Identification of Mycoses in Developing Countries
Abstract
:1. Introduction
2. Phenotypic Assays
2.1. Blood Culture Bottles: Automated or Manual?
2.2. Other Phenotypic Assays
3. Serological Assays
3.1. Candidiasis
3.2. Aspergillosis
3.3. Cryptococcosis
3.4. Mucormycosis
3.5. Mycetoma
3.6. Dimorphic Mycoses
4. Molecular and PCR-Based Assays
4.1. Isothermal-Based Assays
4.1.1. LAMP
4.1.2. RCA
4.1.3. RPA
4.1.4. NASBA
4.2. PCR-Based Assays
4.2.1. Conventional PCR-Based Methods
PCR-RFLP Assays
Simple PCR
Nested PCR
4.2.2. Real-Time-PCR-Based Assays
5. Rapid Identification of Antifungal Resistance Using Molecular Techniques
6. Promising Future Technologies
6.1. CRISPR-Based Diagnostic Tools
6.2. Nanopore Sequencing
7. Conclusions
Funding
Conflicts of Interest
References
- Limon, J.J.; Tang, J.; Li, D.; Wolf, A.J.; Michelsen, K.S.; Funari, V.; Gargus, M.; Nguyen, C.; Sharma, P.; Maymi, V.I.; et al. Malassezia is associated with Crohn’s disease and exacerbates colitis in mouse models. Cell Host Microbe 2019, 25, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Parady, B. Innate immune and fungal model of Alzheimer’s disease. J. Alzheimers Dis. Rep. 2018, 2, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Gow, N.A.; Netea, M.G. Medical mycology and fungal immunology: New research perspectives addressing a major world health challenge. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016, 371, 20150462. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.D.; Denning, D.W.; Gow, N.A.R.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: Human fungal infections. Sci. Transl. Med. 2012, 4, 165rv13. [Google Scholar] [CrossRef] [PubMed]
- Wickes, B.L.; Wiederhold, N.P. Molecular diagnostics in medical mycology. Nat. Commun. 2018, 9, 5135. [Google Scholar] [CrossRef] [PubMed]
- Orecchini, L.A.; Olmos, E.; Taverna, C.G.; Murisengo, O.A.; Szuzs, W.; Vivot, W.; Córdoba, S.; Bosco-Borgeat, M.E.; Montanaro, P.C. First case of fungemia due to Pseudozyma aphidis in a pediatric patient with osteosarcoma in Latin America. J. Clin. Microbiol. 2015, 53, 3691–3694. [Google Scholar] [CrossRef] [PubMed]
- Arastehfar, A.; Bakhtiari, M.; Daneshnia, F.; Fang, W.; Sadati, S.K.; Al-Hatmi, A.M.; Groenewald, M.; Sharifi-Mehr, H.; Liao, W.; Pan, W.; et al. First fungemia case due to environmental yeast Wickerhamomyces myanmarensis: Detection by multiplex qPCR and antifungal susceptibility. Future Microbiol. 2019, 14, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, A.; Sood, P.; Rudramurthy, S.M.; Chen, S.; Kaur, H.; Capoor, M.; Chhina, D.; Rao, R.; Eshwara, V.K.; Xess, I.; et al. Incidence, characteristics and outcome of ICU-acquired candidemia in India. Intensive Care Med. 2015, 41, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Healey, K.R.; Perlin, D.S. Fungal resistance to echinocandins and the MDR phenomenon in Candida glabrata. J. Fungi 2018, 4, 105. [Google Scholar] [CrossRef]
- Rajikumari, N.; Mathur, P.; Xess, I.; Misra, M.C. Distribution of different yeasts isolates among trauma patients and comparison of accuracy in identification of yeasts by automated method versus conventional methods for better use in low resource countries. Indian J. Med. Microbiol. 2014, 32, 391–397. [Google Scholar] [CrossRef]
- Kathuria, S.; Singh, P.K.; Sharma, C.; Prakash, A.; Masih, A.; Kumar, A.; Meis, J.F.; Chowdhary, A. Multidrug-resistant Candida auris misidentified as Candida haemulonii: Characterization by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry and DNA sequencing and its antifungal susceptibility profile variability by Vitek 2, CLSI Broth Microdilution, and Etest method. J. Clin. Microbiol. 2015, 53, 1823–1830. [Google Scholar] [CrossRef] [PubMed]
- Chindamporn, A.; Chakrabarti, A.; Li, R.; Sun, P.L.; Tan, B.H.; Chua, M.; Wahyuningsih, R.; Patel, A.; Liu, Z.; Chen, Y.C.; et al. Survey of laboratory practices for diagnosis of fungal infection in seven Asian countries: An Asia Fungal Working Group (AFWG) initiative. Med. Mycol. 2018, 56, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Rajasingham, R.; Smith, R.M.; Park, B.J.; Jarvis, J.N.; Govender, N.P.; Chiller, T.M.; Denning, D.W.; Loyse, A.; Boulware, D.R. Global burden of disease of HIV-associated cryptococcal meningitis: An updated analysis. Lancet Infect. Dis. 2017, 17, 873–881. [Google Scholar] [CrossRef]
- Goughenour, K.D.; Rappleye, C.A. Antifungal therapeutics for dimorphic fungal pathogens. Virulence 2017, 8, 211–221. [Google Scholar] [CrossRef]
- Zijlstra, E.E.; van de Sande, W.W.J.; Welsh, O.; Mahgoub, E.S.; Goodfellow, M.; Fahal, A.H. Mycetoma: A unique neglected tropical disease. Lancet Infect. Dis. 2016, 16, 100–112. [Google Scholar] [CrossRef]
- Chowdhary, A.; Sharma, C.; Duggal, S.; Agarwal, K.; Prakash, A.; Singh, P.K.; Jain, S.; Kathuria, S.; Randhawa, H.S.; Hagen, F.; et al. New clonal strain of Candida auris, Delhi, India. Emerg. Infect. Dis. 2013, 19, 1670–1673. [Google Scholar] [CrossRef]
- Ombelet, S.; Barbé, B.; Affolabi, D.; Ronat, J.B.; Lompo, P.; Lunguya, O.; Jacobs, J.; Hardy, L. Best practices of bloodcultures in low- and middle-income countries. Front. Med. (Lausanne) 2019, 6, 131. [Google Scholar] [CrossRef]
- Karam El-Din, A.A.; Mohamed, A.A.; Gad, W.H.; Lotfy, G.S. Prevalence of microbial pathogens in blood cultures: An etiological and histophathological study. J. Tabiah Univ. Sci. 2010, 3, 23–32. [Google Scholar] [CrossRef]
- Elantamilan, D.; Lyngdoh, V.W.; Khyriem, A.B.; Rajbongshi, J.; Bora, I.; Devi, S.T.; Bhattacharyya, P.; Barman, H. Comparative evaluation of the role of single and multiple blood specimens in the outcome of blood cultures using BacT/ALERT3D (automated) blood culture system in a tertiary care hospital. Indian J. Crit. Care Med. 2016, 20, 530–533. [Google Scholar] [CrossRef]
- Ahmad, A.; Iram, S.; Hussain, S.; Yusuf, N.W. Diagnosis of paediatric sepsis by automated blood culture system and conventional blood culture. J. Pak. Med. Assoc. 2017, 67, 192–195. [Google Scholar]
- Iatta, R.; Cafarchia, C.; Cuna, T.; Montagna, O.; Laforgia, N.; Gentile, O.; Rizzo, A.; Boekhout, T.; Otranto, D.; Montagna, M.T. Bloodstream infections by Malassezia and Candida species in critical care patients. Med. Mycol. 2014, 52, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Atlas, RM.; Snyder, J.W. Reagents, Stains, and Media: Bacteriology. In Manual of Clinical Microbiology, 10th ed.; Versalovic, J., Carroll, K., Funke, G., Jorgensen, J., Landry, M., Warnock, D., Eds.; ASM Press: Washington, DC, USA, 2011; pp. 272–303. [Google Scholar] [CrossRef]
- CLSI. Principles and Procedures for Detection of Fungi in Clinical Specimens–Direct Examination and Culture; Approved Guideline; CLSI: Wayne, PA, USA, 2012. [Google Scholar]
- Pincus, D.H.; Orenga, S.; Chatellier, S. Yeast identification–past, present, and future methods. Med. Mycol. 2007, 45, 97–121. [Google Scholar] [CrossRef] [PubMed]
- CDC. Identification of Candida auris: Center for Disease Control and Prevention. 2018. Available online: https://www.cdc.gov/fungal/candida-auris/recommendations.html (accessed on 17 August 2019).
- Mizusawa, M.; Miller, H.; Green, R.; Lee, R.; Durante, M.; Perkins, R.; Hewitt, C.; Simner, P.J.; Carroll, K.C.; Hayden, R.T.; et al. Can multidrug-resistant Candida auris be reliably identified in clinical microbiology laboratories? J. Clin. Microbiol. 2017, 55, 638–640. [Google Scholar] [CrossRef] [PubMed]
- Arastehfar, A.; Daneshnia, F.; Kord, M.; Roudbary, M.; Zarrinfar, H.; Fang, W.; Hashemi, S.J.; Najafzadeh, M.J.; Khodavaisy, S.; Pan, W.; et al. Comparison of 21-Plex PCR and API 20C AUX, MALDI-TOF MS, and rDNA sequencing for a wide range of clinically isolated yeast species: Improved identification by combining 21-Plex PCR and API 20C AUX as an alternative strategy for developing countries. Front. Cell Infect. Microbiol. 2019, 9, 176. [Google Scholar] [CrossRef] [PubMed]
- Balajee, S.A.; Gribskov, J.L.; Hanley, E.; Nickle, D.; Marr, K.A. Aspergillus lentulus sp. nov., a new sibling species of A. fumigatus. Eukaryot. Cell 2005, 4, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Tran, A.; Alby, K.; Kerr, A.; Jones, M.; Gilligan, P.H. Cost savings realized by implementation of routine microbiological identification by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. J. Clin. Microbiol. 2015, 53, 2473–2479. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.E.; Saito, M.T.; Beard, R.R.; Kepp, R.M.; Clark, R.W.; Eddie, B.U. Serological tests in the diagnosis and prognosis of coccidioidomycosis. Am. J. Hyg. 1950, 52, 1–21. [Google Scholar]
- Neill, J.M.; Sugg, J.Y.; McCauley, D.W. Serologically reactive material in spinal fluid, blood, and urine from a human case of cryptococcosis (torulosis). Proc. Soc. Exp. Biol. Med. 1951, 77, 775–778. [Google Scholar] [CrossRef]
- Heiner, D.C. Diagnosis of histoplasmosis using precipitin reaction in agargel. Pediatrics 1958, 22, 616–627. [Google Scholar]
- Bloomfield, N.; Gordon, M.A.; Elmendorf, D.F., Jr. Detection of Cryptococcus neoformans antigen in body fluids by latex particle agglutination. Proc. Soc. Exp. Biol. Med. 1963, 114, 64–67. [Google Scholar] [CrossRef]
- Marcos, J.Y.; Pincus, D.H. Fungal diagnostics: Review of commercially available methods. Methods Mol. Biol. 2013, 968, 25–54. [Google Scholar] [CrossRef] [PubMed]
- Kozel, T.R.; Wickes, B. Fungal diagnostics. Cold Spring Harb Perspect. Med. 2014, 4, a019299. [Google Scholar] [CrossRef] [PubMed]
- Arvanitis, M.; Anagnostou, T.; Fuchs, B.B.; Caliendo, A.M.; Mylonakis, E. Molecular and nonmolecular diagnostic methods for invasive fungal infections. Clin. Microbiol. Rev. 2014, 27, 490–526. [Google Scholar] [CrossRef] [PubMed]
- White, P.L. Recent advances and novel approaches in laboratory-based diagnostic mycology. Med. Mycol. 2019, 57, S259–S266. [Google Scholar] [CrossRef] [PubMed]
- Theel, E.S.; Doern, C.D. Beta-D-glucan testing is important for diagnosis of invasive fungal infections. J. Clin. Microbiol. 2013, 51, 3478–3483. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Castanheira, M. Nosocomial candidiasis: Antifungal stewardship and the importance of rapid diagnosis. Med. Mycol. 2016, 54, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Duettmann, W.; Koidl, C.; Krause, R.; Lackner, G.; Woelfler, A.; Hoenigl, M. Specificity of mannan antigen and anti-mannan antibody screening in patients with haematological malignancies at risk for fungal infection. Mycoses 2016, 59, 374–378. [Google Scholar] [CrossRef] [PubMed]
- Fukazawa, Y. Antigenic structure of Candida albicans. Immunochemical basis of the serologic specificity of the mannans in yeasts. Immunol. Ser. 1989, 47, 37–62. [Google Scholar] [PubMed]
- Demiraslan, H.; Atalay, M.A.; Eren, E.; Demir, K.; Kaynar, L.; Koc, A.N.; Doganay, M. Assessing the risk of false positive serum galactomannan among patients receiving piperacillin/tazobactam for febrile neutropenia. Med. Mycol. 2017, 55, 535–540. [Google Scholar] [CrossRef]
- Reiss, E.; Lehmann, P.F. Galactomannan antigenemia in invasive aspergillosis. Infect. Immun. 1979, 25, 357–365. [Google Scholar] [Green Version]
- Thornton, C.R. Development of an immunochromatographic lateral-flow device for rapid serodiagnosis of invasive aspergillosis. Clin. Vaccine Immunol. 2008, 15, 1095–1105. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Guo, Z.; Xie, S.; Zhou, J.; Chen, G.; Feng, J.; Huang, Y. The performance of galactomannan in combination with 1,3-beta-D-glucan or Aspergillus-lateral flow device for the diagnosis of invasive aspergillosis: Evidences from 13 studies. Diagn. Microbiol. Infect. Dis. 2019, 93, 44–53. [Google Scholar] [CrossRef]
- Metan, G.; Keklik, M.; Dinc, G.; Pala, C.; Yildirim, A.; Saraymen, B.; Köker, M.Y.; Kaynar, L.; Eser, B.; Çetin, M. Performance of galactomannan antigen, Beta-D-Glucan, and Aspergillus-Lateral-Flow device for the diagnosis of invasive aspergillosis. Indian J. Hematol. Blood Transfus. 2017, 33, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Heldt, S.; Prattes, J.; Eigl, S.; Spiess, B.; Flick, H.; Rabensteiner, J.; Prüller, F.; Wölfler, A.; Niedrist, T.; Boch, T.; et al. Diagnosis of invasive aspergillosis in hematological malignancy patients: Performance of cytokines, Asp LFD, and Aspergillus PCR in same day blood and bronchoalveolar lavage samples. J. Infect. 2018, 77, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Mercier, T.; Dunbar, A.; de Kort, E.; Schauwvlieghe, A.; Reynders, M.; Guldentops, E.; Rijnders, B.; Verweij, P.E.; Lagrou, K.; Maertens, J. Diagnosing invasive pulmonary aspergillosis in hematology patients: A retrospective multicenter evaluation of a novel lateral flow device. J. Clin. Microbiol. 2019, 57, e01913-18. [Google Scholar] [CrossRef] [PubMed]
- Mercier, T.; Schauwvlieghe, A.; de Kort, E.; Dunbar, A.; Reynders, M.; Guldentops, E.; Blijlevens, N.M.A.; Vonk, A.G.; Rijnders, B.; Verweij, P.E.; et al. Lateral flow assays for diagnosing invasive pulmonary aspergillosis in adult hematology patients: A comparative multicenter study. Med. Mycol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Jenks, J.D.; Mehta, S.R.; Taplitz, R.; Aslam, S.; Reed, S.L.; Hoenigl, M. Point-of-care diagnosis of invasive aspergillosis in non-neutropenic patients: Aspergillus galactomannan lateral flow assay versus Aspergillus-specific lateral flow device test in bronchoalveolar lavage. Mycoses 2019, 62, 230–236. [Google Scholar] [CrossRef]
- Kwizera, R.; Parkes-Ratanshi, R.; Page, I.D.; Sekaggya-Wiltshire, C.; Musaazi, J.; Fehr, J.; Castelnuovo, B.; Kambugu, A.; Denning, D.W. Elevated Aspergillus-specific antibody levels among HIV infected Ugandans with pulmonary tuberculosis. BMC Pulm. Med. 2017, 17, 17–149. [Google Scholar] [CrossRef]
- Hedayati, M.T.; Azimi, Y.; Droudinia, A.; Mousavi, B.; Khalilian, A.; Hedayati, N.; Denning, D.W. Prevalence of chronic pulmonary aspergillosis in patients with tuberculosis from Iran. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 1759–1765. [Google Scholar] [CrossRef]
- Sehgal, I.S.; Dhooria, S.; Choudhary, H.; Aggarwal, A.N.; Garg, M.; Chakrabarti, A.; Agarwal, R. Monitoring treatment response in chronic pulmonary aspergillosis: Role of clinical, spirometric and immunological markers. Clin. Microbiol. Infect. 2019. [Google Scholar] [CrossRef]
- Vidal, J.E.; Boulware, D.R. Lateral Flow Assay for cryptococcal antigen: An important advice to improve the continuum of HIV care and reduce cryptococccal meningitis-related mortality. Rev. Inst. Med. Trop. Sao Paulo 2015, 57 (Suppl. 19), 38–45. [Google Scholar] [CrossRef]
- Rajasingham, R.; Wake, R.M.; Beyene, T.; Katende, A.; Letang, E.; Boulware, D.R. Cryptococcal meningitis diagnostics and screening in the era of point-of-care laboratory testing. J. Clin. Microbiol. 2019, 57, e01238-18. [Google Scholar] [CrossRef] [PubMed]
- Binnicker, M.J.; Jespersen, D.J.; Bestrom, J.E.; Rollins, L.O. Comparison of four assays for the detection of cryptococcal antigen. Clin. Vaccine Immunol. 2012, 19, 1988–1990. [Google Scholar] [CrossRef]
- Hansen, J.; Slechta, E.S.; Gates-Hollingsworth, M.A.; Neary, B.; Barker, A.P.; Bauman, S.; Kozel, T.R.; Hanson, K.E. Large-scale evaluation of the immuno-mycologics lateral flow and enzyme-linked immunoassays for detection of cryptococcal antigen in serum and cerebrospinal fluid. Clin. Vaccine Immunol. 2013, 20, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Escandón, P.; Lizarazo, J.; Agudelo, C.I.; Chiller, T.; Castañeda, E. Evaluation of a rapid lateral flow immunoassay for the detection of cryptococcal antigen for the early diagnosis of cryptococcosis in HIV patients in Colombia. Med. Mycol. 2013, 51, 765–768. [Google Scholar] [CrossRef] [PubMed]
- Jitmuang, A.; Panackal, A.A.; Williamson, P.R.; Bennett, J.E.; Dekker, J.P.; Zelazny, A.M. Performance of the cryptococcal antigen lateral flow assay in non-HIV-related cryptococcosis. J. Clin. Microbiol. 2016, 54, 460–463. [Google Scholar] [CrossRef] [PubMed]
- Karaman, E.; Ilkit, M.; Kuscu, F. Identification of Cryptococcus antigen in human immunodeficiency virus-positive Turkish patients by using the Dynamiker® Lateral Flow Assay. Mycoses 2019, 62, 961–968. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for the Diagnosis, Prevention and Management of Cryptococcal Disease in HIV-Infected Adults, Adolescents and Children: Supplement to the 2016 Consolidated Guidelines on the Use of Antiretroviral Drugs for Treating and Preventing HIV Infection; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Cornu, M.; Sendid, B.; Mery, A.; Francois, N.; Malgorzata, M.; Letscher-Bru, V.; De Carolis, E.; Damonti, L.; Titecat, M.; Bochud, P.Y.; et al. Evaluation of Mass Spectrometry-based detection of panfungal serum disaccharide for diagnosis of invasive fungal infections: Results from a collaborative study involving six European clinical centers. J. Clin. Microbiol. 2019, 57, e01867-18. [Google Scholar] [CrossRef]
- Ahmed, A.A.; van de Sande, W.; Fahal, A.H. Mycetoma laboratory diagnosis: Review article. PLoS Negl. Trop. Dis. 2017, 11, e0005638. [Google Scholar] [CrossRef]
- Bloch, K.C.; Myint, T.; Raymond-Guillen, L.; Hage, C.A.; Davis, T.E.; Wright, P.W.; Chow, F.C.; Woc-Colburn, L.; Khairy, R.N.; Street, A.C.; et al. Improvement in diagnosis of Histoplasma meningitis by combined testing for Histoplasma antigen and Immunoglobulin G and Immunoglobulin M anti-Histoplasma antibody in cerebrospinal fluid. Clin. Infect. Dis. 2018, 66, 89–94. [Google Scholar] [CrossRef]
- Malo, J.; Holbrook, E.; Zangeneh, T.; Strawter, C.; Oren, E.; Robey, I.; Erickson, H.; Chahal, R.; Durkin, M.; Thompson, C.; et al. Enhanced antibody detection and diagnosis of coccidioidomycosis with the MiraVista IgG and IgM detection Enzyme Immunoassay. J. Clin. Microbiol. 2017, 55, 893–901. [Google Scholar] [CrossRef] [PubMed]
- da Silva, J.F.; de Oliveira, H.C.; Marcos, C.M.; Assato, P.A.; Fusco-Almeida, A.M.; Mendes-Giannini, M.J.S. Advances and challenges in paracoccidioidomycosis serology caused by Paracoccidioides species complex: An update. Diagn. Microbiol. Infect. Dis. 2016, 84, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Richer, S.M.; Smedema, M.L.; Durkin, M.M.; Brandhorst, T.T.; Hage, C.A.; Connolly, P.A.; Leland, D.S.; Davis, T.E.; Klein, B.S.; Wheat, L.J. Development of a highly sensitive and specific blastomycosis antibody enzyme immunoassay using Blastomyces dermatitidis surface protein BAD-1. Clin. Vaccine Immunol. 2014, 21, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.C.; Almeida-Paes, R.; Pizzini, C.V.; Gutierrez-Galhardo, M.C.; Freitas, D.F.S.; Zancopé-Oliveira, R.M. Diagnostic performance of mycologic and serologic methods in a cohort of patients with suspected sporotrichosis. Rev. Iberoam. Micol. 2019, 36, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.F.; Cai, J.P.; Wang, Y.D.; Dong, H.; Hao, W.; Jiang, L.X.; Long, J.; Chan, C.; Woo, P.C.; Lau, S.K.; et al. Immunoassays based on Penicillium marneffei Mp1p derived from Pichia pastoris expression system for diagnosis of penicilliosis. PLoS ONE 2011, 6, e28796. [Google Scholar] [CrossRef]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids. Res. 2000, 28, e63. [Google Scholar] [CrossRef]
- Nagamine, K.; Hase, T.; Notomi, T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol. Cell. Probes 2002, 16, 223–229. [Google Scholar] [CrossRef]
- Fakruddin, M.; Mannan, K.S.; Chowdhury, A.; Mazumdar, R.M.; Hossain, M.N.; Islam, S.; Chowdhury, M.A. Nucleic acid amplification: Alternative methods of polymerase chain reaction. J. Pharm. Bioallied Sci. 2013, 5, 245–252. [Google Scholar] [CrossRef]
- Noguchi, H.; Iwase, T.; Omagari, D.; Asano, M.; Nakamura, R.; Ueki, K.; Shinozuka, K.; Kaneko, T.; Tonogi, M.; Ohki, H. Rapid detection of Candida albicans in oral exfoliative cytology samples by loop-mediated isothermal amplification. J. Oral Sci. 2017, 59, 541–547. [Google Scholar] [CrossRef]
- Sun, J.; Najafzadeh, M.J.; Vicente, V.; Xi, L.; de Hoog, G.S. Rapid detection of pathogenic fungi using loop-mediated isothermal amplification, exemplified by Fonsecaea agents of chromoblastomycosis. J. Microbiol. Methods 2010, 80, 19–24. [Google Scholar] [CrossRef]
- Tang, Q.; Tian, S.; Yu, N.; Zhang, X.; Jia, X.; Zhai, H.; Sun, Q.; Han, L. Development and evaluation of a Loop-Mediated Isothermal Amplification method for rapid detection of Aspergillus fumigatus. J. Clin. Microbiol. 2016, 54, 950–955. [Google Scholar] [CrossRef] [PubMed]
- Scheel, C.M.; Zhou, Y.; Theodoro, R.C.; Abrams, B.; Balajee, S.A.; Litvintseva, A.P. Development of a loop-mediated isothermal amplification method for detection of Histoplasma capsulatum DNA in clinical samples. J. Clin. Microbiol. 2014, 52, 483–488. [Google Scholar] [CrossRef]
- Uemura, N.; Makimura, K.; Onozaki, M.; Otsuka, Y.; Shibuya, Y.; Yazaki, H.; Kikuchi, Y.; Abe, S.; Kudoh, S. Development of a loop-mediated isothermal amplification method for diagnosing Pneumocystis pneumonia. J. Med. Microbiol. 2008, 57, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Alshahni, M.M.; Tamura, T.; Satoh, K.; Iguchi, S.; Kikuchi, K.; Mimaki, M.; Makimura, K. Rapid detection of Candida auris based on Loop-Mediated Isothermal Amplification (LAMP). J. Clin. Microbiol. 2018, 56, e00591-18. [Google Scholar] [CrossRef] [PubMed]
- Inacio, J.; Flores, O.; Spencer-Martins, I. Efficient identification of clinically relevant Candida yeast species by use of an assay combining panfungal loop-mediated isothermal DNA amplification with hybridization to species-specific oligonucleotide probes. J. Clin. Microbiol. 2008, 46, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Fire, A.; Xu, S.Q. Rolling replication of short DNA circles. Proc. Natl. Acad. Sci. USA 1995, 92, 4641–4645. [Google Scholar] [CrossRef] [PubMed]
- Lizardi, P.M.; Huang, X.; Zhu, Z.; Bray-Ward, P.; Thomas, D.C.; Ward, D.C. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat. Genet. 1998, 19, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.M.; Li, F.; Zhang, Z.; Zhang, K.; Kang, D.K.; Ankrum, J.A.; Le, X.C.; Zhao, W. Rolling circle amplification: A versatile tool for chemical biology, materials science and medicine. Chem. Soc. Rev. 2014, 43, 3324–3341. [Google Scholar] [CrossRef] [PubMed]
- Faruqi, A.F.; Hosono, S.; Driscoll, M.D.; Dean, F.B.; Alsmadi, O.; Bandaru, R.; Kumar, G.; Grimwade, B.; Zong, Q.; Sun, Z.; et al. High-throughput genotyping of single nucleotide polymorphisms with rolling circle amplification. BMC Genom. 2001, 2, 4. [Google Scholar] [CrossRef]
- Kaocharoen, S.; Wang, B.; Tsui, K.M.; Trilles, L.; Kong, F.; Meyer, W. Hyperbranched rolling circle amplification as a rapid and sensitive method for species identification within the Cryptococcus species complex. Electrophoresis 2008, 29, 3183–3191. [Google Scholar] [CrossRef]
- Trilles, L.; Wang, B.; Firacative, C.; Lazera, M.D.S.; Wanke, B.; Meyer, W. Identification of the major molecular types of Cryptococcus neoformans and C. gattii by hyperbranched rolling circle amplification. PLoS ONE 2014, 9, e94648. [Google Scholar] [CrossRef]
- Rodrigues, A.M.; Najafzadeh, M.J.; de Hoog, G.S.; de Camargo, Z.P. Rapid identification of emerging human-pathogenic Sporothrix species with rolling circle amplification. Front. Microbiol. 2015, 6, 1385. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, E.; Ilkit, M.; de Hoog, G.S. Comparison of the rolling circle amplification and ligase-dependent reaction methods for the identification of opportunistic Exophiala species. Med. Mycol. 2018, 56, 759–769. [Google Scholar] [CrossRef] [PubMed]
- Najafzadeh, MJ.; Sun, J.; Vicente, VA.; de Hoog, G.S. Rapid identification of fungal pathogens by rolling circle amplification using Fonsecaea as a model. Mycoses 2011, 54, e577–e582. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.; Tong, Z.; Chen, X.; Sorrell, T.; Wang, B.; Wu, Q.; Ellis, D.; Chen, S. Rapid identification and differentiation of Trichophyton species, based on sequence polymorphisms of the ribosomal internal transcribed spacer regions, by rolling-circle amplification. J. Clin. Microbiol. 2008, 46, 1192–1199. [Google Scholar] [CrossRef] [PubMed]
- Dolatabadi, S.; Najafzadeh, M.J.; de Hoog, G.S. Rapid screening for human-pathogenic Mucorales using rolling circle amplification. Mycoses 2014, 57 (Suppl. 3), 67–72. [Google Scholar] [CrossRef] [Green Version]
- Furuie, J.L.; Sun, J.; do Nascimento, M.M.F.; Gomes, R.R.; Waculicz-Andrade, C.E.; Sessegolo, G.C.; Rodrigues, A.M.; Galvão-Dias, M.A.; de Camargo, Z.P.; Queiroz-Telles, F.; et al. Molecular identification of Histoplasma capsulatum using rolling circle amplification. Mycoses 2016, 59, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.A.; van den Ende, B.H.G.G.; Fahal, A.H.; van de Sande, W.W.J.; de Hoog, G.S. Rapid identification of black grain eumycetoma causative agents using rolling circle amplification. PLoS Neglect. Trop. Dis. 2014, 8, e3368. [Google Scholar] [CrossRef]
- Davari, M.; van Diepeningen, A.D.; Babai-Ahari, A.; Arzanlou, M.; Najafzadeh, M.J.; van der Lee, T.A.J.; de Hoog, G.S. Rapid identification of Fusarium graminearum species complex using rolling circle amplification (RCA). J. Microbiol. Methods 2012, 89, 63–70. [Google Scholar] [CrossRef]
- Zhou, X.; Kong, F.; Sorrell, T.C.; Wang, H.; Duan, Y.; Chen, S.C.A. Practical method for detection and identification of Candida, Aspergillus, and Scedosporium spp. by use of rolling-circle amplification. J. Clin. Microbiol. 2008, 46, 2423–2427. [Google Scholar] [CrossRef]
- Najafzadeh, M.J.; Dolatabadi, S.; Saradeghi Keisari, M.; Naseri, A.; Feng, P.; de Hoog, G.S. Detection and identification of opportunistic Exophiala species using the rolling circle amplification of ribosomal internal transcribed spacers. J. Microbiol. Methods 2013, 94, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Piepenburg, O.; Williams, C.H.; Stemple, D.L.; Armes, N.A. DNA detection using recombination proteins. PLoS Biol. 2006, 4, e204. [Google Scholar] [CrossRef] [PubMed]
- Daher, R.K.; Stewart, G.; Boissinot, M.; Bergeron, M.G. Recombinase polymerase amplification for diagnostic applications. Clin. Chem. 2016, 62, 947–958. [Google Scholar] [CrossRef]
- Ahmed, S.A.; van de Sande, W.W.J.; Desnos-Ollivier, M.; Fahal, A.H.; Mhmoud, N.A.; de Hoog, G.S. Application of isothermal amplification techniques for identification of Madurella mycetomatis, the prevalent agent of human mycetoma. J. Clin. Microbiol. 2015, 53, 3280–3285. [Google Scholar] [CrossRef]
- Compton, J. Nucleic acid sequence-based amplification. Nature 1991, 350, 91–92. [Google Scholar] [CrossRef]
- Zhao, Y.; Paderu, P.; Railkar, R.; Douglas, C.; Iannone, R.; Shire, N.; Perlin, D.S. Blood Aspergillus RNA is a promising alternative biomarker for invasive aspergillosis. Med. Mycol. 2016, 54, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Widjojoatmodjo, M.N.; Borst, A.; Schukkink, R.A.; Box, A.T.; Tacken, N.M.; van Gemen, B.; Verhoef, J.; Top, B.; Fluit, A.C. Nucleic acid sequence-based amplification (NASBA) detection of medically important Candida species. J. Microbiol. Methods 1999, 38, 81–90. [Google Scholar] [CrossRef]
- Zhao, Y.; Park, S.; Warn, P.; Shrief, R.; Harrison, E.; Perlin, D.S. Detection of Aspergillus fumigatus in a rat model of invasive pulmonary aspergillosis by real-time nucleic acid sequence-based amplification. J. Clin. Microbiol. 2010, 48, 1378–1383. [Google Scholar] [CrossRef] [PubMed]
- Loeffler, J.; Hebart, H.; Cox, P.; Flues, N.; Schumacher, U.; Einsele, H. Nucleic acid sequence-based amplification of Aspergillus RNA in blood samples. J. Clin. Microbiol. 2001, 39, 1626–1629. [Google Scholar] [CrossRef]
- Yoo, J.H.; Choi, J.H.; Choi, S.M.; Lee, D.G.; Shin, W.S.; Min, W.S.; Kim, C.C. Application of nucleic acid sequence-based amplification for diagnosis of and monitoring the clinical course of invasive aspergillosis in patients with hematologic diseases. Clin. Infect. Dis. 2005, 40, 392–398. [Google Scholar] [CrossRef]
- Yoo, J.H.; Choi, S.M.; Lee, D.G.; Park, S.H.; Choi, J.H.; Kwon, E.Y.; Shin, W.S. Comparison of the real-time nucleic acid sequence-based amplification (RTi-NASBA) with conventional NASBA, and galactomannan assay for the diagnosis of invasive aspergillosis. J. Korean Med. Sci. 2007, 22, 672–676. [Google Scholar] [CrossRef] [PubMed]
- Tatibana, B.T.; Sano, A.; Uno, J.; Kamei, K.; Igarashi, T.; Mikami, Y.; Miyaji, M.; Nishimura, K.; Itano, E.N. Detection of Paracoccidioides brasiliensis gp43 gene in sputa by loop-mediated isothermal amplification method. J. Clin. Lab. Anal. 2009, 23, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Park, C.; Kwon, E.Y.; Shin, N.-Y.; Kwon, J.C.; Park, S.H.; Choi, S.M.; Lee, D.G.; Choi, J.H.; Yoo, J.H. Real-time nucleic acid sequence-based amplification to predict the clinical outcome of invasive aspergillosis. J. Korean Med. Sci. 2012, 27, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Ragheb, S.M.; Jimenez, L. Polymerase chain reaction/rapid methods are gaining a foothold in developing countries. PDA J. Pharm. Sci. Technol. 2014, 68, 239–255. [Google Scholar] [CrossRef] [PubMed]
- Wong, G.; Wong, I.; Chan, K.; Hsieh, Y.; Wong, S. A rapid and low-cost PCR thermal cycler for low resource settings. PLoS ONE 2015, 10, e0131701. [Google Scholar] [CrossRef] [PubMed]
- Sousa, D.R.T.; Santos, C.S.D.; Wanke, B.; Silva Júnior, R.M.D.; Santos, M.C.D.; Cruz, K.S.; Monte, R.L.; Nocker, A.; de Souza, J.V.B. PCR-RFLP as a useful tool for diagnosis of invasive mycoses in a healthcare facility in the North of Brazil. Electron. J. Biotechnol. 2015, 18, 231–235. [Google Scholar] [CrossRef] [Green Version]
- Machouart, M.; Larche, J.; Burton, K.; Collomb, J.; Maurer, P.; Cintrat, A.; Biava, M.F.; Greciano, S.; Kuijpers, A.F.; Contet-Audonneau, N.; et al. Genetic identification of the main opportunistic Mucorales by PCR-restriction fragment length polymorphism. J. Clin. Microbiol. 2006, 44, 805–810. [Google Scholar] [CrossRef]
- Zaman, K.; Rudramurthy, S.; Das, A.; Panda, N.; Chakrabarti, A. PCR-RFLP for identification of Mucorales from clinical specimens. Int. J. Infect. Dis. 2016, 45, 158–159. [Google Scholar] [CrossRef] [Green Version]
- Atoui, A.; El Khoury, A. PCR-RFLP for Aspergillus species. Methods Mol. Biol. 2017, 1542, 313–320. [Google Scholar] [CrossRef]
- Arastehfar, A.; Fang, W.; Pan, W.; Lackner, M.; Liao, W.; Badiee, P.; Zomorodian, K.; Badali, H.; Hagen, F.; Lass-Flörl, C.; et al. Yeast panel multiplex PCR for identification of clinically important yeast species: Stepwise diagnostic strategy, useful for developing countries. Diagn. Microbiol. Infect. Dis. 2019, 93, 112–119. [Google Scholar] [CrossRef]
- Arastehfar, A.; Fang, W.; Pan, W.; Liao, W.; Yan, L.; Boekhout, T. Identification of nine cryptic species of Candida albicans, C. glabrata, and C. parapsilosis complexes using one-step multiplex PCR. BMC Infect. Dis. 2018, 18, 480. [Google Scholar] [CrossRef]
- Dhib, I.; Fathallah, A.; Yaacoub, A.; Hadj Slama, F.; Said, M.B.; Zemni, R. Multiplex PCR assay for the detection of common dermatophyte nail infections. Mycoses 2014, 57, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Mitchell, T.G. Rapid identification of pathogenic fungi directly from cultures by using multiplex PCR. J. Clin. Microbiol. 2002, 40, 2860–2865. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Li, L.; Wan, Z.; Chen, W.; Liu, H.; Li, R. Simultaneous detection and identification of Aspergillus and mucorales species in tissues collected from patients with fungal rhinosinusitis. J. Clin. Microbiol. 2011, 49, 1501–1507. [Google Scholar] [CrossRef] [PubMed]
- Alanio, A.; Bretagne, S. Performance evaluation of multiplex PCR including Aspergillus-not so simple! Med. Mycol. 2017, 55, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.; Costa-De-Oliveira, S.; Martins, M.L.; Pina-Vaz, C.; Rodrigues, A.G.; Ludovico, P.; Rodrigues, F. Multiplex PCR identification of eight clinically relevant Candida species. Med. Mycol. 2007, 45, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.C.; Leaw, S.N.; Huang, A.H.; Wu, T.L.; Chang, T.C. Rapid identification of yeasts in positive blood cultures by a multiplex PCR method. J. Clin. Microbiol. 2001, 39, 3466–3471. [Google Scholar] [CrossRef]
- Sugita, C.; Makimura, K.; Uchida, K.; Yamaguchi, H.; Nagai, A. PCR identification system for the genus Aspergillus and three major pathogenic species: Aspergillus fumigatus, Aspergillus flavus and Aspergillus niger. Med. Mycol. 2004, 42, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Bialek, R.; Konrad, F.; Kern, J.; Aepinus, C.; Cecenas, L.; Gonzalez, G.M.; Just-Nübling, G.; Willinger, B.; Presterl, E.; Lass-Flörl, C.; et al. PCR based identification and discrimination of agents of mucormycosis and aspergillosis in paraffin wax embedded tissue. J. Clin. Pathol. 2005, 58, 1180–1184. [Google Scholar] [CrossRef]
- Taira, C.L.; Okay, T.S.; Delgado, A.F.; Ceccon, M.E.J.R.; de Almeida, M.T.G.; del Negro, G.M.B. A multiplex nested PCR for the detection and identification of Candida species in blood samples of critically ill paediatric patients. BMC Infect. Dis. 2014, 14, 406. [Google Scholar] [CrossRef]
- Ahmad, S.; Khan, Z.; Mustafa, A.S.; Khan, Z.U. Seminested PCR for diagnosis of candidemia: Comparison with culture, antigen detection, and biochemical methods for species identification. J. Clin. Microbiol. 2002, 40, 2483–2489. [Google Scholar] [CrossRef] [PubMed]
- Arastehfar, A.; Lim, W.; Daneshnia, F.; van de Sande, W.W.; FAhal, A.H.; Desnon-Ollivier, M.; de Hoog, G.S.; Ahmed, S.A. Madurella real-time PCR, a novel approach for eumycetoma diagnosis. PLoS Negl. Trop. Dis. in press.
- Arastehfar, A.; Fang, W.; Daneshnia, F.; Al-Hatmi, A.M.; Liao, W.; Pan, W.; Khan, Z.; Ahmad, S.; Rosam, K.; Lackner, M.; et al. Novel multiplex real-time quantitative PCR detecting system approach for direct detection of Candida auris and its relatives in spiked serum samples. Future Microbiol. 2019, 14, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Hung, G.C.; Nagamine, K.; Li, B.; Tsai, S.; Lo, S.C. Development of Candida-specific real-time PCR assays for the detection and identification of eight medically important Candida species. Microbiol. Insights 2016, 9, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Lyon, G.M.; Abdul-Ali, D.; Loeffler, J.; White, P.L.; Wickes, B.; Herrera, M.L.; Alexander, B.D.; Baden, L.R.; Clancy, C.; Denning, D.; et al. AsTeC, IAAM, EAPCRI Investigators. Development and evaluation of a calibrator material for nucleic acid-based assays for diagnosing aspergillosis. J. Clin. Microbiol. 2013, 51, 2403–2405. [Google Scholar] [CrossRef]
- Khot, P.D.; Fredricks, D.N. PCR-based diagnosis of human fungal infections. Expert Rev. Anti Infect. Ther. 2009, 7, 1201–1221. [Google Scholar] [CrossRef] [PubMed]
- Mao, F.; Leung, W.Y.; Xin, X. Characterization of EvaGreen and the implication of its physicochemical properties for qPCR applications. BMC Biotechnol. 2007, 7, 76. [Google Scholar] [CrossRef]
- 132- Herrera, M.L.; Vallor, A.C.; Gelfond, J.A.; Patterson, T.F.; Wickes, B.L. Strain-dependent variation in 18S ribosomal DNA copy numbers in Aspergillus fumigatus. J. Clin. Microbiol. 2009, 47, 1325–1332. [Google Scholar] [CrossRef]
- Stielow, J.B.; Lévesque, C.A.; Seifert, K.A.; Meyer, W.; Iriny, L.; Smits, D.; Renfurm, R.; Verkley, G.J.; Groenewald, M.; Chaduli, D.; et al. One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia 2015, 35, 242–263. [Google Scholar] [CrossRef] [Green Version]
- White, P.L.; Barton, R.; Guiver, M.; Linton, C.J.; Wilson, S.; Smith, M.; Gomez, B.L.; Carr, M.J.; Kimmitt, P.T.; Seaton, S.; et al. A consensus on fungal polymerase chain reaction diagnosis? a United Kingdom-Ireland evaluation of polymerase chain reaction methods for detection of systemic fungal infections. J. Mol. Diagn. 2006, 8, 376–384. [Google Scholar] [CrossRef]
- Navarro, E.; Serrano-Heras, G.; Castaño, M.J.; Solera, J. Real-time PCR detection chemistry. Clin. Chim. Acta 2015, 439, 231–250. [Google Scholar] [CrossRef] [PubMed]
- White, P.L.; Bretagne, S.; Klingspor, L.; Melchers, W.J.G.; McCulloch, E.; Schulz, B.; Finnstrom, N.; Mengoli, C.; Barnes, R.A.; Donnelly, J.P.; et al. European Aspergillus PCR Initiative. Aspergillus PCR: One step closer to standardization. J. Clin. Microbiol. 2010, 48, 1231–1240. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.L.; Ruoss, S.J.; Bower, N.D.; Lin, M.; Holodniy, M.; Stevens, D.A. Diagnosing invasive fungal disease in critically ill patients. Crit. Rev. Microbiol. 2011, 37, 277–312. [Google Scholar] [CrossRef] [PubMed]
- Balajee, S.A.; Borman, A.M.; Brandt, M.E.; Cano, J.; Cuenca-Estrella, M.; Dannaoui, E.; Guarro, J.; Haase, G.; Kibbler, C.C.; Meyer, W.; et al. Sequence-based identification of Aspergillus, Fusarium, and Mucorales species in the clinical mycology laboratory: Where are we and where should we go from here? J. Clin. Microbiol. 2009, 47, 877–884. [Google Scholar] [CrossRef]
- Flowers, S.A.; Colon, B.; Whaley, S.G.; Schuler, M.A.; Rogers, P.D. Contribution of clinically derived mutations in ERG11 to azole resistance in Candida albicans. Antimicrob. Agents Chemother. 2015, 59, 450–460. [Google Scholar] [CrossRef]
- Choi, Y.J.; Kim, Y.-J.; Yong, D.; Byun, J.-H.; Kim, T.S.; Chang, Y.S.; Choi, M.J.; Byeon, S.A.; Won, E.J.; Kim, S.H.; et al. Fluconazole-resistant Candida parapsilosis bloodstream isolates with Y132F mutation in ERG11 gene, South Korea. Emerg. Infect. Dis. 2018, 24, 1768–1770. [Google Scholar] [CrossRef]
- Healey, K.R.; Kordalewska, M.; Jimenez Ortigosa, C.; Singh, A.; Berrio, I.; Chowdhary, A.; Perlin, D.S. Limited ERG11 mutations identified in isolates of Candida auris directly contribute to reduced azole susceptibility. Antimicrob. Agents Chemother. 2018, 62, e01427-18. [Google Scholar] [CrossRef]
- Verweij, P.E.; Snelders, E.; Kema, G.H.J.; Mellado, E.; Melchers, W.J.G. Azole resistance in Aspergillus fumigatus: A side-effect of environmental fungicide use? Lancet Infect. Dis. 2009, 9, 789–795. [Google Scholar] [CrossRef]
- Perlin, D.S. Echinocandin resistance in Candida. Clin. Infect. Dis. 2015, 61 (Suppl. 6), S612–S617. [Google Scholar] [CrossRef]
- Yu, LS.; Rodriguez-Manzano, J.; Malpartida-Cardenas, K.; Sewell, T.; Bader, O.; Armstrong-James, D.; Fisher, M.C.; Georgiou, P. Rapid and sensitive detection of azole-resistant Aspergillus fumigatus by tandem repeat Loop-Mediated Isothermal Amplification. J. Mol. Diagn. 2019, 21, 286–295. [Google Scholar] [CrossRef]
- Denning, D.W.; Park, S.; Lass-Florl, C.; Fraczek, M.G.; Kirwan, M.; Gore, R.; Smith, J.; Bueid, A.; Moore, C.B.; Bowyer, P.; et al. High-frequency triazole resistance found in nonculturable Aspergillus fumigatus from lungs of patients with chronic fungal disease. Clin. Infect. Dis. 2011, 52, 1123–1129. [Google Scholar] [CrossRef] [PubMed]
- Klaassen, C.H.W.; de Valk, H.A.; Curfs-Breuker, I.M.; Meis, J.F. Novel mixed-format real-time PCR assay to detect mutations conferring resistance to triazoles in Aspergillus fumigatus and prevalence of multi-triazole resistance among clinical isolates in the Netherlands. J. Antimicrob. Chemother. 2010, 65, 901–905. [Google Scholar] [CrossRef] [PubMed]
- Dudiuk, C.; Gamarra, S.; Leonardeli, F.; Jimenez-Ortigosa, C.; Vitale, R.G.; Afeltra, J.; Perlin, D.S.; Garcia-Effron, G. Set of classical PCRs for detection of mutations in Candida glabrata FKS genes linked with echinocandin resistance. J. Clin. Microbiol. 2014, 52, 2609–2614. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Nagasaki, Y.; Kordalewska, M.; Press, E.G.; Shields, R.K.; Nguyen, M.H.; Clancy, C.J.; Perlin, D.S. Rapid detection of FKS-associated echinocandin resistance in Candida glabrata. Antimicrob. Agents Chemother. 2016, 60, 6573–6577. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Lee, A.; Jimenez-Ortigosa, C.; Kordalewska, M.; Perlin, D.S.; Zhao, Y. Rapid Detection of ERG11-associated azole resistance and FKS-associated echinocandin resistance in Candida auris. Antimicrob. Agents Chemother. 2018, 63, e01811-18. [Google Scholar] [CrossRef] [PubMed]
- Whaley, S.G.; Berkow, E.L.; Rybak, J.M.; Nishimoto, A.T.; Barker, K.S.; Rogers, P.D. Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species. Front. Microbiol. 2016, 7, 2173. [Google Scholar] [CrossRef] [PubMed]
- Gootenberg, J.S.; Abudayyeh, O.O.; Lee, J.W.; Essletzbichler, P.; Dy, A.J.; Joung, J.; Verdine, V.; Donghia, N.; Daringer, N.M.; Freije, C.A.; et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 2017, 356, 438–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gootenberg, J.S.; Abudayyeh, O.O.; Kellner, M.J.; Joung, J.; Collins, J.J.; Zhang, F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 2018, 360, 439–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myhrvold, C.; Freije, C.A.; Gootenberg, J.S.; Abudayyeh, O.O.; Metsky, H.C.; Durbin, A.F.; Kellner, M.J.; Tan, A.L.; Paul, L.M.; Parham, L.A.; et al. Field-deployable viral diagnostics using CRISPR-Cas13. Science 2018, 360, 444–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stempak, L.M.; Vogel, S.A.; Richter, S.S.; Wyllie, R.; Procop, G.W. Routine broad-range fungal polymerase chain reaction with DNA sequencing in patients with suspected mycoses does not add value and is not cost-effective. Arch. Pathol. Lab. Med. 2019, 143, 634–638. [Google Scholar] [CrossRef]
- Kasianowicz, J.J.; Brandin, E.; Branton, D.; Deamer, D.W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA 1996, 93, 13770–13773. [Google Scholar] [CrossRef] [Green Version]
- Mikheyev, A.S.; Tin, M.M.Y. A first look at the Oxford Nanopore MinION sequencer. Mol. Ecol. Resour. 2014, 14, 1097–1102. [Google Scholar] [CrossRef] [PubMed]
- Ashikawa, S.; Tarumoto, N.; Imai, K.; Sakai, J.; Kodana, M.; Kawamura, T.; Ikebuchi, K.; Murakami, T.; Mitsutake, K.; Maesaki, S.; et al. Rapid identification of pathogens from positive blood culture bottles with the MinION nanopore sequencer. J. Med. Microbiol. 2018, 67, 1589–1595. [Google Scholar] [CrossRef] [PubMed]
- Wurzbacher, C.; Larsson, E.; Bengtsson-Palme, J.; Van den Wyngaert, S.; Svantesson, S.; Kristiansson, E.; Kagami, M.; Nilsson, R.H. Introducing ribosomal tandem repeat barcoding for fungi. Mol. Ecol. Resour. 2019, 19, 118–127. [Google Scholar] [CrossRef]
- Jain, M.; Koren, S.; Miga, K.H.; Quick, J.; Rand, A.C.; Sasani, T.A.; Tyson, J.R.; Beggs, A.D.; Dilthey, A.T.; Fiddes, I.T.; et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol. 2018, 36, 338–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabaldon, T.; OPATHY Consortium. Recent trends in molecular diagnosis of yeast infections: From PCR to NGS. FEMS Microbiol. Rev. 2019, 43, 517–547. [Google Scholar]
Low Reactivity | PH * | TH | AR | CH | SP |
Candida glabrata | - | - | - | - | - |
Candida krusei | + | - | - | - | - |
Candida lipolytica | + | + | - | - | - |
Prototheca wickerhamii (algae) | - | - | - | - | + |
Saprochaete capitata | - | + | + | - | - |
Medium Reactivity | PH | TH | AR | CH | SP |
Candida albicans | + | + | - | + | - |
Candida lusitaniae | + | - | - | - | - |
Candida parapsilosis | + | - | - | - | - |
Candida tropicalis | + | + | - | - | - |
High Reactivity | PH | TH | AR | CH | SP |
Candida guilliermondii | V | - | - | - | - |
Cryptococcus neoformans | - | - | - | - | - |
Trichosporon asahii | + | + | + | - | - |
Method | % Sensitivity | % Specificity | TAT | Reference |
---|---|---|---|---|
Rapid screening tests, e.g., β-galactosaminidase for identification of Candida albicans/dubliniensis | 97.8–100.0 | 85.7–100.0 | 5–60 min | [24] |
Rapid screening tests, e.g., trehalase for identification of Candida glabrata | 89.3–100.0 | 74.1–100.0 | 30 s–24 h | [24] |
Chromogenic agars, e.g., CHROMagar Candida, chromID Candida for identification of Candida albicans | 88.3–100.0 | 86.0–100.0 | 48 h | [24] |
Manual biochemical methods, e.g., api 20C AUX, ID32C, rapID Yeast Plus | N/A | 86.0–100.0 | 4–72 h | [24] |
Automated biochemical methods, e.g., MicroScan YID, VITEK 2 YST | N/A | 85.3–98.5 | 4–48 h | [24] |
Isothermal Approach | Sensitivity | Specificity | TAT | Quantification | Cost | Sample Source | Multiplexing | Easy Optimization | References |
---|---|---|---|---|---|---|---|---|---|
LAMP (conventional, intercalating dyes, and probes) | 470 pg–0.2 fg | Controversial | 120–60 min | No | 3.2–5.3 Euros/rxn | Pure culture, clinical samples, simulated environmental and clinical samples | Yes | No/Yes | [70,71,73,74,75,76,77,78,79,106] |
RCA-Padlock probes/RCA-Padlock probes+ Seminested-PCR | 100 µg–40 fg A copies | Specific | 300–120 min | No | 2–5 USD/rxn | Pure culture, clinical samples, simulated environmental and clinical samples | No | No/Yes | [84,85,86,87,88,89,90,91,92,93,94,95] |
RPA | 230 pg | Specific | 40 min | No | 4.25 USD/rxn | Pure culture/clinical samples | No | No | [98] |
NASBA | <10 fg ≤ 100 ag | Specific to minor CR | 360–120 min | Yes | NI | Clinical samples, simulated blood sample, and samples from animal models | No | No | [100,101,102,103,104,105,107] |
PCR-Based Approaches | Sensitivity | Specificity | TAT | Quantification | Cost | Sample Source | Multiplexing | Easy Optimization | References |
---|---|---|---|---|---|---|---|---|---|
PCR-RFLP | 100 pg/µL | High | ~8–48 h | No | NI | Culture, clinical samples | Yes | NI | [110,111,112,113] |
Conventional PCR | High A | High B | ~3–8 h C | No | 0.75–1 Euros D | Culture, nail samples, positive blood culture bottles, simulated blood samples, clinical samples | Yes | Yes | [114,115,116,117,118,119,120,121] |
Nested-PCR | 0.1–150 fg | High D | ~6–24 h | No | NI | Culture, paraffin wax embedded tissues, and blood sample | Yes | NI | [112,122,123,124,125] |
Real-time PCR | 10 fg E | High F | 1–2 h | Yes | NI G | Culture, clinical samples, formalin-fixed paraffin-embedded specimens, environmental | Yes | Can be complicated if primer optimization and melt curves are performed as well as using absolute values for calibration due to the need for standard curve generation | [126,127,128,129,130] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arastehfar, A.; Wickes, B.L.; Ilkit, M.; Pincus, D.H.; Daneshnia, F.; Pan, W.; Fang, W.; Boekhout, T. Identification of Mycoses in Developing Countries. J. Fungi 2019, 5, 90. https://doi.org/10.3390/jof5040090
Arastehfar A, Wickes BL, Ilkit M, Pincus DH, Daneshnia F, Pan W, Fang W, Boekhout T. Identification of Mycoses in Developing Countries. Journal of Fungi. 2019; 5(4):90. https://doi.org/10.3390/jof5040090
Chicago/Turabian StyleArastehfar, Amir, Brian L. Wickes, Macit Ilkit, David H. Pincus, Farnaz Daneshnia, Weihua Pan, Wenjie Fang, and Teun Boekhout. 2019. "Identification of Mycoses in Developing Countries" Journal of Fungi 5, no. 4: 90. https://doi.org/10.3390/jof5040090
APA StyleArastehfar, A., Wickes, B. L., Ilkit, M., Pincus, D. H., Daneshnia, F., Pan, W., Fang, W., & Boekhout, T. (2019). Identification of Mycoses in Developing Countries. Journal of Fungi, 5(4), 90. https://doi.org/10.3390/jof5040090