SUMOylation in Human Pathogenic Fungi: Role in Physiology and Virulence
Abstract
:1. Introduction
2. SUMOylation and Ubiquitination
3. SUMOylation in Saccharomyces cerevisiae
4. SUMOylation in Human Pathogenic Fungi
5. SUMOylation in A. nidulans and A. flavus
6. SUMOylation in Candida albicans and Candida glabrata
7. SUMOylated Target Proteins
8. SUMOylation and Stress Response
9. Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Johnson, E.S. Protein modification by SUMO. Annu. Rev. Biochem. 2004, 73, 355–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flotho, A.; Melchior, F. Sumoylation: A regulatory protein modification in health and disease. Annu. Rev. Biochem. 2013, 82, 357–385. [Google Scholar] [CrossRef] [PubMed]
- Pichler, A.; Fatouros, C.; Lee, H.; Eisenhardt, N. SUMO conjugation—A mechanistic view. Biomol. Concepts 2017, 8, 13–36. [Google Scholar] [CrossRef] [PubMed]
- Geiss-Friedlander, R.; Melchior, F. Concepts in sumoylation: A decade on. Nat. Rev. Mol. Cell Biol. 2007, 8, 947–956. [Google Scholar] [CrossRef]
- Hay, R.T. SUMO: A history of modification. Mol. Cell 2005, 18, 1–12. [Google Scholar] [CrossRef]
- Song, J.; Durrin, L.K.; Wilkinson, T.A.; Krontiris, T.G.; Chen, Y. Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc. Natl. Acad. Sci. 2004, 101, 14373–14378. [Google Scholar] [CrossRef] [Green Version]
- Kerscher, O. SUMO junction—What’s your function? EMBO Rep. 2007, 8, 550–555. [Google Scholar] [CrossRef] [Green Version]
- Palancade, B.; Doye, V. Sumoylating and desumoylating enzymes at nuclear pores: Underpinning their unexpected duties? Trends Cell Biol. 2008, 18, 174–183. [Google Scholar] [CrossRef]
- Zhou, W.; Ryan, J.J.; Zhou, H. Global analyses of sumoylated proteins in Saccharomyces cerevisiae. Induction of protein sumoylation by cellular stresses. J. Biol. Chem. 2004, 279, 32262–32268. [Google Scholar] [CrossRef] [Green Version]
- Golebiowski, F.; Matic, I.; Tatham, M.H.; Cole, C.; Yin, Y.; Nakamura, A.; Cox, J.; Barton, G.J.; Mann, M.; Hay, R.T. System-wide changes to SUMO modifications in response to heat shock. Sci. Signal. 2009, 2, ra24. [Google Scholar] [CrossRef] [Green Version]
- Leach, M.D.; Stead, D.A.; Argo, E.; Brown, A.J.P. Identification of sumoylation targets, combined with inactivation of SMT3, reveals the impact of sumoylation upon growth, morphology, and stress resistance in the pathogen Candida albicans. Mol. Biol. Cell 2011, 22, 687–702. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Henley, J.M. Wrestling with stress: Roles of protein SUMOylation and deSUMOylation in cell stress response. IUBMB Life 2014, 66, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Gujjula, R.; Veeraiah, S.; Kumar, K.; Thakur, S.S.; Mishra, K.; Kaur, R. Identification of components of the SUMOylation machinery in Candida glabrata. J. Biol. Chem. 2016, 291, 19573–19589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, V.G.; Heaton, P.R. Ubiquitin proteolytic system: Focus on SUMO. Expert Rev. Proteomics 2008, 5, 121–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pickart, C.M.; Eddins, M.J. Ubiquitin: Structures, functions, mechanisms. Biochim. Biophys. Acta 2004, 1695, 55–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikeda, F.; Dikic, I. Atypical ubiquitin chains: New molecular signals. “Protein Modifications: Beyond the Usual Suspects” Review Series. EMBO Rep. 2008, 9, 536–542. [Google Scholar] [CrossRef] [Green Version]
- Tatham, M.H.; Jaffray, E.; Vaughan, O.A.; Desterro, J.M.P.; Botting, C.H.; Naismith, J.H.; Hay, R.T. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J. Biol. Chem. 2001, 276, 35368–35374. [Google Scholar] [CrossRef] [Green Version]
- Nie, M.; Boddy, M.N. Cooperativity of the SUMO and Ubiquitin pathways in genome stability. Biomolecules 2016, 6, 14. [Google Scholar] [CrossRef]
- Citro, S.; Chiocca, S. Listeria monocytogenes: A bacterial pathogen to hit on the SUMO pathway. Cell Res. 2010, 20, 738–740. [Google Scholar] [CrossRef] [Green Version]
- Wimmer, P.; Schreiner, S.; Dobner, T. Human pathogens and the host cell SUMOylation system. J. Virol. 2012, 86, 642–654. [Google Scholar] [CrossRef] [Green Version]
- Srikanth, C.V.; Verma, S. Sumoylation as an integral mechanism in bacterial infection and disease progression. Adv. Exp. Med. Biol. 2017, 963, 389–408. [Google Scholar] [PubMed]
- Wong, K.H.; Todd, R.B.; Oakley, B.R.; Oakley, C.E.; Hynes, M.J.; Davis, M.A. Sumoylation in Aspergillus nidulans: SumO inactivation, overexpression and live-cell imaging. Fungal Genet. Biol. 2008, 45, 728–737. [Google Scholar] [CrossRef] [Green Version]
- Nie, X.; Yu, S.; Qiu, M.; Wang, X.; Wang, Y.; Bai, Y.; Zhang, F.; Wang, S. Aspergillus flavus SUMO contributes to fungal virulence and toxin attributes. J. Agric. Food Chem. 2016, 64, 6772–6782. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Nishide, J.; Okazaki, K.; Kato, H.; Niwa, O.; Nakagawa, T.; Matsuda, H.; Kawamukai, M.; Murakami, Y. Characterization of a fission yeast SUMO-1 homologue, Pmt3p, required for multiple nuclear events, including the control of telomere length and chromosome segregation. Mol. Cell. Biol. 1999, 19, 8660–8672. [Google Scholar] [CrossRef] [Green Version]
- Hannich, J.T.; Lewis, A.; Kroetz, M.B.; Li, S.J.; Heide, H.; Emili, A.; Hochstrasser, M. Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J. Biol. Chem. 2005, 280, 4102–4110. [Google Scholar] [CrossRef] [Green Version]
- Jalal, D.; Chalissery, J.; Hassan, A.H. Genome maintenance in Saccharomyces cerevisiae: The role of SUMO and SUMO-targeted ubiquitin ligases. Nucleic Acids Res. 2017, 45, 2242–2261. [Google Scholar]
- Dohmen, R.J.; Stappen, R.; McGrath, J.P.; Forrova, H.; Kolarov, J.; Goffeau, A.; Varshavsky, A. An essential yeast gene encoding a homolog of ubiquitin-activating enzyme. J. Biol. Chem. 1995, 270, 18099–18109. [Google Scholar] [CrossRef] [Green Version]
- Johnson, E.S.; Schwienhorst, I.; Dohmen, R.J.; Blobel, G. The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J. 1997, 16, 5509–5519. [Google Scholar] [CrossRef] [Green Version]
- Johnson, E.S.; Gupta, A.A. An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 2001, 106, 735–744. [Google Scholar] [CrossRef] [Green Version]
- Johnson, E.S.; Blobel, G. Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J. Biol. Chem. 1997, 272, 26799–26802. [Google Scholar] [CrossRef] [Green Version]
- Li, S.J.; Hochstrasser, M. A new protease required for cell-cycle progression in yeast. Nature 1999, 398, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-J.; Hochstrasser, M. The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. Mol. Cell. Biol. 2000, 20, 2367–2377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bylebyl, G.R.; Belichenko, I.; Johnson, E.S. The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast. J. Biol. Chem. 2003, 278, 44113–44120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, C.H.; Lo, Y.H.; Liang, S.S.; Ti, S.C.; Lin, F.M.; Yeh, C.H.; Huang, H.Y.; Wang, T.F. SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae. Genes Dev. 2006, 20, 2067–2081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoch, N.C.; Santos, R.S.; Rosa, R.M.; Machado, R.M.; Saffi, J.; Brendel, M.; Henriques, J.A.P. Allelism of Saccharomyces cerevisiae gene PSO10, involved in error-prone repair of psoralen-induced DNA damage, with SUMO ligase-encoding MMS21. Curr. Genet. 2008, 53, 361–371. [Google Scholar] [CrossRef]
- Bencsath, K.P.; Podgorski, M.S.; Pagala, V.R.; Slaughter, C.A.; Schulman, B.A. Identification of a multifunctional binding site on Ubc9p required for Smt3p conjugation. J. Biol. Chem. 2002, 277, 47938–47945. [Google Scholar] [CrossRef] [Green Version]
- Van Waardenburg, R.C.A.M.; Duda, D.M.; Lancaster, C.S.; Schulman, B.A.; Bjornsti, M.-A. Distinct functional domains of Ubc9 dictate cell survival and resistance to genotoxic stress. Mol. Cell. Biol. 2006, 26, 4958–4969. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, Y.; Kahyo, T.; Toh-e, A.; Yasuda, H.; Kikuchi, Y. Yeast Ull1/Siz1 is a novel SUMO1/Smt3 ligase for septin components and functions as an adaptor between conjugating enzyme and substrates. J. Biol. Chem. 2001, 276, 48973–48977. [Google Scholar] [CrossRef] [Green Version]
- Hochstrasser, M. SP-RING for SUMO: New functions bloom for a ubiquitin-like protein. Cell 2001, 107, 5–8. [Google Scholar] [CrossRef] [Green Version]
- Reindle, A.; Belichenko, I.; Bylebyl, G.R.; Chen, X.L.; Gandhi, N.; Johnson, E.S. Multiple domains in Siz SUMO ligases contribute to substrate selectivity. J. Cell Sci. 2006, 119, 4749–4757. [Google Scholar] [CrossRef] [Green Version]
- Seufert, W.; Futcher, B.; Jentsch, S. Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins. Nature 1995, 373, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Li, S.J.; Hochstrasser, M. The Ulp1 SUMO isopeptidase: Distinct domains required for viability, nuclear envelope localization, and substrate specificity. J. Cell Biol. 2003, 160, 1069–1081. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Blobel, G. A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc. Natl. Acad. Sci. 2005, 102, 4777–4782. [Google Scholar] [CrossRef] [Green Version]
- Wohlschlegel, J.A.; Johnson, E.S.; Reed, S.I.; Yates, J.R. Global analysis of protein sumoylation in Saccharomyces cerevisiae. J. Biol. Chem. 2004, 279, 45662–45668. [Google Scholar] [CrossRef] [Green Version]
- Dasso, M. Emerging roles of the SUMO pathway in mitosis. Cell Div. 2008, 3, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Wisplinghoff, H.; Bischoff, T.; Tallent, S.M.; Seifert, H.; Wenzel, R.P.; Edmond, M.B. Nosocomial bloodstream infections in US hospitals: Analysis of 24, 179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis. 2004, 39, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Brown, G.D.; Denning, D.W.; Gow, N.A.R.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: Human fungal infections. Sci. Transl. Med. 2012, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Limper, A.H.; Adenis, A.; Le, T.; Harrison, T.S. Fungal infections in HIV/AIDS. Lancet Infect. Dis. 2017, 17, e334–e343. [Google Scholar] [CrossRef]
- Casadevall, A. Fungal diseases in the 21st century: The near and far horizons. Pathog. Immun. 2018, 3, 183–196. [Google Scholar] [CrossRef]
- Drgona, L.; Khachatryan, A.; Stephens, J.; Charbonneau, C.; Kantecki, M.; Haider, S.; Barnes, R. Clinical and economic burden of invasive fungal diseases in Europe: Focus on pre-emptive and empirical treatment of Aspergillus and Candida species. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 7–21. [Google Scholar] [CrossRef] [Green Version]
- Mansour Ceesay, M.; Sadique, Z.; Harris, R.; Ehrlich, A.; Adams, E.J.; Pagliuca, A. Prospective evaluation of the cost of diagnosis and treatment of invasive fungal disease in a cohort of adult haematology patients in the UK. J. Antimicrob. Chemother. 2014, 70, 1175–1181. [Google Scholar] [PubMed] [Green Version]
- Benedict, K.; Jackson, B.R.; Chiller, T.; Beer, K.D. Estimation of direct healthcare costs of fungal diseases in the United States. Clin. Infect. Dis. 2019, 68, 1791–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodfolk, J.A. Allergy and dermatophytes. Clin. Microbiol. Rev. 2005, 18, 30–43. [Google Scholar] [CrossRef] [Green Version]
- Pfaller, M.A.; Pappas, P.G.; Wingard, J.R. Invasive fungal pathogens: Current epidemiological trends. Clin. Infect. Dis. 2006, 43, S3–S14. [Google Scholar] [CrossRef]
- Sipsas, N.V.; Kontoyiannis, D.P. Invasive fungal infections in patients with cancer in the intensive care unit. Int. J. Antimicrob. Agents 2012, 39, 464–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and multi-national prevalence of fungal diseases-estimate precision. J. fungi 2017, 3, 57. [Google Scholar] [CrossRef]
- Köhler, J.R.; Hube, B.; Puccia, R.; Casadevall, A.; Perfect, J.R. Fungi that infect humans. Fungal Kingd. 2017, 5, 813–843. [Google Scholar]
- Perlin, D.S.; Rautemaa-Richardson, R.; Alastruey-Izquierdo, A. The global problem of antifungal resistance: Prevalence, mechanisms, and management. Lancet Infect. Dis. 2017, 17, e383–e392. [Google Scholar] [CrossRef]
- Rajasingham, R.; Smith, R.M.; Park, B.J.; Jarvis, J.N.; Govender, N.P.; Chiller, T.M.; Denning, D.W.; Loyse, A.; Boulware, D.R. Global burden of disease of HIV-associated Cryptococcal meningitis: An updated analysis. Lancet Infect. Dis. 2017, 17, 873–881. [Google Scholar] [CrossRef] [Green Version]
- Fisk, D.T.; Meshnick, S.; Kazanjian, P.H. Pneumocystis carinii pneumonia in patients in the developing world who have acquired immunodeficiency syndrome. Clin. Infect. Dis. 2003, 36, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Von Eiff, M.; Roos, N.; Schulten, R.; Hesse, M.; Zühlsdorf, M.; van de Loo, J. Pulmonary aspergillosis: Early diagnosis improves survival. Respiration 1995, 62, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Dagenais, T.R.T.; Keller, N.P. Pathogenesis of Aspergillus fumigatus in invasive aspergillosis. Clin. Microbiol. Rev. 2009, 22, 447–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudramurthy, S.M.; Paul, R.A.; Chakrabarti, A.; Mouton, J.W.; Meis, J.F. Invasive aspergillosis by Aspergillus flavus: Epidemiology, diagnosis, antifungal resistance, and management. J. Fungi 2019, 5, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castillo, C.G.; Kauffman, C.A.; Miceli, M.H. Blastomycosis. Infect. Dis. Clin. North. Am. 2016, 30, 247–264. [Google Scholar] [CrossRef]
- De Macedo, P.M.; De Melo Teixeira, M.; Barker, B.M.; Zancopé-Oliveira, R.M.; Almeida-Paes, R.; Do Valle, A.C.F. Clinical features and genetic background of the sympatric species Paracoccidioides brasiliensis and Paracoccidioides americana. PLoS Negl. Trop. Dis. 2019, 13, 1–20. [Google Scholar] [CrossRef]
- Olsen, S.K.; Capili, A.D.; Lu, X.; Tan, D.S.; Lima, C.D. Active site remodelling accompanies thioester bond formation in the SUMO E1. Nature 2010, 463, 906–912. [Google Scholar] [CrossRef] [Green Version]
- Mayer, F.L.; Sánchez-León, E.; Kronstad, J.W. A chemical genetic screen reveals a role for proteostasis in capsule and biofilm formation by Cryptococcus neoformans. Microb. Cell 2018, 5, 495–510. [Google Scholar] [CrossRef]
- Szewczyk, E.; Chiang, Y.M.; Oakley, C.E.; Davidson, A.D.; Wang, C.C.C.; Oakley, B.R. Identification and characterization of the asperthecin gene cluster of Aspergillus nidulans. Appl. Environ. Microbiol. 2008, 74, 7607–7612. [Google Scholar] [CrossRef] [Green Version]
- Harting, R.; Bayram, Ö.; Laubinger, K.; Valerius, O.; Braus, G.H. Interplay of the fungal sumoylation network for control of multicellular development. Mol. Microbiol. 2013, 90, 1125–1145. [Google Scholar] [CrossRef] [Green Version]
- Horio, T.; Szewczyk, E.; Oakley, C.E.; Osmani, A.H.; Osmani, S.A.; Oakley, B.R. SUMOlock reveals a more complete Aspergillus nidulans SUMOylome. Fungal Genet. Biol. 2019, 127, 50–59. [Google Scholar] [CrossRef]
- Johnson, E.S.; Blobel, G. Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins. J. Cell Biol. 1999, 147, 981–993. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, Y.; Iwase, M.; Konishi, M.; Tanaka, M.; Toh-e, A.; Kikuchi, Y. Smt3, a SUMO-1 homolog, is conjugated to Cdc3, a component of septin rings at the mother-bud neck in budding yeast. Biochem. Biophys. Res. Commun. 1999, 259, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Christmann, M.; Schmaler, T.; Gordon, C.; Huang, X.; Bayram, Ö.; Schinke, J.; Stumpf, S.; Dubiel, W.; Braus, G.H. Control of multicellular development by the physically interacting deneddylases DEN1/DenA and COP9 signalosome. PLoS Genet. 2013, 9, 22–24. [Google Scholar] [CrossRef]
- Mukhopadhyay, D.; Dasso, M. Modification in reverse: The SUMO proteases. Trends Biochem. Sci. 2007, 32, 286–295. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Diekema, D.J.; Turnidge, J.D.; Castanheira, M.; Jones, R.N. Twenty years of the SENTRY antifungal surveillance program: Results for Candida species from 1997–2016. Open Forum Infect. Dis. 2019, 6, S79–S94. [Google Scholar] [CrossRef] [Green Version]
- Pfaller, M.A.; Andes, D.R.; Diekema, D.J.; Horn, D.L.; Reboli, A.C.; Rotstein, C.; Franks, B.; Azie, N.E. Epidemiology and outcomes of invasive candidiasis due to non-albicans species of Candida in 2496 patients: Data from the Prospective Antifungal Therapy (PATH) registry 2004–2008. PLoS ONE 2014, 9, e101510. [Google Scholar] [CrossRef] [Green Version]
- Montagna, M.T.; Lovero, G.; Borghi, E.; Amato, G.; Andreoni, S.; Campion, L.; Lo Cascio, G.; Lombardi, G.; Luzzaro, F.; Manso, E.; et al. Candidemia in intensive care unit: A nationwide prospective observational survey (GISIA-3 study) and review of the European literature from 2000 through 2013. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 661–674. [Google Scholar]
- Chakrabarti, A.; Sood, P.; Rudramurthy, S.M.; Chen, S.; Kaur, H.; Capoor, M.; Chhina, D.; Rao, R.; Eshwara, V.K.; Xess, I.; et al. Incidence, characteristics and outcome of ICU-acquired candidemia in India. Intensive Care Med. 2015, 41, 285–295. [Google Scholar] [CrossRef]
- Astvad, K.M.T.; Johansen, H.K.; Røder, B.L.; Rosenvinge, F.S.; Knudsen, J.D.; Lemming, L.; Schønheyder, H.C.; Hare, R.K.; Kristensen, L.; Nielsen, L.; et al. Update from a 12-year nationwide fungemia surveillance: Increasing intrinsic and acquired resistance causes concern. J. Clin. Microbiol. 2018, 56, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Jones, T.; Federspiel, N.A.; Chibana, H.; Dungan, J.; Kalman, S.; Magee, B.B.; Newport, G.; Thorstenson, Y.R.; Agabian, N.; Magee, P.T.; et al. The diploid genome sequence of Candida albicans. Proc. Natl. Acad. Sci. USA 2004, 101, 7329–7334. [Google Scholar] [CrossRef] [Green Version]
- Mayer, F.L.; Wilson, D.; Hube, B. Candida albicans pathogenicity mechanisms. Virulence 2013, 4, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Galocha, M.; Pais, P.; Cavalheiro, M.; Pereira, D.; Viana, R.; Teixeira, M.C. Divergent approaches to virulence in C. albicans and C. glabrata: Two sides of the same coin. Int. J. Mol. Sci. 2019, 20, 2345. [Google Scholar] [CrossRef] [Green Version]
- Dujon, B.; Sherman, D.; Fischer, G.; Durrens, P.; Casaregela, S.; Lafentaine, I.; De Montigny, J.; Marck, C.; Neuvéglise, C.; Talla, E.; et al. Genome evolution in yeasts. Nature 2004, 430, 35–44. [Google Scholar] [CrossRef]
- Kaur, R.; Domergue, R.; Zupancic, M.L.; Cormack, B.P. A yeast by any other name: Candida glabrata and its interaction with the host. Curr. Opin. Microbiol. 2005, 8, 378–384. [Google Scholar] [CrossRef]
- Bolotin-Fukuhara, M.; Fairhead, C. Candida glabrata: A deadly companion? Yeast 2014, 31, 279–288. [Google Scholar] [CrossRef]
- Kumar, K.; Askari, F.; Sahu, M.S.; Kaur, R. Candida glabrata: A lot more than meets the eye. Microorganisms 2019, 7, 39. [Google Scholar] [CrossRef] [Green Version]
- De Groot, P.W.J.; Bader, O.; de Boer, A.D.; Weig, M.; Chauhan, N. Adhesins in human fungal pathogens: Glue with plenty of stick. Eukaryot. Cell 2013, 12, 470–481. [Google Scholar] [CrossRef] [Green Version]
- Kaur, R.; Ma, B.; Cormack, B.P. A family of glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence of Candida glabrata. Proc. Natl. Acad. Sci. 2007, 104, 7628–7633. [Google Scholar] [CrossRef] [Green Version]
- Cuéllar-Cruz, M.; Briones-Martin-del-Campo, M.; Cañas-Villamar, I.; Montalvo-Arredondo, J.; Riego-Ruiz, L.; Castaño, I.; De Las Peñas, A. High resistance to oxidative stress in the fungal pathogen Candida glabrata is mediated by a single catalase, Cta1p, and is controlled by the transcription factors Yap1p, Skn7p, Msn2p, and Msn4p. Eukaryot. Cell 2008, 7, 814–825. [Google Scholar] [CrossRef] [Green Version]
- Leach, M.D.; Brown, A.J.P. Posttranslational modifications of proteins in the pathobiology of medically relevant fungi. Eukaryot. Cell 2012, 11, 98–108. [Google Scholar] [CrossRef] [Green Version]
- Yan, M.; Nie, X.; Wang, H.; Gao, N.; Liu, H.; Chen, J. SUMOylation of Wor1 by a novel SUMO E3 ligase controls cell fate in Candida albicans. Mol. Microbiol. 2015, 98, 69–89. [Google Scholar] [CrossRef]
- Islam, A.; Tebbji, F.; Mallick, J.; Regan, H.; Dumeaux, V.; Omran, R.P.; Whiteway, M. Mms21: A putative SUMO E3 ligase in Candida albicans that negatively regulates invasiveness and filamentation, and is required for the genotoxic and cellular stress response. Genetics 2019, 211, 579–595. [Google Scholar] [CrossRef] [Green Version]
- Huaping, L.; Jie, L.; Zhifeng, W.; Yingchang, Z.; Yuhuan, L. Cloning and functional expression of ubiquitin-like protein specific proteases genes from Candida albicans. Biol. Pharm. Bull. 2007, 30, 1851–1855. [Google Scholar] [CrossRef] [Green Version]
- Omeara, T.R.; Veri, A.O.; Ketela, T.; Jiang, B.; Roemer, T.; Cowen, L.E. Global analysis of fungal morphology exposes mechanisms of host cell escape. Nat. Commun. 2015, 6, 1–10. [Google Scholar] [CrossRef]
- Martin, S.W.; Konopka, J.B. SUMO modification of septin-interacting proteins in Candida albicans. J. Biol. Chem. 2004, 279, 40861–40867. [Google Scholar] [CrossRef] [Green Version]
- Conrad, K.A.; Rodriguez, R.; Salcedo, E.C.; Rauceo, J.M. The Candida albicans stress response gene Stomatin-Like Protein 3 is implicated in ROS-induced apoptotic-like death of yeast phase cells. PLoS ONE 2018, 13, 1–25. [Google Scholar] [CrossRef] [Green Version]
Characteristics | SUMOylation | Ubiquitination | |
---|---|---|---|
Similarities | Attachment site | Lysine | Lysine |
Modifier maturation | Required | Required | |
Enzymes involved | E1, E2 and E3 | E1, E2 and E3 | |
Reversibility | Yes | Yes | |
Energy consumption | Yes | Yes | |
Differences | Modifier size | ~11 kDa | ~8.6 kDa |
Isoform | Multiple | No | |
Consensus motif | Ψ-K-x-E | No consensus | |
E1-activating enzyme | Heterodimeric | Monomeric | |
Number of E2-conjugating enzymes | Single | Multiple | |
Number of E3-ligases | Few (1–4) | Hundreds | |
E3-ligase requirement for the conjugation reaction | Not essential | Essential | |
Lysine residue of the modifier protein involved in poly-chain formation | K11 | K6, K11, K27, K29, K33, K48, K63 |
Fungal Pathogens | Systematic ORF | Size (kDa) | Catalytic Motif | Description | % Identitywith with S. cerevisiae Ortholog | Common/Systematic Name in S. cerevisiae |
---|---|---|---|---|---|---|
Small Ubiquitin-Like Modifier (SUMO) | ||||||
C. albicans | C1_11330C_A | 11.1 | Present | Verified | 61.39 | SMT3/ YDR510W |
C. glabrata | CAGL0K05731g | 12.2 | Present | Uncharacterized | 81.31 | |
A. nidulans | AN1191 | 10.4 | Present | Verified | 53.75 | |
C. neoformans | CNC00390 | 11.3 | Present | Uncharacterized | 46.74 | |
H. capsulatum | HCAG_01770 | 10.8 | Present | Uncharacterized | 53.85 | |
B. dermatitidis | BDDG_01171 | 10.6 | Present | Uncharacterized | 55.70 | |
P. brasiliensis | PABG_00491 | 10.6 | Present | Uncharacterized | 52.75 | |
SUMO-Activating Enzyme (E1) | ||||||
C. albicans | C1_08020W_A | 70.9 | Present | Uncharacterized | 43.75 | UBA2/ YDR390C |
C. glabrata | CAGL0M01606g | 71.1 | Present | Uncharacterized | 62.09 | |
A. nidulans | AN2450 | 67.7 | Present | Verified | 42.08 | |
C. neoformans | CNF00770 | 72.7 | Present | Uncharacterized | 37.88 | |
H. capsulatum | HCAG_04925 | 65.1 | Absent | Uncharacterized | 35.36 | |
B. dermatitidis | BDDG_04072 | 68.7 | Present | Uncharacterized | 38.47 | |
P. brasiliensis | PABG_04604 | 69.6 | Present | Uncharacterized | 44.49 | |
C. albicans | CR_02770C_A | 43.3 | Present | Uncharacterized | 35.05 | AOS1/ YPR180W |
C. glabrata | CAGL0G09889g | 37.8 | Present | Uncharacterized | 54.94 | |
A. nidulans | AN2298 | 42.2 | Present | Verified | 32.75 | |
C. neoformans | CNN00720 | 37.7 | Absent | Uncharacterized | 39.04 | |
H. capsulatum | HCAG_08393 | 38.5 | Absent | Uncharacterized | 32.14 | |
B. dermatitidis | BDDG_02776 | 40.0 | Present | Uncharacterized | 34.19 | |
P. brasiliensis | PABG_06750 | 40.1 | Present | Uncharacterized | 36.21 | |
SUMO-Conjugating Enzyme (E2) | ||||||
C. albicans | CR_08560C_A | 25.7 | Present | Verified | 69.03 | UBC9/ YDL064W |
C. glabrata | CAGL0D00814g | 18.0 | Present | Uncharacterized | 88.54 | |
A. nidulans | AN4399 | 18.0 | Present | Verified | 63.01 | |
C. neoformans | CNI02210 | 18.2 | Present | Uncharacterized | 57.90 | |
H. capsulatum | HCAG_05621 | 17.9 | Present | Uncharacterized | 62.33 | |
B. dermatitidis | BDDG_09778 | 18.0 | Present | Uncharacterized | 63.01 | |
P. brasiliensis | PABG_04136 | 18.0 | Present | Uncharacterized | 57.79 | |
SUMO Ligases (E3) | ||||||
C. albicans | C1_01560W_A | 174.5 | Present | Uncharacterized | 27.87 | SIZ1/ YDR409W |
C. glabrata | CAGL0F02783g | 94.5 | Present | Uncharacterized | 41.64 | |
A. nidulans | AN10822 | 55.9 | Present | Verified | 32.23 | |
C. neoformans | CNM02250 | 88.1 | Present | Uncharacterized | 28.25 | |
H. capsulatum | HCAG_06903 | 52.2 | Present | Uncharacterized | 33.98 | |
B. dermatitidis | BDDG_09007 | 59.0 | Present | Uncharacterized | 31.10 | |
P. brasiliensis | PABG_05394 | 58.9 | Present | Uncharacterized | 30.20 | |
C. albicans | Absent | - | - | - | - | SIZ2/ YOR156C |
C. glabrata | CAGL0L04290g | 83.2 | Present | Uncharacterized | 33.72 | |
A. nidulans | AN4497 | 123.5 | Present | Uncharacterized | 26.44 | |
C. neoformans | Absent | - | - | - | - | |
H. capsulatum | Absent | - | - | - | - | |
B. dermatitidis | Absent | - | - | - | - | |
P. brasiliensis | Absent | - | - | - | - | |
C. albicans | C3_06200C_A | 31.3 | Present | Uncharacterized | 31.67 | MMS21/ YEL019C |
C. glabrata | CAGL0M03267g | 30.8 | Present | Uncharacterized | 37.04 | |
A. nidulans | AN10240 | 56.1 | Present | Uncharacterized | 33.01 | |
C. neoformans | CND02680 | 37.0 | Present | Uncharacterized | 24.47 | |
H. capsulatum | HCAG_05688 | 55.5 | Present | Uncharacterized | 31.82 | |
B. dermatitidis | BDDG_05774 | 54.6 | Present | Uncharacterized | 33.75 | |
P. brasiliensis | Absent | - | - | - | - | |
C. albicans | C2_05900W_A | 41.8 | Present | Uncharacterized | 33.77 | CST9/ YLR394W |
C. glabrata | CAGL0C02629g | 40.1 | Present | Uncharacterized | 48.77 | |
A. nidulans | Absent | - | - | - | - | |
C. neoformans | Absent | - | - | - | - | |
H. capsulatum | HCAG_01117 | 24.2 | Absent | Uncharacterized | 37.50 | |
B. dermatitidis | Absent | - | - | - | - | |
P. brasiliensis | Absent | - | - | - | - | |
C. albicans | C4_04420W_A | 57.1 | Present | Verified | 100.00 | WOS1 * |
C. glabrata | Absent | - | - | - | - | |
A. nidulans | Absent | - | - | - | - | |
C. neoformans | Absent | - | - | - | - | |
H. capsulatum | HCAG_04523 | 112.8 | Present | Uncharacterized | 33.33 | |
B. dermatitidis | BDDG_13222 | 68.2 | Present | Uncharacterized | 32.56 | |
P. brasiliensis | PABG_01044 | 123.4 | Present | Uncharacterized | 30.19 | |
SUMO Proteases | ||||||
C. albicans | C3_03550C_A | 40.5 | Present | Verified | 38.43 | ULP1/ YPL020C |
C. glabrata | CAGL0L08646g | 68.2 | Present | Uncharacterized | 51.89 | |
A. nidulans | AN2689 | 107.3 | Present | Verified | 28.29 | |
C. neoformans | CNL03980 | 55.5 | Present | Uncharacterized | 30.33 | |
H. capsulatum | HCAG_06354 | 28.6 | Present | Uncharacterized | 24.28 | |
B. dermatitidis | BDDG_05156 | 114.3 | Present | Uncharacterized | 29.19 | |
P. brasiliensis | PABG_00907 | 124.1 | Present | Uncharacterized | 27.76 | |
C. albicans | C3_00280C_A | 101.3 | Present | Verified | 37.41 | ULP2/ YIL031W¶ |
C. glabrata | CAGL0J02464g | 104.1 | Present | Uncharacterized | 44.88 | |
A. nidulans | AN8192 | 125.9 | Present | Verified | 34.02 | |
C. neoformans | CND00680 | 170.0 | Present | Uncharacterized | 28.13 | |
H. capsulatum | HCAG_00522 | 138.8 | Present | Uncharacterized | 28.71 | |
B. dermatitidis | BDDG_05054 | 139.4 | Present | Uncharacterized | 26.99 | |
P. brasiliensis | PABG_04092 | 137.2 | Present | Uncharacterized | 26.67 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahu, M.S.; Patra, S.; Kumar, K.; Kaur, R. SUMOylation in Human Pathogenic Fungi: Role in Physiology and Virulence. J. Fungi 2020, 6, 32. https://doi.org/10.3390/jof6010032
Sahu MS, Patra S, Kumar K, Kaur R. SUMOylation in Human Pathogenic Fungi: Role in Physiology and Virulence. Journal of Fungi. 2020; 6(1):32. https://doi.org/10.3390/jof6010032
Chicago/Turabian StyleSahu, Mahima Sagar, Sandip Patra, Kundan Kumar, and Rupinder Kaur. 2020. "SUMOylation in Human Pathogenic Fungi: Role in Physiology and Virulence" Journal of Fungi 6, no. 1: 32. https://doi.org/10.3390/jof6010032
APA StyleSahu, M. S., Patra, S., Kumar, K., & Kaur, R. (2020). SUMOylation in Human Pathogenic Fungi: Role in Physiology and Virulence. Journal of Fungi, 6(1), 32. https://doi.org/10.3390/jof6010032