Antifungal Drugs: Special Problems Treating Central Nervous System Infections
Abstract
:1. Introduction
2. NeuroPK
3. Antifungal Therapy in the Central Nervous System
4. Direct Administration to the CNS
5. Therapeutic Drug Monitoring
6. Conclusions
Funding
Conflicts of Interest
References
- Reichel, A. Pharmacokinetics of CNS Penetration. In Blood–Brain Barrier in Drug Discovery: Optimizing Brain Exposure of CNS Drugs and Minimizing Brain Side Effects for Peripheral Drugs; Di, L., Kerns, E.H., Eds.; Wiley: Hoboken NJ, USA, 2015; pp. 7–41. ISBN 978-1-118-78852-3. [Google Scholar]
- Nau, R.; Sörgel, F.; Eiffert, H. Penetration of Drugs through the Blood-Cerebrospinal Fluid/Blood-Brain Barrier for Treatment of Central Nervous System Infections. Clin. Microbiol. Rev. 2010, 23, 858–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pardridge, W.M. Drug transport in brain via the cerebrospinal fluid. Fluids Barriers CNS 2011, 8, 7. [Google Scholar] [CrossRef] [PubMed]
- Rankovic, Z. CNS Drug Design: Balancing Physicochemical Properties for Optimal Brain Exposure. J. Med. Chem. 2015, 58, 2584–2608. [Google Scholar] [CrossRef] [PubMed]
- Nau, R.; Sörgel, F.; Prange, H.W. Lipophilicity at pH 7.4 and molecular size govern the entry of the free serum fraction of drugs into the cerebrospinal fluid in humans with uninflamed meninges. J. Neurol. Sci. 1994, 122, 61–65. [Google Scholar] [CrossRef]
- Pajouhesh, H.; Lenz, G.R. Medicinal Chemical Properties of Successful Central Nervous System Drugs. NeuroRx 2005, 2, 541–553. [Google Scholar] [CrossRef]
- Kethireddy, S.; Andes, D. CNS pharmacokinetics of antifungal agents. Expert Opin. Drug Metab. Toxicol. 2007, 3, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Felton, T.; Troke, P.F.; Hope, W.W. Tissue Penetration of Antifungal Agents. Clin. Microbiol. Rev. 2014, 27, 68–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashley, E.S.D.; Lewis, R.; Lewis, J.S.; Martin, C.; Andes, D. Pharmacology of Systemic Antifungal Agents. Clin. Infect. Dis. 2006, 43, S28–S39. [Google Scholar] [CrossRef] [Green Version]
- Compound Report Card. Available online: https://www.ebi.ac.uk/chembl/compound_report_card/CHEMBL409153/ (accessed on 2 September 2019).
- Wang, E.; Lew, K.; Casciano, C.N.; Clement, R.P.; Johnson, W.W. Interaction of common azole antifungals with P glycoprotein. Antimicrob. Agents Chemother. 2002, 46, 160–165. [Google Scholar] [CrossRef]
- Yamazaki, T.; Desai, A.; Goldwater, R.; Han, D.; Lasseter, K.C.; Howieson, C.; Akhtar, S.; Kowalski, D.; Lademacher, C.; Rammelsberg, D.; et al. Pharmacokinetic Interactions between Isavuconazole and the Drug Transporter Substrates Atorvastatin, Digoxin, Metformin, and Methotrexate in Healthy Subjects. Clin. Pharmacol. Drug Dev. 2017, 6, 66–75. [Google Scholar] [CrossRef]
- Miceli, M.H.; Kauffman, C.A. Isavuconazole: A New Broad-Spectrum Triazole Antifungal Agent. Clin. Infect. Dis. 2015, 61, 1558–1565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reese, T.S.; Feder, N.; Brightman, M.W. Electron microscopic study of the blood-brain and blood-cerebrospinal fluid barriers with microperoxidase. J. Neuropathol. Exp. Neurol. 1971, 30, 137–138. [Google Scholar] [PubMed]
- Shapiro, W.R.; Young, D.F.; Mehta, B.M. Methotrexate: Distribution in cerebrospinal fluid after intravenous, ventricular and lumbar injections. N. Engl. J. Med. 1975, 293, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, A.B.; McGee, Z.A. Aminoglycoside therapy of gram-negative bacillary meningitis. N. Engl. J. Med. 1975, 293, 1215–1220. [Google Scholar] [CrossRef] [PubMed]
- de Vries, H.E.; Kuiper, J.; de Boer, A.G.; Van Berkel, T.J.; Breimer, D.D. The blood-brain barrier in neuroinflammatory diseases. Pharmacol. Rev. 1997, 49, 143–155. [Google Scholar] [PubMed]
- Scheld, W.M.; Dacey, R.G.; Winn, H.R.; Welsh, J.E.; Jane, J.A.; Sande, M.A. Cerebrospinal fluid outflow resistance in rabbits with experimental meningitis. Alterations with penicillin and methylprednisolone. J. Clin. Investig. 1980, 66, 243–253. [Google Scholar] [CrossRef] [PubMed]
- von Wedel-Parlow, M.; Wölte, P.; Galla, H.-J. Regulation of major efflux transporters under inflammatory conditions at the blood-brain barrier in vitro. J. Neurochem. 2009, 111, 111–118. [Google Scholar] [CrossRef]
- Perfect, J.R.; Dismukes, W.E.; Dromer, F.; Goldman, D.L.; Graybill, J.R.; Hamill, R.J.; Harrison, T.S.; Larsen, R.A.; Lortholary, O.; Nguyen, M.-H.; et al. Clinical Practice Guidelines for the Management of Cryptococcal Disease: 2010 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2010, 50, 291–322. [Google Scholar] [CrossRef] [Green Version]
- Groll, A.H.; Giri, N.; Petraitis, V.; Petraitiene, R.; Candelario, M.; Bacher, J.S.; Piscitelli, S.C.; Walsh, T.J. Comparative Efficacy and Distribution of Lipid Formulations of Amphotericin B in Experimental Candida albicans Infection of the Central Nervous System. J. Infect. Dis. 2000, 182, 274–282. [Google Scholar] [CrossRef]
- Loyse, A.; Dromer, F.; Day, J.; Lortholary, O.; Harrison, T.S. Flucytosine and cryptococcosis: Time to urgently address the worldwide accessibility of a 50-year-old antifungal. J. Antimicrob. Chemother. 2013, 68, 2435–2444. [Google Scholar] [CrossRef]
- Schwartz, S.; Ruhnke, M.; Ribaud, P.; Corey, L.; Driscoll, T.; Cornely, O.A.; Schuler, U.; Lutsar, I.; Troke, P.; Thiel, E. Improved outcome in central nervous system aspergillosis, using voriconazole treatment. Blood 2005, 106, 2641–2645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, S.; Reisman, A.; Troke, P.F. The efficacy of voriconazole in the treatment of 192 fungal central nervous system infections: A retrospective analysis. Infection 2011, 39, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Odio, C.M.; Araya, R.; Pinto, L.E.; Castro, C.E.; Vasquez, S.; Alfaro, B.; Sàenz, A.; Herrera, M.L.; Walsh, T.J. Caspofungin therapy of neonates with invasive candidiasis. Pediatr. Infect. Dis. J. 2004, 23, 1093–1097. [Google Scholar] [PubMed]
- Brammer, K.W.; Farrow, P.R.; Faulkner, J.K. Pharmacokinetics and Tissue Penetration of Fluconazole in Humans. Rev. Infect. Dis. 1990, 12, S318–S326. [Google Scholar] [CrossRef] [PubMed]
- Fischman, A.J.; Alpert, N.M.; Livni, E.; Ray, S.; Sinclair, I.; Callahan, R.J.; Correia, J.A.; Webb, D.; Strauss, H.W.; Rubin, R.H. Pharmacokinetics of 18F-labeled fluconazole in healthy human subjects by positron emission tomography. Antimicrob. Agents Chemother. 1993, 37, 1270–1277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foulds, G.; Brennan, D.R.; Wajszczuk, C.; Catanzaro, A.; Garg, D.C.; Knopf, W.; Rinaldi, M.; Weidler, D.J. Fluconazole penetration into cerebrospinal fluid in humans. J. Clin. Pharmacol. 1988, 28, 363–366. [Google Scholar] [CrossRef] [PubMed]
- Denning, D.W.; Tucker, R.M.; Hanson, L.H.; Hamilton, J.R.; Stevens, D.A. Itraconazole Therapy for Cryptococcal Meningitis and Cryptococcosis. Arch. Intern. Med. 1989, 149, 2301–2308. [Google Scholar] [CrossRef]
- Cauwenbergh, G. Cryptococcal meningitis: The place of itraconazole. Mycoses 1993, 36, 221–228. [Google Scholar] [CrossRef]
- Lamoth, F.; Mercier, T.; André, P.; Pagani, J.L.; Pantet, O.; Maduri, R.; Guery, B.; Decosterd, L.A. Isavuconazole brain penetration in cerebral aspergillosis. J. Antimicrob. Chemother. 2019, 74, 1751–1753. [Google Scholar] [CrossRef]
- Falci, D.R.; Pasqualotto, A.C. Profile of isavuconazole and its potential in the treatment of severe invasive fungal infections. Infect. Drug Resist. 2013, 6, 163–174. [Google Scholar]
- Jenks, J.D.; Salzer, H.J.; Prattes, J.; Krause, R.; Buchheidt, D.; Hoenigl, M. Spotlight on isavuconazole in the treatment of invasive aspergillosis and mucormycosis: Design, development, and place in therapy. Drug Des. Devel. Ther. 2018, 12, 1033–1044. [Google Scholar] [CrossRef] [PubMed]
- Schmitt-Hoffmann, A.-H.; Kato, K.; Townsend, R.; Potchoiba, M.J.; Hope, W.W.; Andes, D.; Spickermann, J.; Schneidkraut, M.J. Tissue Distribution and Elimination of Isavuconazole following Single and Repeat Oral-Dose Administration of Isavuconazonium Sulfate to Rats. Antimicrob. Agents Chemother. 2017, 61, e01292-17. [Google Scholar] [CrossRef] [PubMed]
- Thompson, G.R.; Rendon, A.; Ribeiro dos Santos, R.; Queiroz-Telles, F.; Ostrosky-Zeichner, L.; Azie, N.; Maher, R.; Lee, M.; Kovanda, L.; Engelhardt, M.; et al. Isavuconazole Treatment of Cryptococcosis and Dimorphic Mycoses. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2016, 63, 356–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reinwald, M.; Uharek, L.; Lampe, D.; Grobosch, T.; Thiel, E.; Schwartz, S. Limited penetration of posaconazole into cerebrospinal fluid in an allogeneic stem cell recipient with invasive pulmonary aspergillosis. Bone Marrow Transplant. 2009, 44, 269–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rüping, M.J.G.T.; Albermann, N.; Ebinger, F.; Burckhardt, I.; Beisel, C.; Müller, C.; Vehreschild, J.J.; Kochanek, M.; Fätkenheuer, G.; Bangard, C.; et al. Posaconazole concentrations in the central nervous system. J. Antimicrob. Chemother. 2008, 62, 1468–1470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvo, E.; Pastor, F.J.; Rodríguez, M.M.; Pujol, I.; Guarro, J. Antifungal Therapy in a Murine Model of Disseminated Infection by Cryptococcus gattii. Antimicrob. Agents Chemother. 2010, 54, 4074–4077. [Google Scholar] [CrossRef] [PubMed]
- Calvo, E.; Pastor, F.J.; Rodríguez, M.M.; Mayayo, E.; Salas, V.; Guarro, J. Murine Model of a Disseminated Infection by the Novel Fungus Fonsecaea monophora and Successful Treatment with Posaconazole. Antimicrob. Agents Chemother. 2010, 54, 919–923. [Google Scholar] [CrossRef]
- Pitisuttithum, P.; Negroni, R.; Graybill, J.R.; Bustamante, B.; Pappas, P.; Chapman, S.; Hare, R.S.; Hardalo, C.J. Activity of posaconazole in the treatment of central nervous system fungal infections. J. Antimicrob. Chemother. 2005, 56, 745–755. [Google Scholar] [CrossRef] [Green Version]
- Lutsar, I.; Roffey, S.; Troke, P. Voriconazole Concentrations in the Cerebrospinal Fluid and Brain Tissue of Guinea Pigs and Immunocompromised Patients. Clin. Infect. Dis. 2003, 37, 728–732. [Google Scholar] [CrossRef]
- Weiler, S.; Fiegl, D.; MacFarland, R.; Stienecke, E.; Bellmann-Weiler, R.; Dunzendorfer, S.; Joannidis, M.; Bellmann, R. Human Tissue Distribution of Voriconazole. Antimicrob. Agents Chemother. 2011, 55, 925–928. [Google Scholar] [CrossRef] [Green Version]
- Denes, E.; Pichon, N.; Debette-Gratien, M.; Bouteille, B.; Gaulier, J.M. Pharmacokinetics of Voriconazole in the Cerebrospinal Fluid of an Immunocompromised Patient with a Brain Abscess Due to Aspergillus fumigatus. Clin. Infect. Dis. 2004, 39, 603–604. [Google Scholar] [CrossRef] [PubMed]
- Eschenauer, G.; DePestel, D.D.; Carver, P.L. Comparison of echinocandin antifungals. Ther. Clin. Risk Manag. 2007, 3, 71–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damle, B.; Stogniew, M.; Dowell, J. Pharmacokinetics and Tissue Distribution of Anidulafungin in Rats. Antimicrob. Agents Chemother. 2008, 52, 2673–2676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warn, P.A.; Livermore, J.; Howard, S.; Felton, T.W.; Sharp, A.; Gregson, L.; Goodwin, J.; Petraitiene, R.; Petraitis, V.; Cohen-Wolkowiez, M.; et al. Anidulafungin for neonatal hematogenous Candida meningoencephalitis: Identification of candidate regimens for humans using a translational pharmacological approach. Antimicrob. Agents Chemother. 2012, 56, 708–714. [Google Scholar] [CrossRef] [PubMed]
- Strenger, V.; Farowski, F.; Müller, C.; Hofer, N.; Dornbusch, H.J.; Sperl, D.; Lackner, H.; Benesch, M.; Urban, C. Low penetration of caspofungin into cerebrospinal fluid following intravenous administration of standard doses. Int. J. Antimicrob. Agents 2017, 50, 272–275. [Google Scholar] [CrossRef] [PubMed]
- Réminiac, F.; Sonneville, R.; Massias, L.; Chochillon, C.; Wolff, M. Very-High-Dose Caspofungin Combined with Voriconazole To Treat Central Nervous System Aspergillosis: Substantial Penetration of Caspofungin into Cerebrospinal Fluid. Antimicrob. Agents Chemother. 2014, 58, 3568–3569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okugawa, S.; Ota, Y.; Tatsuno, K.; Tsukada, K.; Kishino, S.; Koike, K. A case of invasive central nervous system aspergillosis treated with micafungin with monitoring of micafungin concentrations in the cerebrospinal fluid. Scand. J. Infect. Dis. 2007, 39, 344–346. [Google Scholar] [CrossRef] [PubMed]
- Lat, A.; Thompson, G.R.; Rinaldi, M.G.; Dorsey, S.A.; Pennick, G.; Lewis, J.S. Micafungin Concentrations from Brain Tissue and Pancreatic Pseudocyst Fluid. Antimicrob. Agents Chemother. 2010, 54, 943–944. [Google Scholar] [CrossRef] [Green Version]
- Hope, W.W.; Mickiene, D.; Petraitis, V.; Petraitiene, R.; Kelaher, A.M.; Hughes, J.E.; Cotton, M.P.; Bacher, J.; Keirns, J.J.; Buell, D.; et al. The pharmacokinetics and pharmacodynamics of micafungin in experimental hematogenous Candida meningoencephalitis: Implications for echinocandin therapy in neonates. J. Infect. Dis. 2008, 197, 163–171. [Google Scholar] [CrossRef]
- Polak, A. Pharmacokinetics of amphotericin B and flucytosine. Postgrad. Med. J. 1979, 55, 667–670. [Google Scholar] [CrossRef]
- Würthwein, G.; Groll, A.H.; Hempel, G.; Adler-Shohet, F.C.; Lieberman, J.M.; Walsh, T.J. Population Pharmacokinetics of Amphotericin B Lipid Complex in Neonates. Antimicrob. Agents Chemother. 2005, 49, 5092–5098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogelsinger, H.; Weiler, S.; Djanani, A.; Kountchev, J.; Bellmann-Weiler, R.; Wiedermann, C.J.; Bellmann, R. Amphotericin B tissue distribution in autopsy material after treatment with liposomal amphotericin B and amphotericin B colloidal dispersion. J. Antimicrob. Chemother. 2006, 57, 1153–1160. [Google Scholar] [CrossRef] [PubMed]
- Block, E.R.; Bennett, J.E. Pharmacological Studies with 5-Fluorocytosine. Antimicrob. Agents Chemother. 1972, 1, 476–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arthur, R.R.; Drew, R.H.; Perfect, J.R. Novel modes of antifungal drug administration. Expert Opin. Investig. Drugs 2004, 13, 903–932. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.; Fowler, P.; Heidari, A.; Johnson, R.H. Intrathecal Amphotericin B: A 60-Year Experience in Treating Coccidioidal Meningitis. Clin. Infect. Dis. 2017, 64, 519–524. [Google Scholar] [PubMed]
- Alvarez-Uria, G.; Midde, M.; Battula, J.; Pujari, H.N.B. Safety and tolerability of intrathecal liposomal amphotericin B (AmBisome) for cryptococcal meningitis: A retrospective study in HIV-infected patients. Ther. Adv. Inf. Dis. 2018, 12, 77–81. [Google Scholar] [CrossRef]
- Toprac, D.; Demir, S.O.; Kadayifci, E.K.; Turel, O.; Soysal, A.; Bakir, M. Recurrent Candida albicans Ventriculitis Treated with Intraventricular Liposomal Amphotericin B. Case Rep. Infect. Dis. 2015, 2015, 340725. [Google Scholar]
- Nakama, T.; Yamashita, S.; Hirahara, T.; Okamoto, S.; Honda, S.; Watanabe, M.; Kimura, E.; Uchino, M.; Yano, S.; Kuratsu, J.; et al. Usefulness of intraventricular infusion of antifungal drugs through Ommaya reservoirs for cryptococcal meningitis treatment. J. Neurol. Sci. 2015, 358, 259–262. [Google Scholar] [CrossRef]
- Atkinson, A.J. Intracerebroventricular drug administration. Transl. Clin. Pharmacol. 2017, 25, 117. [Google Scholar] [CrossRef]
- Williams, J.R.; Tenforde, M.W.; Chan, J.D.; Ko, A.; Graham, S.M. Safety and clinical response of intraventricular caspofungin for Scedosporium apiospermum complex central nervous system infection. Med. Mycol. Case Rep. 2016, 13, 1–4. [Google Scholar] [CrossRef]
- Atkinson, A.J.; Bindschadler, D.D. Pharmacokinetics of Entrathecally Administered Amphotericin B. Am. Rev. Respir. Dis. 1969, 99, 917–924. [Google Scholar] [PubMed]
- Ashbee, H.R.; Barnes, R.A.; Johnson, E.M.; Richardson, M.D.; Gorton, R.; Hope, W.W. Therapeutic drug monitoring (TDM) of antifungal agents: Guidelines from the British Society for Medical Mycology. J. Antimicrob. Chemother. 2014, 69, 1162–1176. [Google Scholar] [CrossRef] [PubMed]
Property | Antifungal Drugs Demonstrating Favorable Characteristics | References |
---|---|---|
High Lipophilicity | AmB-d 1, ABLC 2, L-AmB 3, anidulafungin | [7] |
Low Protein Binding | Fluconazole, Voriconazole, Flucytosine | [8,9] |
Low Molecular Weight (<450) | Isavuconazole, fluconazole, voriconazole, flucytosine | [7,8,10] |
Not P-glycoprotein (efflux pump) substrate | isavuconazole flucytosine, AmB-d1, ABLC 2, L-AmB 3, caspofungin, micafungin, anidulafungin | [11,12] |
Volume of Distribution around 1 L/kg | Fluconazole, AmB-d 1, ABLC 2, flucytosine, anidulafungin | [9,13] |
Drug | CSF Penetration | Brain Tissue Penetration | Clinical Success Reported | Reference(s) |
---|---|---|---|---|
Azole Agents | ||||
Fluconazole | 52–100% | 70-≥100% | Yes | [26,27,28] |
Itraconazole | <1% | 50-≥100% | Yes | [8,29,30] |
Isavuconazole | <1% | 100–200% | Yes | [31,32,33,34,35] |
Posaconazole | 0–250% | 50–90% | Yes | [36,37,38,39,40] |
Voriconazole | 22–100% | 50->100% | Yes | [8,23,41,42,43] |
Echinocandin Agents | ||||
Anidulafungin | <1% | <1% | No | [44,45,46] |
Caspofungin | <1% | <1% | High dose | [8,47,48] |
Micafungin | <1% | <1–25% | No | [49,50,51] |
Other Agents | ||||
Amphotericin B (AmB-d) 1 | <1% | 27% | Yes | [21,52] |
Amphotericin B lipid complex (ABLC) 2 | <1% | 22% | Yes | [21,53] |
Liposomal amphotericin B (L-AmB) 3 | <1% | 3% | Yes | [21,54] |
Flucytosine | 75% | N/A | Yes | [52,55] |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashley, E.D. Antifungal Drugs: Special Problems Treating Central Nervous System Infections. J. Fungi 2019, 5, 97. https://doi.org/10.3390/jof5040097
Ashley ED. Antifungal Drugs: Special Problems Treating Central Nervous System Infections. Journal of Fungi. 2019; 5(4):97. https://doi.org/10.3390/jof5040097
Chicago/Turabian StyleAshley, Elizabeth Dodds. 2019. "Antifungal Drugs: Special Problems Treating Central Nervous System Infections" Journal of Fungi 5, no. 4: 97. https://doi.org/10.3390/jof5040097
APA StyleAshley, E. D. (2019). Antifungal Drugs: Special Problems Treating Central Nervous System Infections. Journal of Fungi, 5(4), 97. https://doi.org/10.3390/jof5040097