Evaluating the Genome-Based Average Nucleotide Identity Calculation for Identification of Twelve Yeast Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Assemblies Used in This Study
2.2. Species Delineation Using ANI Calculation, In Silico Alignment of D1/D2 Region of LSU Ribosomal DNA, and the Selection of Orthologous Genes (MAOG)
2.3. Statistical Analysis for the Comparison between D1/D2 Sequence, MAOG, and ANI Calculation
3. Results
3.1. Species Delineation Based on ANI Calculation
3.2. Species Delineation Based on In Silico Extraction of D1/D2 Region and MAOG
3.3. Comparative Analysis between D1/D2 Sequence Alignments, MAOG, and ANI
3.4. Exploring Species Delineation in Saccharomyces Hybrid Genomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kurtzman, C.P.; Fell, J.W.; Boekhout, T.; Robert, V. Methods for Isolation, Phenotypic Characterization and Maintenance of Yeasts. In The Yeasts, a Taxonomic Study; Elsevier: London, UK, 2011; pp. 87–110. ISBN 978-0-444-52149-1. [Google Scholar]
- Kurtzman, C.P.; Robnett, C.J. Identification and Phylogeny of Ascomycetous Yeasts from Analysis of Nuclear Large Subunit (26S) Ribosomal DNA Partial Sequences. Antonie Van Leeuwenhoek 1998, 73, 331–371. [Google Scholar] [CrossRef] [PubMed]
- Libkind, D.; Čadež, N.; Opulente, D.A.; Langdon, Q.K.; Rosa, C.A.; Sampaio, J.P.; Gonçalves, P.; Hittinger, C.T.; Lachance, M.A. Towards Yeast Taxogenomics: Lessons from Novel Species Descriptions Based on Complete Genome Sequences. FEMS Yeast Res. 2020, 20, foaa042. [Google Scholar] [CrossRef] [PubMed]
- Kurtzman, C.P. Use of Gene Sequence Analyses and Genome Comparisons for Yeast Systematics. Int. J. Syst. Evol. Microbiol. 2014, 64, 325–332. [Google Scholar] [CrossRef]
- Belloch, C.; Querol, A.; García, M.D.; Barrio, E. Phylogeny of the Genus Kluyveromyces Inferred from the Mitochondrial Cytochrome-c Oxidase II Gene. Int. J. Syst. Evol. Microbiol. 2000, 50 Pt 1, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.J.; Whelen, S.; Hall, B.D. Phylogenetic Relationships among Ascomycetes: Evidence from an RNA Polymerse II Subunit. Mol. Biol. Evol. 1999, 16, 1799–1808. [Google Scholar] [CrossRef] [PubMed]
- Daniel, H.-M.; Meyer, W. Evaluation of Ribosomal RNA and Actin Gene Sequences for the Identification of Ascomycetous Yeasts. Int. J. Food Microbiol. 2003, 86, 61–78. [Google Scholar] [CrossRef]
- Hawksworth, D.L.; Lücking, R. Fungal Diversity Revisited: 2.2 to 3.8 Million Species. In The Fungal Kingdom; Wiley: Hoboken, NJ, USA, 2017; pp. 79–95. [Google Scholar] [CrossRef]
- Parks, D.H.; Chuvochina, M.; Waite, D.W.; Rinke, C.; Skarshewski, A.; Chaumeil, P.A.; Hugenholtz, P. A Standardized Bacterial Taxonomy Based on Genome Phylogeny Substantially Revises the Tree of Life. Nat. Biotechnol. 2018, 36, 996. [Google Scholar] [CrossRef]
- Groenewald, M.; Hittinger, C.T.; Bensch, K.; Opulente, D.A.; Shen, X.X.; Li, Y.; Liu, C.; LaBella, A.L.; Zhou, X.; Limtong, S.; et al. A Genome-Informed Higher Rank Classification of the Biotechnologically Important Fungal Subphylum Saccharomycotina. Stud. Mycol. 2023, 105, 1–22. [Google Scholar] [CrossRef]
- Liu, F.; Hu, Z.-D.; Yurkov, A.; Chen, X.-H.; Bao, W.-J.; Ma, Q.; Zhao, W.-N.; Pan, S.; Zhao, X.-M.; Liu, J.-H.; et al. Saccharomycetaceae: Delineation of Fungal Genera Based on Phylogenomic Analyses, Genomic Relatedness Indices and Genomics-Based Synapomorphies. Persoonia Mol. Phylogeny Evol. Fungi 2024, 52, 1–21. [Google Scholar] [CrossRef]
- Libkind, D.; Peris, D.; Cubillos, F.A.; Steenwyk, J.L.; Opulente, D.A.; Langdon, Q.K.; Rokas, A.; Hittinger, C.T. Into the Wild: New Yeast Genomes from Natural Environments and New Tools for Their Analysis. FEMS Yeast Res. 2021, 20, foaa008. [Google Scholar] [CrossRef]
- Tsai, I.J. The Teenage Years of Yeast Population Genomics Trace History, Admixing and Getting Wilder. Curr. Opin. Genet. Dev. 2022, 75, 101942. [Google Scholar] [CrossRef] [PubMed]
- Brysch-Herzberg, M.; Jia, G.-S.; Sipiczki, M.; Seidel, M.; Li, W.; Assali, I.; Du, L.-L. Schizosaccharomyces Lindneri Sp. Nov., a Fission Yeast Occurring in Honey. Yeast 2023, 40, 237–253. [Google Scholar] [CrossRef] [PubMed]
- Chai, C.-Y.; Li, Y.; Yan, Z.-L.; Hui, F.-L. Phylogenetic and Genomic Analyses of Two New Species of Clavispora (Metschnikowiaceae, Saccharomycetales) from Central China. Front. Microbiol. 2022, 13, 1019599. [Google Scholar] [CrossRef]
- Tiwari, S.; Lee, D.K.; Lachance, M.-A.; Baghela, A. Metschnikowia ahupensis f.a., Sp. Nov., a New Yeast Species Isolated from the Gut of the Wood-Feeding Termite Nasutitermes sp. Int. J. Syst. Evol. Microbiol. 2023, 73, 6012. [Google Scholar] [CrossRef] [PubMed]
- Saubin, M.; Devillers, H.; Proust, L.; Brier, C.; Grondin, C.; Pradal, M.; Legras, J.L.; Neuvéglise, C. Investigation of Genetic Relationships Between Hanseniaspora Species Found in Grape Musts Revealed Interspecific Hybrids with Dynamic Genome Structures. Front. Microbiol. 2020, 10, 2960. [Google Scholar] [CrossRef]
- Peter, J.; De Chiara, M.; Friedrich, A.; Yue, J.; Pflieger, D.; Bergström, A.; Sigwalt, A.; Barre, B.; Freel, K.; Llored, A.; et al. Saccharomyces Cerevisiae Isolates Saccharomyces Cerevisiae Isolates. Nature 2018, 556, 339–344. [Google Scholar] [CrossRef]
- Tusso, S.; Nieuwenhuis, B.P.S.; Sedlazeck, F.J.; Davey, J.W.; Jeffares, D.C.; Wolf, J.B.W.; Nielsen, R. Ancestral Admixture Is the Main Determinant of Global Biodiversity in Fission Yeast. Mol. Biol. Evol. 2019, 36, 1975–1989. [Google Scholar] [CrossRef]
- Tusso, S.; Suo, F.; Liang, Y.; Du, L.L.; Wolf, J.B.W. Reactivation of Transposable Elements Following Hybridization in Fission Yeast. Genome Res. 2022, 32, 324–336. [Google Scholar] [CrossRef]
- Borneman, A.R.; Pretorius, I.S. Genomic Insights into the Saccharomyces Sensu Stricto Complex. Genetics 2014, 199, 281–291. [Google Scholar] [CrossRef]
- Ono, J.; Greig, D.; Boynton, P.J. Defining and Disrupting Species Boundaries in Saccharomyces. Annu. Rev. Microbiol. 2020, 74, 477–495. [Google Scholar] [CrossRef]
- Bendixsen, D.P.; Frazão, J.G.; Stelkens, R. Saccharomyces Yeast Hybrids on the Rise. Yeast 2022, 39, 40–54. [Google Scholar] [CrossRef] [PubMed]
- Sipiczki, M.; Pfliegler, W.P.; Holb, I.J. Metschnikowia Species Share a Pool of Diverse RRNA Genes Differing in Regions That Determine Hairpin-Loop Structures and Evolve by Reticulation. PLoS ONE 2013, 8, e67384. [Google Scholar] [CrossRef]
- Lachance, M.A.; Daniel, H.M.; Meyer, W.; Prasad, G.S.; Gautam, S.P.; Boundy-Mills, K. The D1/D2 Domain of the Large-Subunit RDNA of the Yeast Species Clavispora lusitaniae Is Unusually Polymorphic. FEMS Yeast Res. 2003, 4, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Chun, J.; Oren, A.; Ventosa, A.; Christensen, H.; Arahal, D.R.; da Costa, M.S.; Rooney, A.P.; Yi, H.; Xu, X.W.; De Meyer, S.; et al. Proposed Minimal Standards for the Use of Genome Data for the Taxonomy of Prokaryotes. Int. J. Syst. Evol. Microbiol. 2018, 68, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Lachance, M.A.; Lee, D.K.; Hsiang, T. Delineating Yeast Species with Genome Average Nucleotide Identity: A Calibration of ANI with Haplontic, Heterothallic Metschnikowia Species. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2020, 113, 2097–2106. [Google Scholar] [CrossRef]
- Tullio, V. Yeast Genomics and Its Applications in Biotechnological Processes: What Is Our Present and near Future? J. Fungi 2022, 8, 752. [Google Scholar] [CrossRef]
- Jain, C.; Rodriguez-R, L.M.; Phillippy, A.M.; Konstantinidis, K.T.; Aluru, S. High Throughput ANI Analysis of 90K Prokaryotic Genomes Reveals Clear Species Boundaries. Nat. Commun. 2018, 9, 5114. [Google Scholar] [CrossRef]
- Langdon, Q.K.; Peris, D.; Baker, E.P.; Opulente, D.A.; Nguyen, H.-V.; Bond, U.; Gonçalves, P.; Sampaio, J.P.; Libkind, D.; Hittinger, C.T. Fermentation Innovation through Complex Hybridization of Wild and Domesticated Yeasts. Nat. Ecol. Evol. 2019, 3, 1576–1586. [Google Scholar] [CrossRef]
- Almeida, P.; Gonçalves, C.; Teixeira, S.; Libkind, D.; Bontrager, M.; Masneuf-Pomarède, I.; Albertin, W.; Durrens, P.; Sherman, D.J.; Marullo, P.; et al. A Gondwanan Imprint on Global Diversity and Domestication of Wine and Cider Yeast Saccharomyces Uvarum. Nat. Commun. 2014, 5, 4044. [Google Scholar] [CrossRef]
- Morard, M.; Benavent-Gil, Y.; Ortiz-Tovar, G.; Pérez-Través, L.; Querol, A.; Toft, C.; Barrio, E. Genome Structure Reveals the Diversity of Mating Mechanisms in Saccharomyces Cerevisiae x Saccharomyces Kudriavzevii Hybrids, and the Genomic Instability That Promotes Phenotypic Diversity. Microb. Genom. 2020, 6, 333. [Google Scholar] [CrossRef]
- Turgeon, Z.; Sierocinski, T.; Brimacombe, C.A.; Jin, Y.; Goldhawke, B.; Swanson, J.M.; Husnik, J.I.; Dahabieh, M.S. Industrially Applicable De Novo Lager Yeast Hybrids with a Unique Genomic Architecture: Creation and Characterization. Appl. Environ. Microbiol. 2021, 87, e02434-20. [Google Scholar] [CrossRef] [PubMed]
- Papon, N.; Courdavault, V.; Clastre, M.; Bennett, R.J. Emerging and Emerged Pathogenic Candida Species: Beyond the Candida Albicans Paradigm. PLoS Pathog. 2013, 9, e1003550. [Google Scholar] [CrossRef] [PubMed]
- Legras, J.L.; Galeote, V.; Bigey, F.; Camarasa, C.; Marsit, S.; Nidelet, T.; Sanchez, I.; Couloux, A.; Guy, J.; Franco-Duarte, R.; et al. Adaptation of s. Cerevisiae to Fermented Food Environments Reveals Remarkable Genome Plasticity and the Footprints of Domestication. Mol. Biol. Evol. 2018, 35, 1712–1727. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Prjibelski, A.D.; Antipov, D.; Meleshko, D.; Lapidus, A.L.; Korobeynikov, A.I. Using SPAdes De Novo Assembler. Curr. Protoc. Bioinform. 2020, 70, e102. [Google Scholar] [CrossRef]
- Langdon, Q.K.; Peris, D.; Kyle, B.; Hittinger, C.T. SppIDer: A Species Identification Tool to Investigate Hybrid Genomes with High-Throughput Sequencing. Mol. Biol. Evol. 2018, 35, 2835–2849. [Google Scholar] [CrossRef]
- Manni, M.; Berkeley, M.R.; Seppey, M.; Simão, F.A.; Zdobnov, E.M. BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Mol. Biol. Evol. 2021, 38, 4647–4654. [Google Scholar] [CrossRef]
- Kuraku, S.; Zmasek, C.M.; Nishimura, O.; Katoh, K. ALeaves Facilitates On-Demand Exploration of Metazoan Gene Family Trees on MAFFT Sequence Alignment Server with Enhanced Interactivity. Nucleic Acids Res. 2013, 41, 22–28. [Google Scholar] [CrossRef]
- Lachance, M.A.C.P. Kurtzman’s Evolving Concepts of Species, Genus and Higher Categories. FEMS Yeast Res. 2018, 18, foy103. [Google Scholar] [CrossRef]
- Tsai, I.J.; Bensasson, D.; Burt, A.; Koufopanou, V. Population Genomics of the Wild Yeast Saccharomyces Paradoxus: Quantifying the Life Cycle. Proc. Natl. Acad. Sci. USA 2008, 105, 4957–4962. [Google Scholar] [CrossRef]
- Naumov, G.I.; Naumova, E.S.; Lantto, R.A.; Louis, E.J.; Korhola, M. Genetic Homology between Saccharomyces Cerevisiae and Its Sibling Species S. Paradoxus and S. Bayanus: Electrophoretic Karyotypes. Yeast 1992, 8, 599–612. [Google Scholar] [CrossRef]
- Hernández-García, J.A.; De-la-Vega-Camarillo, E.; Villa-Tanaca, L.; Hernández-Rodríguez, C. Yeast Taxonomy. In Yeasts: From Nature to Bioprocesses; Mycology: Current and Future Developments; Bentham Science Publishers: Sharjah, United Arab Emirates, 2022; pp. 58–72. ISBN 9789815051087. [Google Scholar]
- Lücking, R.; Aime, M.C.; Robbertse, B.; Miller, A.N.; Ariyawansa, H.A.; Aoki, T.; Cardinali, G.; Crous, P.W.; Druzhinina, I.S.; Geiser, D.M.; et al. Unambiguous Identification of Fungi: Where Do We Stand and How Accurate and Precise Is Fungal DNA Barcoding? IMA Fungus 2020, 11, 14. [Google Scholar] [CrossRef] [PubMed]
- Boekhout, T.; Aime, M.C.; Begerow, D.; Gabaldón, T.; Heitman, J.; Kemler, M.; Khayhan, K.; Lachance, M.A.; Louis, E.J.; Sun, S.; et al. The Evolving Species Concepts Used for Yeasts: From Phenotypes and Genomes to Speciation Networks. Fungal Divers. 2021, 109, 27–55. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, E.; Bautista, R.; Fernandez, I.; Larrosa, R.; Zapata, E.L.; Plata, O. Comparing Assembly Strategies for Third-Generation Sequencing Technologies across Different Genomes. Genomics 2023, 115, 110700. [Google Scholar] [CrossRef] [PubMed]
- Kurtzman, C.P.; Fell, J.W.; Boekhout, T. Gene Sequence Analyses and Other DNA-Based Methods for Yeast Species Recognition. In The Yeasts, a Taxonomic Study; Elsevier: Amsterdam, The Netherlands, 2011; pp. 137–144. ISBN 978-0-444-52149-1. [Google Scholar]
- Kurtzman, C.P.; Robnett, C.J. Identification of Clinically Important Ascomycetous Yeasts Based on Nucleotide Divergence in the 5′ End of the Large-Subunit (26S) Ribosomal DNA Gene. J. Clin. Microbiol. 1997, 35, 1216–1223. [Google Scholar] [CrossRef] [PubMed]
- Vu, D.; Groenewald, M.; Szöke, S.; Cardinali, G.; Eberhardt, U.; Stielow, B.; de Vries, M.; Verkleij, G.J.M.; Crous, P.W.; Boekhout, T.; et al. DNA Barcoding Analysis of More than 9 000 Yeast Isolates Contributes to Quantitative Thresholds for Yeast Species and Genera Delimitation. Stud. Mycol. 2016, 85, 91–105. [Google Scholar] [CrossRef]
- Conti, A.; Corte, L.; Casagrande Pierantoni, D.; Robert, V.; Cardinali, G. What Is the Best Lens? Comparing the Resolution Power of Genome-Derived Markers and Standard Barcodes. Microorganisms 2021, 9, 299. [Google Scholar] [CrossRef]
- Liem, M.; Jansen, H.J.; Dirks, R.P.; Henkel, C.V.; van Heusden, G.P.H.; Lemmers, R.J.L.F.; Omer, T.; Shao, S.; Punt, P.J.; Spaink, H.P. De Novo Whole-Genome Assembly of a Wild Type Yeast Isolate Using Nanopore Sequencing. F1000Research 2017, 6, 618. [Google Scholar] [CrossRef]
- Čadež, N.; Bellora, N.; Ulloa, R.; Tome, M.; Petković, H.; Groenewald, M.; Hittinger, C.T.; Libkind, D. Hanseniaspora Smithiae Sp. Nov., a Novel Apiculate Yeast Species from Patagonian Forests That Lacks the Typical Genomic Domestication Signatures for Fermentative Environments. Front. Microbiol. 2021, 12, 679894. [Google Scholar] [CrossRef]
- Wibberg, D.; Stadler, M.; Lambert, C.; Bunk, B.; Spröer, C.; Rückert, C.; Kalinowski, J.; Cox, R.J.; Kuhnert, E. High Quality Genome Sequences of Thirteen Hypoxylaceae (Ascomycota) Strengthen the Phylogenetic Family Backbone and Enable the Discovery of New Taxa. Fungal Divers. 2021, 106, 7–28. [Google Scholar] [CrossRef]
- Lozano-Aguirre, L.; Avitia, M.; Lappe-Oliveras, P.; Licona-Cassani, C.; Cevallos, M.A.; Le Borgne, S. Draft Genomes of Four Kluyveromyces Marxianus Isolates Retrieved from the Elaboration Process of Henequen (Agave Fourcroydes) Mezcal. Microbiol. Resour. Announc. 2024, 13, e00861-23. [Google Scholar] [CrossRef] [PubMed]
- Freitas, L.F.D.; Batista, T.M.; Santos, A.R.O.; Hilário, H.O.; Moreira, R.G.; Franco, G.R.; Morais, P.B.; Lachance, M.A.; Rosa, C.A. Yeast Communities Associated with Cacti in Brazil and the Description of Kluyveromyces Starmeri Sp. Nov. Based on Phylogenomic Analyses. Yeast 2020, 37, 625–637. [Google Scholar] [CrossRef] [PubMed]
- Franco-Duarte, R.; Čadež, N.; Rito, T.; Drumonde-Neves, J.; Reyes Dominguez, Y.; Pais, C.; Sousa, M.J.; Soares, P. Whole-Genome Sequencing and Annotation of the Yeast Clavispora Santaluciae Reveals Important Insights about Its Adaptation to the Vineyard Environment. J. Fungi 2022, 8, 52. [Google Scholar] [CrossRef] [PubMed]
- Troiano, E.; Larini, I.; Binati, R.L.; Gatto, V.; Torriani, S.; Buzzini, P.; Turchetti, B.; Salvetti, E.; Felis, G.E. Finding a Correct Species Assignment for a Metschnikowia Strain: Insights from the Genome Sequencing of Strain DBT012. FEMS Yeast Res. 2023, 23, foad024. [Google Scholar] [CrossRef] [PubMed]
- Ryan, A.P.; Groenewald, M.; Smith, M.T.; Holohan, C.; Boekhout, T.; Wolfe, K.H.; Butler, G. Genome Analysis of a Newly Discovered Yeast Species, Hanseniaspora menglaensis. J. Fungi 2024, 10, 180. [Google Scholar] [CrossRef]
- Martini, A.N.N.V.; Kurtzman, C.P. Deoxyribonucleic Acid Relatedness among Species of the Genus Saccharomyces Sensu Stricto. Int. J. Syst. Evol. Microbiol. 1985, 4, 508–511. [Google Scholar]
- González, S.S.; Barrio, E.; Gafner, J.; Querol, A. Natural Hybrids from Saccharomyces Cerevisiae, Saccharomyces Bayanus and Saccharomyces Kudriavzevii in Wine Fermentations. FEMS Yeast Res. 2006, 6, 1221–1234. [Google Scholar] [CrossRef]
- Masneuf, I.; Hansen, J.; Groth, C.; Piskur, J.; Dubourdieu, D. New Hybrids between Saccharomyces Sensu Stricto Yeast Species Found among Wine and Cider Production Strains. Appl. Environ. Microbiol. 1998, 64, 3887–3892. [Google Scholar] [CrossRef]
Genus | Within-Species Cutoff | Between-Species Cutoff |
---|---|---|
Candida | >96% | <88% |
Debaryomyces | >92% | <90% |
Hanseniaspora | >97% | <90% |
Kazachstania | >98% | <89% |
Kluyveromyces | >95% | <79% |
Pichia | >98% | <82% |
Rhodotorula | >95% | <80% |
Saccharomyces | >92% | <81% |
Schizosaccharomyces | >98% | <80% |
Starmerella | >97% | <85% |
Torulaspora | >95% | <90% |
Yarrowia | >98% | <90% |
Genus | Total N° of Assemblies | N° of Assemblies Analyzed by FastANI | N° of Assemblies Analyzed by MAOG | N° of Assemblies Analyzed by D1/D2 Alignment | N° of Assemblies Analyzed by All Three Methods |
---|---|---|---|---|---|
Pichia | 32 | 32 | 32 | 23 | 23 |
Kazachstania | 28 | 28 | 20 | 17 | 16 |
Candida | 114 | 114 | 104 | 34 | 29 |
Saccharomyces | 148 | 148 | 121 | 86 | 80 |
Debaryomyces | 19 | 19 | 15 | 10 | 8 |
Rhodotorula | 132 | 132 | 47 | 115 | 36 |
Starmerella | 20 | 20 | 20 | 14 | 14 |
Yarrowia | 39 | 39 | 28 | 15 | 9 |
Schizosaccharomyces | 23 | 23 | 23 | 20 | 20 |
Hanseniaspora | 31 | 31 | 31 | 23 | 23 |
Kluyveromyces | 27 | 27 | 20 | 20 | 14 |
Torulaspora | 31 | 31 | 23 | 27 | 18 |
Total | 644 | 644 | 484 | 404 | 290 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortimiglia, C.; Alonso-Del-Real, J.; Belloso Daza, M.V.; Querol, A.; Iacono, G.; Cocconcelli, P.S. Evaluating the Genome-Based Average Nucleotide Identity Calculation for Identification of Twelve Yeast Species. J. Fungi 2024, 10, 646. https://doi.org/10.3390/jof10090646
Cortimiglia C, Alonso-Del-Real J, Belloso Daza MV, Querol A, Iacono G, Cocconcelli PS. Evaluating the Genome-Based Average Nucleotide Identity Calculation for Identification of Twelve Yeast Species. Journal of Fungi. 2024; 10(9):646. https://doi.org/10.3390/jof10090646
Chicago/Turabian StyleCortimiglia, Claudia, Javier Alonso-Del-Real, Mireya Viviana Belloso Daza, Amparo Querol, Giovanni Iacono, and Pier Sandro Cocconcelli. 2024. "Evaluating the Genome-Based Average Nucleotide Identity Calculation for Identification of Twelve Yeast Species" Journal of Fungi 10, no. 9: 646. https://doi.org/10.3390/jof10090646
APA StyleCortimiglia, C., Alonso-Del-Real, J., Belloso Daza, M. V., Querol, A., Iacono, G., & Cocconcelli, P. S. (2024). Evaluating the Genome-Based Average Nucleotide Identity Calculation for Identification of Twelve Yeast Species. Journal of Fungi, 10(9), 646. https://doi.org/10.3390/jof10090646