Immunotherapy against Systemic Fungal Infections Based on Monoclonal Antibodies
Abstract
:1. Introduction
2. Immunotherapy Based on Monoclonal Antibodies
Advantages | Disadvantages |
---|---|
- MAbs avoid selection of drug-resistant fungal strains (highly specific) [1,29,30]. | - MAbs are highly specific, therefore can only be used after a precise diagnosis of the agent [29,30]. |
- MAbs provide immediate immunity against systemic mycosis pathogens [1,29]. | - MAbs efficacy may be quickly reduced as the infection progresses with time [29,46]. |
- MAbs can reduce antifungal drug treatment durations by enhancing their effectiveness (Synergistic effect) [1,29,30]. | - MAbs are much more expensive to produce than antimycotic drugs [1,23,29,30]. |
- MAbs avoid toxicity risks because they are directed specifically to pathogen epitopes [1,27,29,47]. | - MAbs are more difficult to store and administer than the conventional antifungal therapies [1,23,29,30]. |
- MAbs do not alter the microbiota [29]. | |
- MAbs can be originally raised against a wide range of molecular epitopes [23,29]. |
3. Monoclonal Antibody Therapy Approaches in Systemic Mycoses
3.1. Cryptococcus spp.
3.2. Sporothrix spp.
3.3. Paracoccidioides spp.
3.4. Histoplasma spp.
3.5. Candida spp.
3.6. Aspergillus spp.
3.7. Coccidioides spp.
3.8. Pneumocystis spp.
3.9. Blastomyces spp.
4. Challenges and Perspectives of Therapeutic Antibodies to Fungal Infections
Author Contributions
Funding
Conflicts of Interest
References
- Cassone, A. Fungal Vaccines: Real Progress from Real Challenges. Lancet Infect. Dis. 2008, 8, 114–124. [Google Scholar] [CrossRef]
- Clark, C.; Drummond, R. The Hidden Cost of Modern Medical Interventions: How Medical Advances Have Shaped the Prevalence of Human Fungal Disease. Pathogens 2019, 8, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denning, D.W. Calling upon All Public Health Mycologists To Accompany the Country Burden Papers from 14 Countries. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 923–924. [Google Scholar] [CrossRef] [PubMed]
- Matveev, A.L.; Krylov, V.B.; Khlusevich, Y.A.; Baykov, I.K.; Yashunsky, D.V.; Emelyanova, L.A.; Tsvetkov, Y.E.; Karelin, A.A.; Bardashova, A.V.; Wong, S.S.W.; et al. Novel Mouse Monoclonal Antibodies Specifically Recognizing β-(1→3)-D-Glucan Antigen. PLoS ONE 2019, 14, e0215535. [Google Scholar] [CrossRef] [PubMed]
- Medici, N.P.; Del Poeta, M. New Insights on the Development of Fungal Vaccines: From Immunity to Recent Challenges. Mem. do Inst. Oswaldo Cruz. 2015, 966–973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papon, N.; Bougnoux, M.-E.; d’Enfert, C. Tracing the Origin of Invasive Fungal Infections. Trends Microbiol. 2020. [Google Scholar] [CrossRef]
- Benedict, K.; Jackson, B.R.; Chiller, T.; Beer, K.D. Estimation of Direct Healthcare Costs of Fungal Diseases in the United States. Clin. Infect. Dis. 2018. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, G.G.; Belitardo, D.R.; Balarin, M.R.S.; Freire, R.L.; de Camargo, Z.P.; Ono, M.A. Serological Survey of Paracoccidioidomycosis in Cats. Mycopathologia 2013, 176, 299–302. [Google Scholar] [CrossRef]
- Rudkin, F.M.; Raziunaite, I.; Workman, H.; Essono, S.; Belmonte, R.; MacCallum, D.M.; Johnson, E.M.; Silva, L.M.; Palma, A.S.; Feizi, T.; et al. Single Human B Cell-Derived Monoclonal Anti-Candida Antibodies Enhance Phagocytosis and Protect against Disseminated Candidiasis. Nat. Commun. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Bongomin, F.; Gago, S.; Oladele, R.; Denning, D. Global and Multi-National Prevalence of Fungal Diseases—Estimate Precision. J. Fungi 2017, 3, 57. [Google Scholar] [CrossRef]
- Denning, D.W. The Ambitious “95-95 by 2025” Roadmap for the Diagnosis and Management of Fungal Diseases. Thorax 2015, 70, 613–614. [Google Scholar] [CrossRef] [Green Version]
- Hawksworth, D.L.; Lücking, R. Fungal Diversity Revisited: 2.2 to 3.8 Million Species. Microbiol. Spectr. 2017, 5, 79–95. [Google Scholar] [CrossRef] [PubMed]
- Denham, S.T.; Wambaugh, M.A.; Brown, J.C.S. How Environmental Fungi Cause a Range of Clinical Outcomes in Susceptible Hosts. J. Mol. Biol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Köhler, J.R.; Casadevall, A.; Perfect, J. The Spectrum of Fungi That Infects Humans. Cold Spring Harb. Perspect. Med. 2015, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, D.Z.P.; Schwartz, I.S. Emerging Fungal Infections: New Patients, New Patterns, and New Pathogens. J. Fungi 2019, 5, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levitz, S.M. Aspergillus Vaccines: Hardly Worth Studying or Worthy of Hard Study? Med. Mycol. 2017, 55, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Wilson, L.S.; Reyes, C.M.; Stolpman, M.; Speckman, J.; Allen, K.; Beney, J. The Direct Cost and Incidence of Systemic Fungal Infections. Value Health 2002, 5, 26–34. [Google Scholar] [CrossRef] [Green Version]
- Paramythiotou, E.; Frantzeskaki, F.; Flevari, A.; Armaganidis, A.; Dimopoulos, G. Invasive Fungal Infections in the ICU: How to Approach, How to Treat. Molecules 2014, 19, 1085–1119. [Google Scholar] [CrossRef] [Green Version]
- Candel, F.J.; Peñuelas, M.; Tabares, C.; Garcia-Vidal, C.; Matesanz, M.; Salavert, M.; Rivas, P.; Pemán, J. Fungal Infections Following Treatment with Monoclonal Antibodies and Other Immunomodulatory Therapies. Rev. Iberoam. Micol. 2019, 5–16. [Google Scholar] [CrossRef]
- Iannitti, R.G.; Carvalho, A.; Romani, L. From Memory to Antifungal Vaccine Design. Trends Immunol. 2012, 33, 467–474. [Google Scholar] [CrossRef]
- Menzin, J.; Meyers, J.L.; Friedman, M.; Korn, J.R.; Perfect, J.R.; Langston, A.A.; Danna, R.P.; Papadopoulos, G.; Waltham, M.; Durham, C.; et al. The Economic Costs to United States Hospitals of Invasive Fungal Infections in Transplant Patients. Am. J. Infect. Control 2011, 39, e15–e20. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.M.; Klein, B.S. Dendritic Cells in Antifungal Immunity and Vaccine Design. Cell Host Microbe 2012, 11, 436–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spellberg, B. Vaccines for Invasive Fungal Infections. F1000 Med. Rep. 2011, 3, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.C.; Hawkins, N.J.; Sanglard, D.; Gurr, S.J. Worldwide Emergence of Resistance to Antifungal Drugs Challenges Human Health and Food Security. Science 2018, 360, 739–742. [Google Scholar] [CrossRef] [Green Version]
- Datta, K.; Hamad, M. Immunotherapy of Fungal Infections. Immunol. Invest. 2015, 44, 738–776. [Google Scholar] [CrossRef]
- Ecker, D.M.; Jones, S.D.; Levine, H.L. The Therapeutic Monoclonal Antibody Market. MAbs 2015. [Google Scholar] [CrossRef] [Green Version]
- Saylor, C.; Dadachova, E.; Casadevall, A. Monoclonal Antibody-Based Therapies for Microbial Diseases. Vaccine 2009, 27, G38–G46. [Google Scholar] [CrossRef]
- Casadevall, A.; Pirofski, L.A. Immunoglobulins in Defense, Pathogenesis, and Therapy of Fungal Diseases. Cell Host Microbe 2012, 447–456. [Google Scholar] [CrossRef] [Green Version]
- Casadevall, A.; Dadachova, E.; Pirofski, L.A. Passive Antibody Therapy for Infectious Diseases. Nat. Rev. Microbiol. 2004, 695–703. [Google Scholar] [CrossRef]
- Taborda, C.P.; Nosanchuk, J.D. Editorial: Vaccines, Immunotherapy and New Antifungal Therapy against Fungi: Updates in the New Frontier. Front. Microbiol. 2017. [Google Scholar] [CrossRef]
- Casadevall, A.; Pirofski, L.A. Antibody-Mediated Regulation of Cellular Immunity and the Inflammatory Response. Trends Immunol. 2003, 24, 474–478. [Google Scholar] [CrossRef]
- Xander, P.; Vigna, A.; Feitosa, L.; Pugliese, L.; Bailão, A.; Soares, C.; Mortara, R.; Mariano, M.; Lopes, J. A Surface 75-KDa Protein with Acid Phosphatase Activity Recognized by Monoclonal Antibodies That Inhibit Paracoccidioides brasiliensis Growth. Microbes Infect. 2007, 9, 1484–1492. [Google Scholar] [CrossRef] [PubMed]
- Matos Baltazar, L.; Nakayasu, E.S.; Sobreira, T.J.P.; Choi, H.; Casadevall, A.; Nimrichter, L.; Nosanchuk, J.D. Antibody Binding Alters the Characteristics and Contents of Extracellular Vesicles Released by Histoplasma capsulatum. mSphere 2016, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baltazar, L.M.; Zamith-Miranda, D.; Burnet, M.C.; Choi, H.; Nimrichter, L.; Nakayasu, E.S.; Nosanchuk, J.D. Concentration-Dependent Protein Loading of Extracellular Vesicles Released by Histoplasma capsulatum after Antibody Treatment and Its Modulatory Action upon Macrophages. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef] [PubMed]
- Gigliotti, F.; Haidaris, C.G.; Wright, T.W.; Harmsen, A.G. Passive Intranasal Monoclonal Antibody Prophylaxis against Murine Pneumocystis carinii Pneumonia. Infect. Immun. 2002, 70, 1069–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casadevall, A.; Pirofski, L. A Reappraisal of Humoral Immunity Based on Mechanisms of Antibody-Mediated Protection against Intracellular Pathogens. Adv. Immunol. 2006, 91, 1–44. [Google Scholar] [CrossRef] [PubMed]
- Thomaz, L.; Nosanchuk, J.D.; Rossi, D.C.P.; Travassos, L.R.; Taborda, C.P. Monoclonal Antibodies to Heat Shock Protein 60 Induce a Protective Immune Response against Experimental Paracoccidioides lutzii. Microbes Infect. 2014, 16, 788–795. [Google Scholar] [CrossRef]
- Kaufmann, S.H.E. Heat Shock Proteins and the Immune Response. Immunol. Today 1990, 11, 129–136. [Google Scholar] [CrossRef]
- Colaco, C.A.; Bailey, C.R.; Walker, K.B.; Keeble, J. Heat Shock Proteins: Stimulators of Innate and Acquired Immunity. Biomed Res. Int. 2013, 2013, 461230. [Google Scholar] [CrossRef] [Green Version]
- de Mattos Grosso, D.; de Almeida, S.R.; Mariano, M.; Lopes, J.D. Characterization of Gp70 and Anti-Gp70 Monoclonal Antibodies in Paracoccidioides brasiliensis Pathogenesis. Infect. Immun. 2003, 71, 6534–6542. [Google Scholar] [CrossRef] [Green Version]
- Nosanchuk, J.D.; Dadachova, E. Radioimmunotherapy of Fungal Diseases: The Therapeutic Potential of Cytocidal Radiation Delivered by Antibody Targeting Fungal Cell Surface Antigens. Front. Microbiol. 2011, 2, 283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strohl, W.R. Antibody Discovery: Sourcing of Monoclonal Antibody Variable Domains. Curr. Drug Discov. Technol. 2014, 11, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Chames, P.; Van Regenmortel, M.; Weiss, E.; Baty, D. Therapeutic Antibodies: Successes, Limitations and Hopes for the Future. Brt. J. Pharmacol. 2009, 220–233. [Google Scholar] [CrossRef] [PubMed]
- Casadevall, A.; Pirofski, L. Insights into Mechanisms of Antibody-Mediated Immunity from Studies with Cryptococcus neoformans. Curr. Mol. Med. 2005, 5, 421–433. [Google Scholar] [CrossRef]
- Travassos, L.R.; Taborda, C.P. New Advances in the Development of a Vaccine against Paracoccidioidomycosis. Front. Microbiol. 2012, 3, 1771–1777. [Google Scholar] [CrossRef] [Green Version]
- Romani, L. Immunity to Fungal Infections. Nat. Rev. Immunol. 2011, 11, 275–288. [Google Scholar] [CrossRef]
- Cassone, A.; Casadevall, A. Recent Progress in Vaccines against Fungal Diseases. Curr. Opin. Microbiol. 2012, 427–433. [Google Scholar] [CrossRef] [Green Version]
- Deepe, G.S., Jr. Preventative and Therapeutic Vaccines for Fungal Infections: From Concept to Implementation. Expert Rev. Vaccines 2004, 3, 701–709. [Google Scholar] [CrossRef]
- Arturo, C.; Scharff, M.D. Return Tothe Past: The Case for Antibody-Based Therapies in Infectious Diseases. Clin. Infect. Dis. 1995, 21, 150–161. [Google Scholar] [CrossRef]
- Casadevall, A. The Case for Pathogen-Specific Therapy. Expert Opin. Pharmacother. 2009, 1699–1703. [Google Scholar] [CrossRef]
- Casadevall, A. The Third Age of Antimicrobial Therapy. Clin. Infect. Dis. 2006, 42, 1414–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casadevall, A.; Scharff, M.D. Serum Therapy Revisited: Animal Models of Infection and Development of Passive Antibody Therapy. Antimicrob. Agents Chemother. 1994, 38, 1695–1702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sloan, D.J.; Parris, V. Cryptococcal Meningitis: Epidemiology and Therapeutic Options. Clin. Epidemiol. 2014, 6, 169–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marr, K.A.; Datta, K.; Pirofski, L.; Barnes, R. Cryptococcus gattii Infection in Healthy Hosts: A Sentinel for Subclinical Immunodeficiency? Clin. Infect. Dis. 2012, 54, 153–154. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.C.-A.; Meyer, W.; Sorrell, T.C. Cryptococcus gattii Infections. Clin. Microbiol. Rev. 2014, 27, 980–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saijo, T.; Chen, J.; Chen, S.C.-A.; Rosen, L.B.; Yi, J.; Sorrell, T.C.; Bennett, J.E.; Holland, S.M.; Browne, S.K.; Kwon-Chung, K.J. Anti-Granulocyte-Macrophage Colony-Stimulating Factor Autoantibodies Are a Risk Factor for Central Nervous System Infection by Cryptococcus gattii in Otherwise Immunocompetent Patients. MBio 2014, 5, e00912–e00914. [Google Scholar] [CrossRef] [Green Version]
- Jobbins, S.E.; Hill, C.J.; D’Souza-Basseal, J.M.; Padula, M.P.; Herbert, B.R.; Krockenberger, M.B. Immunoproteomic Approach to Elucidating the Pathogenesis of Cryptococcosis Caused by Cryptococcus gattii. J. Proteome Res. 2010, 9, 3832–3841. [Google Scholar] [CrossRef]
- Lortholary, O. Management of Cryptococcal Meningitis in AIDS: The Need for Specific Studies in Developing Countries. Clin. Infect. Dis. 2007, 45, 81–83. [Google Scholar] [CrossRef]
- Perfect, J.R.; Dismukes, W.E.; Dromer, F.; Goldman, D.L.; Graybill, J.R.; Hamill, R.J.; Harrison, T.S.; Larsen, R.A.; Lortholary, O.; Nguyen, M.-H.; et al. The Management of Cryptococcal Disease. IDSA endorsed 2010, 50, 291–322. [Google Scholar] [CrossRef] [Green Version]
- Sabiiti, W.; May, R.C. Mechanisms of Infection by the Human Fungal Pathogen Cryptococcus neoformans. Future Microbiol. 2012, 7, 1297–1313. [Google Scholar] [CrossRef]
- Casadevall, A. Antibody Immunity and Invasive Fungal Infections. Infect. Immun. 1995, 63, 4211–4218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diamond, R.D.; Bennett, J.E. Prognostic Factors in Cryptococcal Meningitis. A Study in 111 Cases. Ann. Intern. Med. 1974, 80, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Bindschadler, D.D.; Bennett, J.E. Serology of Human Cryptococcosis. Ann. Intern. Med. 1968, 69, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Kozel, T.R.; Highison, B.; Stratton, C.J. Localization on Encapsulated Cryptococcus neoformans of Serum Components Opsonic for Phagocytosis by Macrophages and Neutrophils. Infect. Immun. 1984, 43, 574–579. [Google Scholar] [CrossRef] [Green Version]
- Nabavi, N.; Murphy, J.W. Antibody-Dependent Natural Killer Cell-Mediated Growth Inhibition of Cryptococcus neoformans. Infect. Immun. 1986, 51, 556–562. [Google Scholar] [CrossRef] [Green Version]
- Dromer, F.; Charreire, J.; Contrepois, A.; Carbon, C.; Yeni, P. Protection of Mice against Experimental Cryptococcosis by Anti-Cryptococcus neoformans Monoclonal Antibody. Infect. Immun. 1987, 55, 749–752. [Google Scholar] [CrossRef] [Green Version]
- Retini, C.; Vecchiarelli, A.; Monari, C.; Tascini, C.; Bistoni, F.; Kozel, T.R. Capsular Polysaccharide of Cryptococcus neoformans Induces Proinflammatory Cytokine Release by Human Neutrophils. Infect. Immun. 1996, 64, 2897–2903. [Google Scholar] [CrossRef] [Green Version]
- Vecchiarelli, A. Immunoregulation by Capsular Components of Cryptococcus neoformans. Med. Mycol. 2000, 38, 407–417. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, S.; Lee, S.; Mukherjee, J.; Scharff, M.D.; Casadevall, A. Monoclonal Antibodies to Cryptococcus neoformans Capsular Polysaccharide Modify the Course of Intravenous Infection in Mice. Infect. Immun. 1994, 62, 1079–1088. [Google Scholar] [CrossRef] [Green Version]
- Goldman, D.L.; Lee, S.C.; Casadevall, A. Tissue Localization of Cryptococcus neoformans Glucuronoxylomannan in the Presence and Absence of Specific Antibody. Infect. Immun. 1995, 63, 3448–3453. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.C.; Kress, Y.; Dickson, D.W.; Casadevall, A. Human Microglia Mediate Anti-Cryptococcus neoformans Activity in the Presence of Specific Antibody. J. Neuroimmunol. 1995, 62, 43–52. [Google Scholar] [CrossRef]
- Mukherjee, S.; Lee, S.C.; Casadevall, A. Antibodies to Cryptococcus neoformans Glucuronoxylomannan Enhance Antifungal Activity of Murine Macrophages. Infect. Immun. 1995, 63, 573–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casadevall, A.; Mukherjee, J.; Devi, S.J.N.; Schneerson, R.; Robbins, J.B.; Scharff, M.D. Antibodies Elicited by a Cryptococcus neoformans-Tetanus Toxoid Conjugate Vaccine Have the Same Specificity as Those Elicited in Infection. J. Infect. Dis. 1992, 165, 1086–1093. [Google Scholar] [CrossRef] [PubMed]
- Feldmesser, M.; Casadevall, A. Effect of Serum IgG1 to Cryptococcus neoformans Glucuronoxylomannan on Murine Pulmonary Infection. J. Immunol. 1997, 158, 790–799. [Google Scholar] [PubMed]
- Dromer, F.; Charreire, J. Improved Amphotericin B Activity by a Monoclonal Anti-Cryptococcus neoformans Antibody: Study during Murine Cryptococcosis and Mechanisms of Action. J. Infect. Dis. 1991, 163, 1114–1120. [Google Scholar] [CrossRef]
- Larsen, R.A.; Pappas, P.G.; Perfect, J.; Aberg, J.A.; Casadevall, A.; Cloud, G.A.; James, R.; Filler, S.; Dismukes, W.E. Phase I Evaluation of the Safety and Pharmacokinetics of Murine-Derived Anticryptococcal Antibody 18B7 in Subjects with Treated Cryptococcal Meningitis. Antimicrob. Agents Chemother. 2005, 49, 952–958. [Google Scholar] [CrossRef] [Green Version]
- Nooney, L.; Matthews, R.C.; Burnie, J.P. Evaluation of Mycograb, Amphotericin B, Caspofungin, and Fluconazole in Combination against Cryptococcus neoformans by Checkerboard and Time-Kill Methodologies. Diagn. Microbiol. Infect. Dis. 2005, 51, 19–29. [Google Scholar] [CrossRef]
- Kwon-Chung, K.J.; Polacheck, I.; Popkin, T.J. Melanin-Lacking Mutants of Cryptococcus neoformans and Their Virulence for Mice. J. Bacteriol. 1982, 150, 1414–1421. [Google Scholar] [CrossRef] [Green Version]
- Nosanchuk, J.D.; Rosas, A.L.; Lee, S.C.; Casadevall, A. Melanisation of Cryptococcus neoformans in Human Brain Tissue. Lancet 2000, 355, 2049–2050. [Google Scholar] [CrossRef]
- Rosas, A.L.; Nosanchuk, J.D.; Casadevall, A. Passive Immunization with Melanin-Binding Monoclonal Antibodies Prolongs Survival of Mice with Lethal Cryptococcus neoformans Infection. Infect. Immun. 2001, 69, 3410–3412. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, M.L.; Travassos, L.R.; Miranda, K.R.; Franzen, A.J.; Rozental, S.; de Souza, W.; Alviano, C.S.; Barreto-Bergter, E. Human Antibodies against a Purified Glucosylceramide from Cryptococcus neoformans Inhibit Cell Budding and Fungal Growth. Infect. Immun. 2000, 68, 7049–7060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torosantucci, A.; Chiani, P.; Bromuro, C.; De Bernardis, F.; Palma, A.S.; Liu, Y.; Mignogna, G.; Maras, B.; Colone, M.; Stringaro, A.; et al. Protection by Anti-Beta-Glucan Antibodies Is Associated with Restricted Beta-1,3 Glucan Binding Specificity and Inhibition of Fungal Growth and Adherence. PLoS ONE 2009, 4, e5392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rachini, A.; Pietrella, D.; Lupo, P.; Torosantucci, A.; Chiani, P.; Bromuro, C.; Proietti, C.; Bistoni, F.; Cassone, A.; Vecchiarelli, A. An Anti-Beta-Glucan Monoclonal Antibody Inhibits Growth and Capsule Formation of Cryptococcus neoformans in Vitro and Exerts Therapeutic, Anticryptococcal Activity In Vivo. Infect. Immun. 2007, 75, 5085–5094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, L.R.; Moussai, D.; Casadevall, A. Antibody to Cryptococcus neoformans Glucuronoxylomannan Inhibits the Release of Capsular Antigen. Infect. Immun. 2004, 72, 3674–3679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, L.R.; Casadevall, A. Specific Antibody Can Prevent Fungal Biofilm Formation and This Effect Correlates with Protective Efficacy. Infect. Immun. 2005, 73, 6350–6362. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, M.; Saylor, C.; Casadevall, A. Antibody Action after Phagocytosis Promotes Cryptococcus neoformans and Cryptococcus gattii Macrophage Exocytosis with Biofilm-Like Microcolony Formation. Cell. Microbiol. 2008, 10, 1622–1633. [Google Scholar] [CrossRef] [Green Version]
- McClelland, E.E.; Casadevall, A. Strain-Related Differences in Antibody-Mediated Changes in Gene Expression Are Associated with Differences in Capsule and Location of Binding. Fungal Genet. Biol. 2012, 49, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Nussbaum, G.; Cleare, W.; Casadevall, A.; Scharff, M.D.; Valadon, P. Epitope Location in the Cryptococcus neoformans Capsule Is a Determinant of Antibody Efficacy. J. Exp. Med. 1997, 185, 685–694. [Google Scholar] [CrossRef] [Green Version]
- Taborda, C.P.; Casadevall, A. Immunoglobulin M Efficacy Against Cryptococcus neoformans: Mechanism, Dose Dependence, and Prozone-Like Effects in Passive Protection Experiments. J. Immunol. 2001, 166, 2100–2107. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, S.; Beenhouwer, D.O.; Feldmesser, M.; Taborda, C.; Carroll, M.C.; Casadevall, A.; Scharff, M.D. Immunoglobulin G Monoclonal Antibodies to Cryptococcus neoformans Protect Mice Deficient in Complement Component C3. Infect. Immun. 2002, 70, 2598–2604. [Google Scholar] [CrossRef] [Green Version]
- Yuan, R.; Casadevall, A.; Oh, J.; Scharff, M.D. T Cells Cooperate with Passive Antibody to Modify Cryptococcus neoformans Infection in Mice. Proc. Natl. Acad. Sci. USA 1997, 94, 2483–2488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beenhouwer, D.O.; Shapiro, S.; Feldmesser, M.; Casadevall, A.; Scharff, M.D. Both Th1 and Th2 Cytokines Affect the Ability of Monoclonal Antibodies to Protect Mice against Cryptococcus neoformans. Infect. Immun. 2001, 69, 6445–6455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antachopoulos, C.; Walsh, T.J. Immunotherapy of Cryptococcus Infections. Clin. Microbiol. Infect. 2012, 18, 126–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marimon, R.; Cano, J.; Gené, J.; Sutton, D.A.; Kawasaki, M.; Guarro, J. Sporothrix brasiliensis, S. Globosa, and S. Mexicana, Three New Sporothrix Species of Clinical Interest. J. Clin. Microbiol. 2007, 45, 3198–3206. [Google Scholar] [CrossRef] [Green Version]
- Marimon, R.; Genè, J.; Cano, J.; Guarro, J. Sporothrix Luriei: A Rare Fungus from Clinical Origin. Med. Mycol. 2008, 46, 621–625. [Google Scholar] [CrossRef] [Green Version]
- Marimon, R.; Gené, J.; Cano, J.; Trilles, L.; Dos Santos Lazéra, M.; Guarro, J. Molecular Phylogeny of Sporothrix schenckii. J. Clin. Microbiol. 2006, 44, 3251–3256. [Google Scholar] [CrossRef] [Green Version]
- Alba-Fierro, C.A.; Pérez-Torres, A.; Toriello, C.; Romo-Lozano, Y.; López-Romero, E.; Ruiz-Baca, E. Molecular Components of the Sporothrix schenckii Complex That Induce Immune Response. Curr. Microbiol. 2016, 73, 292–300. [Google Scholar] [CrossRef]
- Oliveira, M.M.E.; Almeida-Paes, R.; Gutierrez-Galhardo, M.C.; Zancope-Oliveira, R.M. Molecular Identification of the Sporothrix schenckii Complex. Rev. Iberoam. Micol. 2014, 31, 2–6. [Google Scholar] [CrossRef]
- Teixeira, P.A.C.; de Castro, R.A.; Nascimento, R.C.; Tronchin, G.; Torres, A.P.; Lazéra, M.; de Almeida, S.R.; Bouchara, J.-P.; Loureiro y Penha, C.V.; Lopes-Bezerra, L.M. Cell Surface Expression of Adhesins for Fibronectin Correlates with Virulence in Sporothrix schenckii. Microbiology 2009, 155 Pt 11, 3730–3738. [Google Scholar] [CrossRef] [Green Version]
- Clavijo-Giraldo, D.M.; Matínez-Alvarez, J.A.; Lopes-Bezerra, L.M.; Ponce-Noyola, P.; Franco, B.; Almeida, R.S.; Mora-Montes, H.M. Analysis of Sporothrix schenckii Sensu Stricto and Sporothrix brasiliensis Virulence in Galleria Mellonella. J. Microbiol. Methods 2016, 122, 73–77. [Google Scholar] [CrossRef]
- Schubach, A.; de Barros, M.B.L.; Wanke, B. Epidemic Sporotrichosis. Curr. Opin. Infect. Dis. 2008, 21, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.M.; de Hoog, G.S.; de Camargo, Z.P. Sporothrix Species Causing Outbreaks in Animals and Humans Driven by Animal–Animal Transmission. PLoS Pathog. 2016. [Google Scholar] [CrossRef] [PubMed]
- de Bastos Lima Barros, M.; de Oliveira Schubach, A.; do Francesconi Valle, A.C.; Gutierrez Galhardo, M.C.; Conceicao-Silva, F.; Pacheco Schubach, T.M.; Santos Reis, R.; Wanke, B.; Feldman Marzochi, K.B.; Conceicao, M.J. Cat-Transmitted Sporotrichosis Epidemic in Rio de Janeiro, Brazil: Description of a Series of Cases. Clin. Infect. Dis. 2004, 38, 529–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freitas, D.F.S.; do Valle, A.C.F.; de Almeida Paes, R.; Bastos, F.I.; Galhardo, M.C.G. Zoonotic Sporotrichosis in Rio de Janeiro, Brazil: A Protracted Epidemic yet to Be Curbed. Clin. Infect. Dis. 2010, 50, 453. [Google Scholar] [CrossRef] [Green Version]
- Gremião, I.D.F.; Menezes, R.C.; Schubach, T.M.P.; Figueiredo, A.B.F.; Cavalcanti, M.C.H.; Pereira, S.A. Feline Sporotrichosis: Epidemiological and Clinical Aspects. Med. Mycol. 2015, 53, 15–21. [Google Scholar] [CrossRef]
- Barros, M.B.D.L.; de Almeida Paes, R.; Schubach, A.O. Sporothrix schenckii and Sporotrichosis. Clin. Microbiol. Rev. 2011, 24, 633–654. [Google Scholar] [CrossRef] [Green Version]
- Kauffman, C.A.; Bustamante, B.; Chapman, S.W.; Pappas, P.G. Management of Sporotrichosis. IDSA Endorsed 2007, 45, 1255–1265. [Google Scholar] [CrossRef] [Green Version]
- Espinel-Ingroff, A.; Abreu, D.P.B.; Almeida-Paes, R.; Brilhante, R.S.N.; Chakrabarti, A.; Chowdhary, A.; Hagen, F.; Córdoba, S.; Gonzalez, G.M.; Govender, N.P.; et al. Multicenter, International Study of MIC/MEC Distributions for Definition of Epidemiological Cutoff Values for Sporothrix Species Identified by Molecular Methods. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [Green Version]
- Pereira, S.A.; Passos, S.R.L.; Silva, J.N.; Gremião, I.D.F.; Figueiredo, F.B.; Teixeira, J.L.; Monteiro, P.C.F.; Schubach, T.M.P. Response to Azolic Antifungal Agents for Treating Feline Sporotrichosis. Vet. Rec. 2010, 166, 290–294. [Google Scholar] [CrossRef]
- Tachibana, T.; Matsuyama, T.; Mitsuyama, M. Involvement of CD4+ T Cells and Macrophages in Acquired Protection against Infection with Sporothrix schenckii in Mice. Med. Mycol. 1999, 37, 397–404. [Google Scholar] [CrossRef] [Green Version]
- Buissa-Filho, R.; Puccia, R.; Marques, A.F.; Pinto, F.A.; Muñoz, J.E.; Nosanchuk, J.D.; Travassos, L.R.; Taborda, C.P. The Monoclonal Antibody against the Major Diagnostic Antigen of Paracoccidioides brasiliensis Mediates Immune Protection in Infected BALB/c Mice Challenged Intratracheally with the Fungus. Infect. Immun. 2008, 76, 3321–3328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lloyd, K.O.; Travassos, L.R. Immunochemical Studies on L-Rhamno-D-Mannans of Sporothrix schenckii and Related Fungi by Use of Rabbit and Human Antisera. Carbohydr. Res. 1975, 40, 89–97. [Google Scholar] [CrossRef]
- Alves, L.L.; Travassos, L.R.; Previato, J.O.; Mendonça-previato, L. Novel Antigenic Determinants from Peptidorhamnomannans of Sporothrix schenckii. Glycobiology 1994, 4, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, R.C.; Almeida, S.R. Humoral Immune Response against Soluble and Fractionate Antigens in Experimental Sporotrichosis. FEMS Immunol. Med. Microbiol. 2005, 43, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, R.C.; Espíndola, N.M.; Castro, R.A.; Teixeira, P.A.C.; Loureiro y Penha, C.V.; Lopes-Bezerra, L.M.; Almeida, S.R. Passive Immunization with Monoclonal Antibody against a 70-KDa Putative Adhesin of Sporothrix schenckii Induces Protection in Murine Sporotrichosis. Eur. J. Immunol. 2008, 38, 3080–3089. [Google Scholar] [CrossRef]
- Toledo, M.S.; Tagliari, L.; Suzuki, E.; Silva, C.M.; Straus, A.H.; Takahashi, H.K. Effect of Anti-Glycosphingolipid Monoclonal Antibodies in Pathogenic Fungal Growth and Differentiation. Characterization of Monoclonal Antibody MEST-3 Directed to Manpalpha1-->3Manpalpha1-->2IPC. BMC Microbiol. 2010, 10, 47. [Google Scholar] [CrossRef] [Green Version]
- de Lima Franco, D.; Nascimento, R.C.; Ferreira, K.S.; Almeida, S.R. Antibodies against Sporothrix schenckii Enhance TNF-α Production and Killing by Macrophages. Scand. J. Immunol. 2012, 75, 142–146. [Google Scholar] [CrossRef] [Green Version]
- de Almeida, J.R.F.; Kaihami, G.H.; Jannuzzi, G.P.; de Almeida, S.R. Therapeutic Vaccine Using a Monoclonal Antibody against a 70-KDa Glycoprotein in Mice Infected with Highly Virulent Sporothrix schenckii and Sporothrix brasiliensis. Med. Mycol. 2015, 53, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Castro, R.A.; Kubitschek-Barreira, P.H.; Teixeira, P.A.C.; Sanches, G.F.; Teixeira, M.M.; Quintella, L.P.; Almeida, S.R.; Costa, R.O.; Camargo, Z.P.; Felipe, M.S.S.; et al. Differences in Cell Morphometry, Cell Wall Topography and Gp70 Expression Correlate with the Virulence of Sporothrix brasiliensis Clinical Isolates. PLoS ONE 2013, 8, e75656. [Google Scholar] [CrossRef] [Green Version]
- Martinez, R. New Trends in Paracoccidioidomycosis Epidemiology. J. Fungi 2017, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Bocca, A.L.; Amaral, A.C.; Teixeira, M.M.; Sato, P.K.; Shikanai-Yasuda, M.A.; Soares Felipe, M.S.; Soares Felipe, M.S. Paracoccidioidomycosis: Eco-Epidemiology, Taxonomy and Clinical and Therapeutic Issues. Future Microbiol. 2013, 8, 1177–1191. [Google Scholar] [CrossRef] [PubMed]
- Shikanai-Yasuda, M.A. Paracoccidioidomycosis Treatment. Rev. Inst. Med. Trop. Sao Paulo 2015, 57, 31–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teixeira, M.M.; Theodoro, R.C.; de Carvalho, M.J.A.; Fernandes, L.; Paes, H.C.; Hahn, R.C.; Mendoza, L.; Bagagli, E.; San-Blas, G.; Felipe, M.S.S. Phylogenetic Analysis Reveals a High Level of Speciation in the Paracoccidioides Genus. Mol. Phylogenet. Evol. 2009, 52, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Franco, M.; Bagagli, E.; Scapolio, S.; Da Silva Lacaz, C. A Critical Analysis of Isolation of Paracoccidioides brasiliensis from Soil. Med Mycol. 2000, 185–191. [Google Scholar] [CrossRef]
- Turissini, D.A.; Gomez, O.M.; Teixeira, M.M.; McEwen, J.G.; Matute, D.R. Species Boundaries in the Human Pathogen Paracoccidioides. Fungal Genet. Biol. 2017, 106, 9–25. [Google Scholar] [CrossRef]
- Shikanai-Yasuda, M.A.; Mendes, R.P.; Colombo, A.L.; de Queiroz-Telles, F.; Kono, A.S.G.; Paniago, A.M.M.; Nathan, A.; do Valle, A.C.F.; Bagagli, E.; Benard, G.; et al. Brazilian Guidelines for the Clinical Management of Paracoccidioidomycosis. Rev. Soc. Bras. Med. Trop. 2017, 50, 715–740. [Google Scholar] [CrossRef]
- Brummer, E.; Castaneda, E.; Restrepo, A. Paracoccidioidomycosis: An Update. Clin. Microbiol. Rev. 1993, 6, 89–117. [Google Scholar] [CrossRef]
- Taborda, C.P.; Juliano, M.A.; Puccia, R.; Franco, M.; Travassos, L.R. Mapping of the T-Cell Epitope in the Major 43-Kilodalton Glycoprotein of Paracoccidioides brasiliensis Which Induces a Th-1 Response Protective against Fungal Infection in BALB/c Mice. Infect. Immun. 1998, 66, 786–793. [Google Scholar] [CrossRef] [Green Version]
- Taborda, C.P.; Urán, M.E.; Nosanchuk, J.D.; Travassos, L.R. Paracoccidioidomycosis: Challenges in the development of a vaccine against an endemic mycosis in the americas. Rev. Inst. Med. Trop. Sao Paulo 2015, 57, 21–24. [Google Scholar] [CrossRef]
- Mota, N.G.S.; Rezkallah-Iwasso, M.T.; Peraçoli, M.T.S.; Audi, R.C.; Mendes, R.P.; Marcondes, J.; Marques, S.A.; Dillon, N.L.; Franco, M.F. Correlation between Cell-Mediated Immunity and Clinical Forms of Paracoccidioidomycosis. Trans. R. Soc. Trop. Med. Hyg. 1985, 79, 765–772. [Google Scholar] [CrossRef]
- Kashino, S.S.; dos Fazioli, R.A.; Moscardi-Bacchi, M.; Franco, M.; Singer-Vermes, L.M.; Burger, E.; Calich, V.L.G. Effect of Macrophage Blockade on the Resistance of Inbred Mice to Paracoccidioides brasiliensis Infection. Mycopathologia 1995, 130, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Puccia, R.; Schenkman, S.; Gorin, P.A.J.; Travassos, L.R. Exocellular Components of Paracoccidioides brasiliensis: Identification of a Specific Antigen. Infect. Immun. 1986, 53, 199–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cisalpino, P.S.; Puccia, R.; Yamauchi, L.M.; Cano, M.I.N.; Da Silveira, J.F.; Travassos, L.R. Cloning, Characterization, and Epitope Expression of the Major Diagnostic Antigen of Paracoccidioides brasiliensis. J. Biol. Chem. 1996, 271, 4553–4560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Travassos, L.R.; Taborda, C.P. Linear Epitopes of Paracoccidioides brasiliensis and Other Fungal Agents of Human Systemic Mycoses As Vaccine Candidates. Front. Immunol. 2017, 8, 224. [Google Scholar] [CrossRef] [Green Version]
- Camargo, Z.P.; Taborda, C.P.; Rodrigues, E.G.; Travassos, L.R. The Use of Cell-Free Antigens of Paracoccidioides brasiliensis in Serological Tests. J. Med. Vet. Mycol. 1991, 29, 31–38. [Google Scholar] [CrossRef]
- da Silva, M.B.; Thomaz, L.; Marques, A.F.; Svidzinski, A.E.; Nosanchuk, J.D.; Casadevall, A.; Travassos, L.R.; Taborda, C.P. Resistance of Melanized Yeast Cells of Paracoccidioides brasiliensis to Antimicrobial Oxidants and Inhibition of Phagocytosis Using Carbohydrates and Monoclonal Antibody to CD18. Mem. Inst. Oswaldo Cruz 2009, 104, 644–648. [Google Scholar] [CrossRef] [Green Version]
- Bueno, R.A.; Thomaz, L.; Muñoz, J.E.; da Silva, C.J.; Nosanchuk, J.D.; Pinto, M.R.; Travassos, L.R.; Taborda, C.P. Antibodies Against Glycolipids Enhance Antifungal Activity of Macrophages and Reduce Fungal Burden After Infection with Paracoccidioides brasiliensis. Front. Microbiol. 2016, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kwon-Chung, K.J.; Bennett, J.E. Medical Mycology. Rev. Inst. Med. Trop. Sao Paulo 1992, 34, 504. [Google Scholar] [CrossRef] [Green Version]
- Edwards, L.B.; Acquaviva, F.A.; Livesay, V.T.; Cross, F.W.; Palmer, C.E. An Atlas of Sensitivity to Tuberculin, PPD-B, and Histoplasmin in the United States. Am. Rev. Respir. Dis. 1969, 99. [Google Scholar] [CrossRef]
- Ahumada, F.; Pérez, D.; de Górgolas, M.; Álvarez, B.; Ríos, A.; Sánchez, A.; Villacampa, J. Subacute Histoplasmosis with Focal Involvement of the Epiglottis: Importance of Differential Diagnosis. Case Rep. Otolaryngol. 2014, 2014, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Falci, D.R.; Hoffmann, E.R.; Paskulin, D.D.; Pasqualotto, A.C. Progressive Disseminated Histoplasmosis: A Systematic Review on the Performance of Non-Culture-Based Diagnostic Tests. Braz. J. Infect. Dis. 2017, 21, 7–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guimarães, A.J.; Nosanchuk, J.D.; Zancopé-Oliveira, R.M. Diagnosis of Histoplasmosis. Braz. J. Microbiol. 2006, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Graybill, J.R. Histoplasmosis and AIDS. J. Infect. Dis. 1988, 158, 623–626. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.C.; Khardor, N.; Najjar, A.F.; Butt, F.; Mansell, P.W.A.; Sarosi, G.A. Progressive Disseminated Histoplasmosis in Patients with Acquired Immunodeficiency Syndrome. Am. J. Med. 1988, 85, 152–158. [Google Scholar] [CrossRef]
- Joseph Wheat, L.; Connolly-Stringfield, P.A.; Baker, R.L.; Curfman, M.F.; Eads, M.E.; Israel, K.S.; Norris, S.A.; Webb, D.H.; Zeckel, M.L. Disseminated Histoplasmosis in the Acquired Immune Deficiency Syndrome: Clinical Findings, Diagnosis and Treatment, and Review of the Literature. Medicine 1990, 69, 361–374. [Google Scholar] [CrossRef]
- Wheat, L.J.; Slama, T.G.; Zeckel, M.L. Histoplasmosis in the Acquired Immune Deficiency Syndrome. Am. J. Med. 1985, 78, 203–210. [Google Scholar] [CrossRef]
- Fojtasek, M.F.; Kleiman, M.B.; Connolly-Stringfield, P.; Blair, R.; Wheat, L.J. The Histoplasma capsulatum Antigen Assay in Disseminated Histoplasmosis in Children. Pediatr. Infect. Dis. J. 1994, 13, 801–805. [Google Scholar] [CrossRef]
- Bradsher, R.W. Histoplasmosis and Blastomycosis. Clin. Infect. Dis. 1996, 22, S102–S111. [Google Scholar] [CrossRef] [Green Version]
- Goodwin, R.A.; Loyd, J.E.; Des Prez, R.M. Histoplasmosis in Normal Hosts. Medicine 1981, 60, 231–266. [Google Scholar] [CrossRef]
- Kauffman, C.A. Histoplasmosis: A Clinical and Laboratory Update. Clin. Microbiol. Rev. 2007, 115–132. [Google Scholar] [CrossRef] [Green Version]
- Wheat, L.J.; Freifeld, A.G.; Kleiman, M.B.; Baddley, J.W.; McKinsey, D.S.; Loyd, J.E.; Kauffman, C.A. Clinical Practice Guidelines for the Management of Patients with Histoplasmosis: 2007 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2007, 45, 807–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vecchiarelli, A.; Casadevall, A. Antibody-Mediated Effects against Cryptococcus neoformans: Evidence for Interdependency and Collaboration between Humoral and Cellular Immunity. Res. Immunol. 1998, 149, 321–333. [Google Scholar] [CrossRef]
- Huffnagle, G.B.; Deepe, G.S. Innate and Adaptive Determinants of Host Susceptibility to Medically Important Fungi. Curr. Opin. Microbiol. 2003, 344–350. [Google Scholar] [CrossRef]
- Montagnoli, C.; Bozza, S.; Bacci, A.; Gaziano, R.; Mosci, P.; Morschhäuser, J.; Pitzurra, L.; Kopf, M.; Cutler, J.; Romani, L. A Role for Antibodies in the Generation of Memory Antifungal Immunity. Eur. J. Immunol. 2003, 33, 1193–1204. [Google Scholar] [CrossRef] [PubMed]
- Rivera, J.; Mukherjee, J.; Weiss, L.M.; Casadevall, A. Antibody Efficacy in Murine Pulmonary Cryptococcus neoformans Infection: A Role for Nitric Oxide. J. Immunol. 2002, 168, 3419–3427. [Google Scholar] [CrossRef] [Green Version]
- Grinsell, M.; Weinhold, L.C.; Cutler, J.E.; Han, Y.; Kozel, T.R. In Vivo Clearance of Glucuronoxylomannan, the Major Capsular Polysaccharide of Cryptococcus neoformans: A Critical Role for Tissue Macrophages. J. Infect. Dis. 2001, 184, 479–487. [Google Scholar] [CrossRef] [Green Version]
- Cain, J.A.; Deepe, G.S. Evolution of the Primary Immune Response to Histoplasma capsulatum in Murine Lung. Infect. Immun. 1998, 66, 1473–1481. [Google Scholar] [CrossRef] [Green Version]
- Allendörfer, R.; Brunner, G.D.; Deepe, G.S. Complex Requirements for Nascent and Memory Immunity in Pulmonary Histoplasmosis. J. Immunol. 1999, 162, 7389–7396. [Google Scholar]
- Davies, S.F.; Khan, M.; Sarosi, G.A. Disseminated Histoplasmosis in Immunologically Suppressed Patients. Occurrence in a Nonendemic Area. Am. J. Med. 1978, 64, 94–100. [Google Scholar] [CrossRef]
- Pizzini, C.V.; Zancopé-Oliveira, R.M.; Reiss, E.; Hajjeh, R.; Kaufman, L.; Peralta, J.M. Evaluation of a Western Blot Test in an Outbreak of Acute Pulmonary Histoplasmosis. Clin. Diagn. Lab. Immunol. 1999, 6, 20–23. [Google Scholar] [CrossRef] [Green Version]
- Nosanchuk, J.D.; Gómez, B.L.; Youngchim, S.; Díez, S.; Aisen, P.; Zancopé-Oliveira, R.M.; Restrepo, A.; Casadevall, A.; Hamilton, A.J. Histoplasma capsulatum Synthesizes Melanin-like Pigments in Vitro and during Mammalian Infection. Infect. Immun. 2002, 70, 5124–5131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nosanchuk, J.D.; Steenbergen, J.N.; Shi, L.; Deepe, G.S.; Casadevall, A. Antibodies to a Cell Surface Histone-Like Protein Protect against Histoplasma capsulatum. J. Clin. Investig. 2003, 112, 1164–1175. [Google Scholar] [CrossRef] [PubMed]
- Guimaraes, A.J.; Frases, S.; Gomez, F.J.; Zancope-Oliveira, R.M.; Nosanchuk, J.D. Monoclonal Antibodies to Heat Shock Protein 60 Alter the Pathogenesis of Histoplasma capsulatum. Infect. Immun. 2009, 77, 1357–1367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guimaräes, A.J.; Hamilton, A.J.; de Guedes, H.L.M.; Nosanchuk, J.D.; Zancopé-Oliveira, R.M. Biological Function and Molecular Mapping of M Antigen in Yeast Phase of Histoplasma capsulatum. PLoS ONE 2008, 3. [Google Scholar] [CrossRef] [Green Version]
- Lopes, L.C.L.; Guimarães, A.J.; De Cerqueira, M.D.; Gómez, B.L.; Nosanchuk, J.D. A Histoplasma capsulatum-Specific IgG1 Isotype Monoclonal Antibody, H1C, to a 70-Kilodalton Cell Surface Protein Is Not Protective in Murine Histoplasmosis. Clin. Vaccine Immunol. 2010, 17, 1155–1158. [Google Scholar] [CrossRef] [Green Version]
- Scheckelhoff, M.; Deepe, G.S. The Protective Immune Response to Heat Shock Protein 60 of Histoplasma capsulatum Is Mediated by a Subset of Vβ8.1/8.2 + T Cells. J. Immunol. 2002, 169, 5818–5826. [Google Scholar] [CrossRef]
- Deepe, G.S.; Gibbons, R.S. Cellular and Molecular Regulation of Vaccination with Heat Shock Protein 60 from Histoplasma capsulatum. Infect. Immun. 2002, 70, 3759–3767. [Google Scholar] [CrossRef] [Green Version]
- Martinez, L.R.; Mihu, M.R.; Gácser, A.; Santambrogio, L.; Nosanchuk, J.D. Methamphetamine Enhances Histoplasmosis by Immunosuppression of the Host. J. Infect. Dis. 2009, 200, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Gomez, B.L.; Figueroa, J.I.; Hamilton, A.J.; Ortiz, B.L.; Robledo, M.A.; Restrepo, A.; Hay, R.J. Development of a Novel Antigen Detection Test for Histoplasmosis. J. Clin. Microbiol. 1997, 35, 2618–2622. [Google Scholar] [CrossRef] [Green Version]
- Gómez, B.L.; Figueroa, J.I.; Hamilton, A.J.; Diez, S.; Rojas, M.; Tobón, A.; Restrepo, A.; Hay, R.J. Detection of the 70-Kilodalton Histoplasma capsulatum Antigen in Serum of Histoplasmosis Patients: Correlation between Antigenemia and Therapy during Follow-Up. J. Clin. Microbiol. 1999, 37, 675–680. [Google Scholar] [CrossRef] [Green Version]
- Santos, G.C.D.O.; Vasconcelos, C.C.; Lopes, A.J.O.; dos Cartágenes, M.; Filho, A.K.D.B.; do Nascimento, F.R.F.; Ramos, R.M.; Pires, E.R.R.B.; de Andrade, M.S.; Rocha, F.M.G.; et al. Candida Infections and Therapeutic Strategies: Mechanisms of Action for Traditional and Alternative Agents. Front. Microbiol. 2018. [Google Scholar] [CrossRef]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 62, e1–e50. [Google Scholar] [CrossRef] [Green Version]
- Beardsley, J.; Halliday, C.L.; Chen, S.C.A.; Sorrell, T.C. Responding to the Emergence of Antifungal Drug Resistance: Perspectives from the Bench and the Bedside. Future Microbiol. 2018, 1175–1191. [Google Scholar] [CrossRef] [Green Version]
- Soll, D.R.; Daniels, K.J. Plasticity of Candida Albicans Biofilms. Microbiol. Mol. Biol. Rev. 2016, 80, 565–595. [Google Scholar] [CrossRef] [Green Version]
- Castanheira, M.; Deshpande, L.M.; Davis, A.P.; Rhomberg, P.R.; Pfaller, M.A. Monitoring Antifungal Resistance in a Global Collection of Invasive Yeasts and Molds: Application of CLSI Epidemiological Cutoff Values and Whole-Genome Sequencing Analysis for Detection of Azole Resistance in Candida Albicans. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [Green Version]
- Nett, J.E.; Andes, D.R. Antifungal Agents: Spectrum of Activity, Pharmacology, and Clinical Indications. Infect. Dis. Clin. N. Am. 2016, 30, 51–83. [Google Scholar] [CrossRef]
- Free, S.J. Fungal Cell Wall Organization and Biosynthesis. Adv. Genet. 2013, 81, 33–82. [Google Scholar] [CrossRef]
- Sui, X.; Yan, L.; Jiang, Y.Y. The Vaccines and Antibodies Associated with Als3p for Treatment of Candida Albicans Infections. Vaccine 2017, 5786–5793. [Google Scholar] [CrossRef]
- Brena, S.; Cabezas-Olcoz, J.; Moragues, M.D.; Fernández De Larrinoa, I.; Domínguez, A.; Quindós, G.; Pontón, J. Fungicidal Monoclonal Antibody C7 Interferes with Iron Acquisition in Candida Albicans. Antimicrob. Agents Chemother. 2011, 55, 3156–3163. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, M.J.; Schneider, J.; Moragues, M.D.; Martínez-Conde, R.; Pontón, J.; Aguirre, J.M. Cross-Reactivity between Candida Albicans and Oral Squamous Cell Carcinoma Revealed by Monoclonal Antibody C7. Anticancer Res. 2007, 27, 3639–3643. [Google Scholar]
- Arruda, D.C.; Santos, L.C.P.; Melo, F.M.; Pereira, F.V.; Figueiredo, C.R.; Matsuo, A.L.; Mortara, R.A.; Juliano, M.A.; Rodrigues, E.G.; Dobroff, A.S.; et al. β-Actin-Binding Complementarity-Determining Region 2 of Variable Heavy Chain from Monoclonal Antibody C7 Induces Apoptosis in Several Human Tumor Cells and Is Protective against Metastatic Melanoma. J. Biol. Chem. 2012, 287, 14912–14922. [Google Scholar] [CrossRef] [Green Version]
- Moragues, M.D.; Omaetxebarria, M.J.; Elguezabal, N.; Sevilla, M.J.; Conti, S.; Polonelli, L.; Pontón, J. A Monoclonal Antibody Directed against a Candida Albicans Cell Wall Mannoprotein Exerts Three Anti-C. Albicans Activities. Infect. Immun. 2003, 71, 5273–5279. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Uppuluri, P.; Mamouei, Z.; Alqarihi, A.; Elhassan, H.; French, S.; Lockhart, S.R.; Chiller, T.; Edwards, J.E.; Ibrahim, A.S. The NDV-3A Vaccine Protects Mice from Multidrug Resistant Candida Auris Infection. PLoS Pathog. 2019, 15. [Google Scholar] [CrossRef] [Green Version]
- Matthews, R.C.; Rigg, G.; Hodgetts, S.; Carter, T.; Chapman, C.; Gregory, C.; Illidge, C.; Burnie, J. Preclinical Assessment of the Efficacy of Mycograb, a Human Recombinant Antibody against Fungal HSP90. Antimicrob. Agents Chemother. 2003, 47, 2208–2216. [Google Scholar] [CrossRef] [Green Version]
- Bugli, F.; Cacaci, M.; Martini, C.; Torelli, R.; Posteraro, B.; Sanguinetti, M.; Paroni Sterbini, F. Human Monoclonal Antibody-Based Therapy in the Treatment of Invasive Candidiasis. Clin. Dev. Immunol. 2013, 2013, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Han, Y. Efficacy of Combination Immunotherapy of IgM MAb B6.1 and Amphotericin B against Disseminated Candidiasis. Int. Immunopharmacol. 2010, 10, 1526–1531. [Google Scholar] [CrossRef]
- Lee, J.H.; Jang, E.C.; Han, Y. Combination Immunotherapy of MAb B6.1 with Fluconazole Augments Therapeutic Effect to Disseminated Candidiasis. Arch. Pharm. Res. 2011, 34, 399–405. [Google Scholar] [CrossRef]
- Sevilla, M.J.; Robledo, B.; Rementeria, A.; Moragues, M.D.; Pontón, J. A Fungicidal Monoclonal Antibody Protects against Murine Invasive Candidiasis. Infect. Immun. 2006, 74, 3042–3045. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.H.; Yoon, M.S.; Chun, W.H. The Effects of Monoclonal Antibodies against IC3b Receptors in Mice with Experimentally Induced Disseminated Candidiasis. Immunology 1997, 92, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Enoch, D.A.; Yang, H.; Aliyu, S.H.; Micallef, C. The Changing Epidemiology of Invasive Fungal Infections. Methods Mol. Biol. 2017, 1508, 17–65. [Google Scholar] [CrossRef]
- Sugui, J.A.; Kwon-Chung, K.J.; Juvvadi, P.R.; Latgé, J.P.; Steinbach, W.J. Aspergillus Fumigatus and Related Species. Cold Spring Harb. Perspect. Med. 2015, 5. [Google Scholar] [CrossRef] [Green Version]
- Steinbach, W.J.; Marr, K.A.; Anaissie, E.J.; Azie, N.; Quan, S.P.; Meier-Kriesche, H.U.; Apewokin, S.; Horn, D.L. Clinical Epidemiology of 960 Patients with Invasive Aspergillosis from the PATH Alliance Registry. J. Infect. 2012, 65, 453–464. [Google Scholar] [CrossRef]
- Brenier-Pinchart, M.P.; Lebeau, B.; Quesada, J.L.; Mallaret, M.R.; Borel, J.L.; Mollard, A.; Garban, F.; Brion, J.P.; Molina, L.; Bosson, J.L.; et al. Influence of Internal and Outdoor Factors on Filamentous Fungal Flora in Hematology Wards. Am. J. Infect. Control 2009, 37, 631–637. [Google Scholar] [CrossRef]
- Lee, L.D.; Hachem, R.Y.; Berkheiser, M.; Hackett, B.; Jiang, Y.; Raad, I.I. Hospital Environment and Invasive Aspergillosis in Patients with Hematologic Malignancy. Am. J. Infect. Control 2012, 40, 247–249. [Google Scholar] [CrossRef]
- Warris, A.; Verweij, P.E. Clinical Implications of Environmental Sources for Aspergillus. Med. Mycol. 2005, 43, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Garnaud, C.; Brenier-Pinchart, M.P.; Thiebaut-Bertrand, A.; Hamidfar, R.; Quesada, J.L.; Bosseray, A.; Lebeau, B.; Mallaret, M.R.; Maubon, D.; Saint-Raymond, C.; et al. Seven-Year Surveillance of Nosocomial Invasive Aspergillosis in a French University Hospital. J. Infect. 2012, 65, 559–567. [Google Scholar] [CrossRef]
- Lass-Flörl, C.; Griff, K.; Mayr, A.; Petzer, A.; Gastl, G.; Bonatti, H.; Freund, M.; Kropshofer, G.; Dierich, M.P.; Nachbaur, D. Epidemiology and Outcome of Infections Due to Aspergillus Terreus: 10-Year Single Centre Experience. Br. J. Haematol. 2005, 131, 201–207. [Google Scholar] [CrossRef]
- Hachem, R.Y.; Kontoyiannis, D.P.; Boktour, M.R.; Afif, C.; Cooksley, C.; Bodey, G.P.; Chatzinikolaou, I.; Perego, C.; Kantarjian, H.M.; Raad, I.J. Aspergillus Terreus: An Emerging Amphotericin B-Resistant Oppurtunistic Mold in Patients with Hematologic Malignancies. Cancer 2004, 1594–1600. [Google Scholar] [CrossRef]
- Herbrecht, R.; Denning, D.W.; Patterson, T.F.; Bennett, J.E.; Greene, R.E.; Oestmann, J.W.; Kern, W.V.; Marr, K.A.; Ribaud, P.; Lortholary, O.; et al. Voriconazole versus Amphotericin B for Primary Therapy of Invasive Aspergillosis. N. Engl. J. Med. 2002, 347, 408–415. [Google Scholar] [CrossRef] [Green Version]
- Bitar, D.; Lortholary, O.; Le Strat, Y.; Nicolau, J.; Coignard, B.; Tattevin, P.; Che, D.; Dromer, F. Population-Based Analysis of Invasive Fungal Infections, France, 2001–2010. Emerg. Infect. Dis. 2014, 20, 1149–1155. [Google Scholar] [CrossRef]
- Lass-Flörl, C.; Roilides, E.; Löffler, J.; Wilflingseder, D.; Romani, L. Minireview: Host Defence in Invasive Aspergillosis. Mycoses 2013, 56, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Casadevall, A.; Feldmesser, M.; Pirofski, L. Induced Humoral Immunity and Vaccination against Major Human Fungal Pathogens. Curr. Opin. Microbiol. 2002, 5, 386–391. [Google Scholar] [CrossRef]
- Blanco, J.L.; Garcia, M.E. Immune Response to Fungal Infections. Vet. Immunol. Immunopathol. 2008, 125, 47–70. [Google Scholar] [CrossRef] [PubMed]
- Van De Veerdonk, F.L.; Gresnigt, M.S.; Romani, L.; Netea, M.G.; Latgé, J.P. Aspergillus Fumigatus Morphology and Dynamic Host Interactions. Nat. Rev. Microbiol. 2017, 661–674. [Google Scholar] [CrossRef] [PubMed]
- Shukla, P.K.; Kumar, A. A Monoclonal Antibody against Glycoproteins of Aspergillus Fumigatus Shows Anti-Adhesive Potential. Microb. Pathog. 2015, 79, 24–30. [Google Scholar] [CrossRef]
- Chaturvedi, A.K.; Kavishwar, A.; Keshava, G.B.S.; Shukla, P.K. Monoclonal Immunogiobulin G1 Directed against Aspergillus Fumigatus Cell Wall Glycoprotein Protects against Experimental Murine Aspergillosis. Clin. Diagn. Lab. Immunol. 2005, 12, 1063–1068. [Google Scholar] [CrossRef] [Green Version]
- Chauvin, D.; Hust, M.; Schütte, M.; Chesnay, A.; Parent, C.; Moreira, G.M.S.G.; Arroyo, J.; Sanz, A.B.; Pugnière, M.; Martineau, P.; et al. Targeting Aspergillus Fumigatus Crf Transglycosylases with Neutralizing Antibody Is Relevant but Not Sufficient to Erase Fungal Burden in a Neutropenic Rat Model. Front. Microbiol. 2019, 10. [Google Scholar] [CrossRef]
- Cenci, E.; Mencacci, A.; Spreca, A.; Montagnoli, C.; Bacci, A.; Perruccio, K.; Velardi, A.; Magliani, W.; Conti, S.; Polonelli, L.; et al. Protection of Killer Antiidiotypic Antibodies against Early Invasive Aspergillosis in a Murine Model of Allogeneic T-Cell-Depleted Bone Marrow Transplantation. Infect. Immun. 2002, 70, 2375–2382. [Google Scholar] [CrossRef] [Green Version]
- Appel, E.; Vallon-Eberhard, A.; Rabinkov, A.; Brenner, O.; Shin, I.; Sasson, K.; Shadkchan, Y.; Osherov, N.; Jung, S.; Mirelman, D. Therapy of Murine Pulmonary Aspergillosis with Antibody-Alliinase Conjugates and Alliin. Antimicrob. Agents Chemother. 2010, 54, 898–906. [Google Scholar] [CrossRef] [Green Version]
- Yadav, R.K.; Shukla, P.K. A Novel Monoclonal Antibody against Enolase Antigen of Aspergillus Fumigatus Protects Experimental Aspergillosis in Mice. FEMS Microbiol. Lett. 2019, 366. [Google Scholar] [CrossRef]
- Stie, J.; Bruni, G.; Fox, D. Surface-Associated Plasminogen Binding of Cryptococcus neoformans Promotes Extracellular Matrix Invasion. PLoS ONE 2009, 4, e5780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frosco, M.; Fahed, C.; Chase, T.; Macmillan, J.D. Inhibition of Aspergillus Fumigatus Elastase with Monoclonal Antibodies Produced by Using Denatured Elastase as an Immunogent. Infect. Immun. 1992, 60, 735–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frosco, M.B.; Chase, T.; Macmillan, J.D. The Effect of Elastase-Specific Monoclonal and Polyclonal Antibodies on the Virulence of Aspergillus Fumigatus in Immunocompromised Mice. Mycopathologia 1994, 125, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, A.K.; Kumar, R.; Kumar, A.; Shukla, P.K. A Monoclonal IgM Directed against Immunodominant Catalase B of Cell Wall of Aspergillus Fumigatus Exerts Anti-A. Fumigatus Activities. Mycoses 2009, 52, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Wharton, R.E.; Stefanov, E.K.; King, R.G.; Kearney, J.F. Antibodies Generated against Streptococci Protect in a Mouse Model of Disseminated Aspergillosis. J. Immunol. 2015, 194, 4387–4396. [Google Scholar] [CrossRef] [PubMed]
- Polonelli, L.; Séguy, N.; Conti, S.; Gerloni, M.; Bertolotti, D.; Cantelli, C.; Magliani, W.; Cailliez, J.C. Monoclonal Yeast Killer Toxin-Like Candidacidal Anti-Idiotypic Antibodies. Clin. Diagn. Lab. Immunol. 1997, 4, 142–146. [Google Scholar] [CrossRef] [Green Version]
- Donovan, F.M.; Shubitz, L.; Powell, D.; Orbach, M.; Frelinger, J.; Galgiani, J.N. Early Events in Coccidioidomycosis. Clin. Microbiol. Rev. 2020, 33. [Google Scholar] [CrossRef]
- Cox, R.A.; Magee, D.M. Coccidioidomycosis: Host Response and Vaccine Development. Clin. Microbiol. Rev. 2004, 804–839. [Google Scholar] [CrossRef] [Green Version]
- Whiston, E.; Taylor, J.W. Genomics in Coccidioides: Insights into Evolution, Ecology, and Pathogenesis. J. Music Ther. 2015, 149–155. [Google Scholar] [CrossRef]
- Polonelli, L.; Casadevall, A.; Han, Y.; Bernardis, F.; Kirkland, T.N.; Matthews, R.C.; Adriani, D.; Boccanera, M.; Burnie, J.P.; Cassone, A.; et al. The Efficacy of Acquired Humoral and Cellular Immunity in the Prevention and Therapy of Experimental Fungal Infections. Med. Mycol. 2000, 38, 281–292. [Google Scholar] [CrossRef] [Green Version]
- Magee, D.M.; Friedberg, R.L.; Woitaske, M.D.; Johnston, S.A.; Cox, R.A. Role of B Cells in Vaccine-Induced Immunity against Coccidioidomycosis. Infect. Immun. 2005, 73, 7011–7013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hung, C.Y.; Gonzalez, A.; Wüthrich, M.; Klein, B.S.; Cole, G.T. Vaccine Immunity to Coccidioidomycosis Occurs by Early Activation of Three Signal Pathways of T Helper Cell Response (Th1, Th2, and Th17). Infect. Immun. 2011, 79, 4511–4522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eddens, T.; Kolls, J.K. Pathological and Protective Immunity to Pneumocystis Infection. Semin. Immunopathol. 2015, 153–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldman, D.L. The Other Side of the Coin: Anti-Inflammatory Antibody Therapy for Infectious Diseases. Infect. Immun. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoy, Z.; Wright, T.W.; Elliott, M.; Malone, J.; Bhagwat, S.; Wang, J.; Gigliotti, F. Combination Immunotherapy with Passive Antibody and Sulfasalazine Accelerates Fungal Clearance and Promotes the Resolution of Pneumocystis-Associated Immunopathogenesis. Infect. Immun. 2020. [Google Scholar] [CrossRef] [Green Version]
- Truong, J.; Ashurst, J.V. Pneumocystis (Carinii) Jiroveci Pneumonia; StatPearls Publishing: Treasure Island, FL, USA, 2019. [Google Scholar]
- Salzer, H.J.F.; Schäfer, G.; Hoenigl, M.; Günther, G.; Hoffmann, C.; Kalsdorf, B.; Alanio, A.; Lange, C. Clinical, Diagnostic, and Treatment Disparities between HIV-Infected and Non-HIV-Infected Immunocompromised Patients with Pneumocystis Jirovecii Pneumonia. Respiration 2018, 52–65. [Google Scholar] [CrossRef]
- Wieruszewski, P.M.; Barreto, J.N.; Frazee, E.; Daniels, C.E.; Tosh, P.K.; Dierkhising, R.A.; Mara, K.C.; Limper, A.H. Early Corticosteroids for Pneumocystis Pneumonia in Adults Without HIV Are Not Associated With Better Outcome. Chest 2018, 154, 636–644. [Google Scholar] [CrossRef]
- Wieruszewski, P.M.; Barreto, E.F.; Barreto, J.N.; Yadav, H.; Tosh, P.K.; Mara, K.C.; Limper, A.H. Preadmission Corticosteroid Therapy and the Risk of Respiratory Failure in Adults Without HIV Presenting With Pneumocystis Pneumonia. J. Intensive Care Med. 2019. [Google Scholar] [CrossRef]
- Fujikura, Y.; Manabe, T.; Kawana, A.; Kohno, S. Tratamiento Complementario Con Corticoides En La Neumonía Por Pneumocystis Jirovecii En Pacientes No Infectados Por VIH: Revisión Sistemática y Metanálisis de Los Estudios Observacionales. Arch. Bronconeumol. 2017, 53, 55–61. [Google Scholar] [CrossRef]
- Lemiale, V.; Debrumetz, A.; Delannoy, A.; Alberti, C.; Azoulay, E. Adjunctive Steroid in HIV-Negative Patients with Severe Pneumocystis Pneumonia. Respir. Res. 2013, 14, 87. [Google Scholar] [CrossRef] [Green Version]
- Walzer, P.D.; Evans, H.E.R.; Copas, A.J.; Edwards, S.G.; Grant, A.D.; Miller, R.F. Early Predictors of Mortality from Pneumocystis Jirovecii Pneumonia in HIV-Infected Patients: 1985–2006. Clin. Infect. Dis. 2008, 46, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Kolls, J.K. An Emerging Role of B Cell Immunity in Susceptibility to Pneumocystis Pneumonia. Am. J. Respir. Cell Mol. Biol. 2017, 279–280. [Google Scholar] [CrossRef] [PubMed]
- Wei, K.C.; Sy, C.; Wu, S.Y.; Chuang, T.J.; Huang, W.C.; Lai, P.C. Pneumocystis Jirovecii Pneumonia in HIV-Uninfected, Rituximab Treated Non-Hodgkin Lymphoma Patients. Sci. Rep. 2018, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Elsegeiny, W.; Eddens, T.; Chen, K.; Kolls, J.K. Anti-CD20 Antibody Therapy and Susceptibility to Pneumocystis Pneumonia. Infect. Immun. 2015, 83, 2043–2052. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Huang, M.; Wang, J.; Xue, F.; Hong, C.; Guo, Z.; Gu, J. Genotyping of Pneumocystis Jirovecii Isolates from Human Immunodeficiency Virus-Negative Patients in China. Infect. Genet. Evol. 2015, 31, 209–215. [Google Scholar] [CrossRef]
- Barry, S.M.; Lipman, M.C.I.; Deery, A.R.; Johnson, M.A.; Janossy, G. Immune Reconstitution Pneumonitis Following Pneumocystis carinii Pneumonia in HIV-Infected Subjects. HIV Med. 2002, 3, 207–211. [Google Scholar] [CrossRef]
- Koval, C.E.; Gigliotti, F.; Nevins, D.; Demeter, L.M. Immune Reconstitution Syndrome after Successful Treatment of Pneumocystis carinii Pneumonia in a Man with Human Immunodeficiency Virus Type 1 Infection. Clin. Infect. Dis. 2002, 35, 491–493. [Google Scholar] [CrossRef] [Green Version]
- Bellamy, R.J. HIV: Treating Pneumocystis Pneumonia (PCP). BMJ Clin. Evid. 2008, 7, 2501. [Google Scholar]
- Helweg-Larsen, J.; Benfield, T.; Atzori, C.; Miller, R.F. Clinical Efficacy of First- and Second-Line Treatments for HIV-Associated Pneumocystis Jirovecii Pneumonia: A Tri-Centre Cohort Study. J. Antimicrob. Chemother. 2009, 64, 1282–1290. [Google Scholar] [CrossRef] [Green Version]
- Jick, H. Adverse Reactions to Trimethoprim-Sulfamethoxazole in Hospitalized Patients. Rev. Infect. Dis. 1982, 4, 426–428. [Google Scholar] [CrossRef]
- Phillips, E.; Mallal, S. Drug Hypersensitivity in HIV. Curr. Opin. Allergy Clin. Immunol. 2007, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Limper, A.H.; Offord, K.P.; Smith, T.F.; Martin, W.J. Pneumocystis carinii Pneumonia: Differences in Lung Parasite Number and Inflammation in Patients with and without AIDS. Am. Rev. Respir. Dis. 1989, 140, 1204–1209. [Google Scholar] [CrossRef] [PubMed]
- Wright, T.W.; Gigliotti, F.; Finkelstein, J.N.; McBride, J.T.; An, C.L.; Harmsen, A.G. Immune-Mediated Inflammation Directly Impairs Pulmonary Function, Contributing to the Pathogenesis of Pneumocystis carinii Pneumonia. J. Clin. Investig. 1999, 104, 1307–1317. [Google Scholar] [CrossRef] [PubMed]
- Gigliotti, F.; Wright, T.W. Immunopathogenesis of Pneumocystis carinii Pneumonia. Exp. Rev. Mol. Med. 2005, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Shellito, J.E.; Marrero, L.; Zhong, Q.; Julian, S.; Ye, P.; Wallace, V.; Schwarzenberger, P.; Kolls, J.K. CD4+ T Cell-Independent Vaccination against Pneumocystis carinii in Mice. J. Clin. Investig. 2001, 108, 1469–1474. [Google Scholar] [CrossRef]
- Wang, J.; Gigliotti, F.; Bhagwat, S.P.; George, T.C.; Wright, T.W. Immune Modulation with Sulfasalazine Attenuates Immunopathogenesis but Enhances Macrophage-Mediated Fungal Clearance during Pneumocystis Pneumonia. PLoS Pathog. 2010, 6, e1001058. [Google Scholar] [CrossRef] [Green Version]
- Wells, J.; Haidaris, C.G.; Wright, T.W.; Gigliotti, F. Active Immunization against Pneumocystis carinii with a Recombinant P. Carinii Antigen. Infect. Immun. 2006, 74, 2446–2448. [Google Scholar] [CrossRef] [Green Version]
- Shelnutt, L.M.; Kaneene, J.B.; Carneiro, P.A.M.; Langlois, D.K. Prevalence, Distribution, and Risk Factors for Canine Blastomycosis in Michigan, USA. Med. Mycol. 2019. [Google Scholar] [CrossRef]
- McBride, J.A.; Gauthier, G.M.; Klein, B.S. Clinical Manifestations and Treatment of Blastomycosis. Clin. Chest Med. 2017, 435–449. [Google Scholar] [CrossRef]
- Schwartz, I.S.; Kauffman, C.A. Blastomycosis. Semin. Respir. Crit. Care Med. 2020, 41, 31–41. [Google Scholar] [CrossRef]
- Helal, M.; Allen, K.J.H.; van Dijk, B.; Nosanchuk, J.D.; Snead, E.; Dadachova, E. Radioimmunotherapy of Blastomycosis in a Mouse Model With a (1→3)-β-Glucans Targeting Antibody. Front. Microbiol. 2020, 11, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dos Santos, M.L.; Quintilio, W.; Manieri, T.M.; Tsuruta, L.R.; Moro, A.M. Advances and Challenges in Therapeutic Monoclonal Antibodies Drug Development. Braz. J. Pharm. Sci. 2018. [Google Scholar] [CrossRef]
- Strohl, W.R. Current Progress in Innovative Engineered Antibodies. Protein and Cell 2018, 86–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Embleton, N.; Harkensee, C.; Mckean, M. Palivizumab for Preterm Infants. Is It Worth It? Arch. Dis. Child. Fetal Neonatal Ed. 2005, 90, F286–F289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, C.W.; Morris, S. Approval of Raxibacumab for the Treatment of Inhalation Anthrax under the US Food and Drug Administration “Animal Rule”. Front. Microbiol. 2015, 6, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Greig, S.L. Obiltoxaximab: First Global Approval. Drugs 2016, 76, 823–830. [Google Scholar] [CrossRef]
- Lee, Y.; Lim, W.I.; Bloom, C.I.; Moore, S.; Chung, E.; Marzella, N. Bezlotoxumab (Zinplava) for Clostridium Difficile Infection: The First Monoclonal Antibody Approved to Prevent the Recurrence of a Bacterial Infection. Pharm. Ther. 2017, 42, 735–738. [Google Scholar]
- Bryan, R.A.; Guimaraes, A.J.; Hopcraft, S.; Jiang, Z.; Bonilla, K.; Morgenstern, A.; Bruchertseifer, F.; Del Poeta, M.; Torosantucci, A.; Cassone, A.; et al. Toward Developing a Universal Treatment for Fungal Disease Using Radioimmunotherapy Targeting Common Fungal Antigens. Mycopathologia 2012, 173, 463–471. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boniche, C.; Rossi, S.A.; Kischkel, B.; Vieira Barbalho, F.; Nogueira D’Aurea Moura, Á.; Nosanchuk, J.D.; Travassos, L.R.; Pelleschi Taborda, C. Immunotherapy against Systemic Fungal Infections Based on Monoclonal Antibodies. J. Fungi 2020, 6, 31. https://doi.org/10.3390/jof6010031
Boniche C, Rossi SA, Kischkel B, Vieira Barbalho F, Nogueira D’Aurea Moura Á, Nosanchuk JD, Travassos LR, Pelleschi Taborda C. Immunotherapy against Systemic Fungal Infections Based on Monoclonal Antibodies. Journal of Fungi. 2020; 6(1):31. https://doi.org/10.3390/jof6010031
Chicago/Turabian StyleBoniche, Camila, Suélen Andreia Rossi, Brenda Kischkel, Filipe Vieira Barbalho, Ágata Nogueira D’Aurea Moura, Joshua D. Nosanchuk, Luiz R. Travassos, and Carlos Pelleschi Taborda. 2020. "Immunotherapy against Systemic Fungal Infections Based on Monoclonal Antibodies" Journal of Fungi 6, no. 1: 31. https://doi.org/10.3390/jof6010031
APA StyleBoniche, C., Rossi, S. A., Kischkel, B., Vieira Barbalho, F., Nogueira D’Aurea Moura, Á., Nosanchuk, J. D., Travassos, L. R., & Pelleschi Taborda, C. (2020). Immunotherapy against Systemic Fungal Infections Based on Monoclonal Antibodies. Journal of Fungi, 6(1), 31. https://doi.org/10.3390/jof6010031