France). Phytopathol. Mediterr. 2009, 48, 10. [Google Scholar] [CrossRef]
- Úrbez-Torres, J.R.; Gubler, W.D. Pathogenicity of Botryosphaeriaceae Species Isolated from Grapevine Cankers in California. Plant Dis. 2009, 93, 584–592. [Google Scholar] [CrossRef]
- Travadon, R.; Rolshausen, P.E.; Gubler, W.D.; Cadle-Davidson, L.; Baumgartner, K. Susceptibility of cultivated and wild Vitis spp. to wood infection by fungal trunk pathogens. Plant Dis. 2013, 97, 1529–1536. [Google Scholar] [CrossRef]
- Etienne, L.; Fabre, F.; Martinetti, D.; Frank, E.; Michel, L.; Bonnardot, V.; Guérin-Dubrana, L.; Delmas, C.E.L. Exploring the Role of Cultivar, Year and Plot Age in the Incidence of Grapevine Trunk Diseases: Insights from 20 Years of Regional Surveys in France. Plant Dis. 2024. [Google Scholar] [CrossRef]
- Niem, J.M.; Billones-Baaijens, R.; Stodart, B.; Savocchia, S. Diversity Profiling of Grapevine Microbial Endosphere and Antagonistic Potential of Endophytic Pseudomonas against Grapevine Trunk Diseases. Front. Microbiol. 2020, 11, 477. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Howell, K. Community Succession of the Grapevine Fungal Microbiome in the Annual Growth Cycle. Environ. Microbiol. 2020, 23, 1842–1857. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Thorngate, J.H.; Richardson, P.M.; Mills, D.A. Microbial Biogeography of Wine Grapes Is Conditioned by Cultivar, Vintage, and Climate. Proc. Natl. Acad. Sci. USA 2014, 111, E139–E148. [Google Scholar] [CrossRef] [PubMed]
- Mezzasalma, V.; Sandionigi, A.; Guzzetti, L.; Galimberti, A.; Grando, M.S.; Tardaguila, J.; Labra, M. Geographical and Cultivar Features Differentiate Grape Microbiota in Northern Italy and Spain Vineyards. Front. Microbiol. 2018, 9, 946. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Santoni, S.; Weber, A.; This, P.; Péros, J.-P. Understanding the Phyllosphere Microbiome Assemblage in Grape Species (Vitaceae) with Amplicon Sequence Data Structures. Sci. Rep. 2019, 9, 14294. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, E.; Bekris, F.; Vasileiadis, S.; Papadopoulou, K.K.; Karpouzas, D.G. Different Factors Are Operative in Shaping the Epiphytic Grapevine Microbiome across Different Geographical Scales: Biogeography, Cultivar or Vintage? J. Sustain. Agric. Environ. 2022, 1, 287–301. [Google Scholar] [CrossRef]
- Kraus, C.; Voegele, R.T.; Fischer, M. Temporal Development of the Culturable, Endophytic Fungal Community in Healthy Grapevine Branches and Occurrence of GTD-Associated Fungi. Microb. Ecol. 2019, 77, 866–876. [Google Scholar] [CrossRef]
- Deyett, E.; Roper, M.C.; Ruegger, P.; Yang, J.-I.; Borneman, J.; Rolshausen, P.E. Microbial Landscape of the Grapevine Endosphere in the Context of Pierce’s Disease. Phytobiomes 2017, 1, 138–149. [Google Scholar] [CrossRef]
- Pacetti, A.; Moretti, S.; Pinto, C.; Compant, S.; Farine, S.; Bertsch, C.; Mugnai, L. Trunk Surgery as a Tool to Reduce Foliar Symptoms in Diseases of the Esca Complex and Its Influence on Vine Wood Microbiota. J. Fungi 2021, 7, 521. [Google Scholar] [CrossRef]
- Kraus, C.; Rauch, C.; Kalvelage, E.M.; Behrens, F.H.; d’Aguiar, D.; Dubois, C.; Fischer, M. Minimal versus Intensive: How the Pruning Intensity Affects Occurrence of Grapevine Leaf Stripe Disease, Wood Integrity, and the Mycobiome in Grapevine Trunks. J. Fungi 2022, 8, 247. [Google Scholar] [CrossRef] [PubMed]
- Bruez, E.; Larignon, P.; Bertsch, C.; Robert-Siegwald, G.; Lebrun, M.-H.; Rey, P.; Fontaine, F. Impacts of Sodium Arsenite on Wood Microbiota of Esca-Diseased Grapevines. J. Fungi 2021, 7, 498. [Google Scholar] [CrossRef] [PubMed]
- Meza, L.; Deyett, E.; Vallance, J.; Garcia, J.F.; Cantu, D.; Rey, P.; Rolshausen, P.E. Grapevine Pruning Strategy Affects Trunk Disease Symptoms, Wood Pathobiome and Mycobiome. Phytopathol. Mediterr. 2024, 63, 91–102. [Google Scholar] [CrossRef]
- Perazzolli, M.; Antonielli, L.; Storari, M.; Puopolo, G.; Pancher, M.; Giovannini, O.; Pindo, M.; Pertot, I. Resilience of the Natural Phyllosphere Microbiota of the Grapevine to Chemical and Biological Pesticides. Appl. Environ. Microbiol. 2014, 80, 3585–3596. [Google Scholar] [CrossRef] [PubMed]
- Savazzini, F.; Oliveira Longa, C.M.; Pertot, I. Impact of the biocontrol agent Trichoderma atroviride SC1 on soil microbial communities of a vineyard in northern Italy. Soil. Biol. Biochem. 2009, 41, 1457–1465. [Google Scholar] [CrossRef]
- Pulcini, L.; Bona, E.; Vaudano, E.T.; Tsolakis, C.; Garcia-Moruno, E.; Costantini, A.; Gamalero, E. The Impact of a Commercial Biostimulant on the Grape Mycobiota of Vitis vinifera Cv. Barbera. Microorganisms 2023, 11, 1873. [Google Scholar] [CrossRef]
- Leal, C.; Eichmeier, A.; Štůsková, K.; Armengol, J.; Bujanda, R.; Fontaine, F.; Trotel-Aziz, P.; Gramaje, D. Establishment of Biocontrol Agents and Their Impact on Rhizosphere Microbiome and Induced Grapevine Defenses Are Highly Soil-Dependent. Phytobiomes J. 2024, 8, 111–127. [Google Scholar] [CrossRef]
Fungi | Bacteria | |||
---|---|---|---|---|
R2 | p-Value | R2 | p-Value | |
Treatment | 0.007 | 0.281 | 0.006 | 0.476 |
Sampling Time | 0.011 | 0.045 | 0.044 | <0.001 |
Tissue | 0.022 | 0.001 | 0.014 | <0.01 |
Vineyard | 0.22 | 0.001 | 0.154 | <0.001 |
Fungi | Bacteria | |||
---|---|---|---|---|
Observed | Shannon | Observed | Shannon | |
Treatment | 0.12 | 0.26 | 0.45 | 0.31 |
Sampling Time | 0.8 | 0.27 | <0.001 | 0.068 |
Tissue | 0.004 | 0.58 | <0.001 | <0.01 |
Vineyard | 0.15 | <0.001 | <0.001 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yacoub, A.; Renault, D.; Haidar, R.; Boulisset, F.; Letousey, P.; Guyoneaud, R.; Attard, E.; Rey, P. Impact of the Biocontrol Product, Esquive® WP, on the Indigenous Grapevine Wood Microbiome after a 6-Year Application Period. J. Fungi 2024, 10, 566. https://doi.org/10.3390/jof10080566
Yacoub A, Renault D, Haidar R, Boulisset F, Letousey P, Guyoneaud R, Attard E, Rey P. Impact of the Biocontrol Product, Esquive® WP, on the Indigenous Grapevine Wood Microbiome after a 6-Year Application Period. Journal of Fungi. 2024; 10(8):566. https://doi.org/10.3390/jof10080566
Chicago/Turabian StyleYacoub, Amira, David Renault, Rana Haidar, Florian Boulisset, Patricia Letousey, Rémy Guyoneaud, Eleonore Attard, and Patrice Rey. 2024. "Impact of the Biocontrol Product, Esquive® WP, on the Indigenous Grapevine Wood Microbiome after a 6-Year Application Period" Journal of Fungi 10, no. 8: 566. https://doi.org/10.3390/jof10080566
APA StyleYacoub, A., Renault, D., Haidar, R., Boulisset, F., Letousey, P., Guyoneaud, R., Attard, E., & Rey, P. (2024). Impact of the Biocontrol Product, Esquive® WP, on the Indigenous Grapevine Wood Microbiome after a 6-Year Application Period. Journal of Fungi, 10(8), 566. https://doi.org/10.3390/jof10080566