Epichloë Fungal Endophytes—From a Biological Curiosity in Wild Grasses to an Essential Component of Resilient High Performing Ryegrass and Fescue Pastures
Abstract
:1. Introduction
2. Epichloë Endophytes
2.1. Epichloë Taxonomy
2.2. Epichloë Diversity and Origins
Grass Genus | Epichloë Species | Reference |
---|---|---|
Europe/North Africa | ||
Lolium canariense | E. typhinum var. canariense | [33] |
Lolium multiflorum | E. occultans | |
Lolium perenne | E. hybrida | [34] |
Lolium rigidum | E. occultans | [15] |
Agropyron repens | E. bromicola | [35] |
Agrostis | E. baconii, E. amarillans | [32] |
Anthoxanthum | E. typhina | |
Brachyelytrum | E. brahyelytri | |
Brachypodium | E. sylvatica, E. typhina | |
Dactylis glomerata | E. typhina | |
Elymus | E. elymi | |
Festuca arundinacea | E. coenophialum | |
Festuca giganteus, Festuca rubra | E. festucae | |
Glyceria | E. glyceriae | |
Holcus | E. clarkii | |
Leymus, Bromus | E. bromicola | |
L. perenne | E. festucae var. lolii, E. typhina, E. lolii | |
Phleum | E. typhina | |
Poa | E. typhina | |
Sphenopholis | E. amarilians | |
Festuca pratensis | E. uncinatum | |
E. siegelii | [36] | |
Hordelymus | E. disjuncta, E. danica, E. hordelymi, E. sylvatica subsp, pollinensisi, | [15,37] |
Holcus mollis | E. mollis | [15,38] |
Asia | ||
Achnatherum | E. ganusuensis, E. sibirica | [22] |
E. chisosum; E. inebrians | [29,39] | |
E. funkii | [15] | |
Brachypodium, Bromus, Elymus, Leymus | E. bromicola | [22] |
Calamagrostis | E. stromatolonga | |
Festuca | E. sinofestucae | |
Elymus, Elytrigia, Festuca, Hordeum, Poa, Roegneria, Stipa | E. spp. | |
Poa | E. liyangensis | [40] |
Roegneria | E. sinica | [22] |
E. yangzii | [41] | |
North America | ||
Ammophila | E. amarillans | [42] |
Brachyelytrum erectum | E. brachyelytri | [11] |
Bromus laevipes | E. cabralii, E. spp. | [43] |
Cinna arundinacea | E. schardlii | [44] |
Elymus | E. elymi | [11] |
Elymus canadensis | E. canadensis | [15,45] |
Festuca arizonica | E. huerfanum, E. tembladerae | [29] |
Glyceria striata | E. glyceriae | [11] |
Poa alsodes | E. alsodes | [46] |
Poa secunda subsp. junicolia | E. poae | [31] |
South America | ||
Bromus setifolius | E. typhina var. aonikenhana | [47] |
E. typhinum | [48] | |
E. tembladerae | [15] | |
Bromus auleticus | E. pampeana; E. tembladerae | |
Festuca argentina, F. hieronymi. Poa huecu | E. tembladerae | [49] |
Hordeum comosum | E. tembladerae, E. amarillans, E. typhina hybrids | [24] |
Melica ciliata | E. guerinii | [15] |
Melica decumbens | E. melicicola | [29,50] |
Phleum alpinum | E. cabralii | [47] |
E. tembladerae | [15] | |
Poa, Briza, Festuca, Melica, Phleum | E. tembladerae, E. pampeana | [50,51,52] |
Australia | ||
Echinopogon spp. | E. australiense | [50,53] |
New Zealand | ||
Echinopogon ovatus | E. aotearoa | [50] |
Dichelachne micrantha | E. australiensis | [20] |
Poa matthewsii | E. novae-zelandiae | |
Sub-Saharan Africa | ||
Festuca costata | E. spp. | [21] |
Melica spp. | E. melicicola | [50] |
2.3. Epichloë Mutualism
2.4. Epichloë Systemic Infection
2.5. Epichloë Host Specificity
2.6. Epichloë Vertical Transmission
3. Impact of Epichloë Endophytes in Pastoral Systems
3.1. Animal Health and Welfare
Alkaloid | Animal Effect | Action and Qualifying Information | Reference |
---|---|---|---|
Ergot Alkaloids [177] | |||
Chanoclavine | No toxic effects at levels found in grasses | May lower prolactin serum levels at high concentrations | [178,179] |
Dehydroergovaline | May contribute to toxicity | Present only in fescue | [13] |
Ergine | Stupor | High levels in Stipa robusta and Achnatherum inebrians | [13,180,181] |
Ergocornine | Fescue toxicosis | Intermediate in vasoconstriction between ergovaline and lysergic acid | [154] |
Ergocristine | |||
Ergocryptine | |||
Ergonovine | |||
Ergonovine | Fescue toxicosis | Lowered skin temperature, heart rate, and prolactin and had a higher respiration rate and blood pressure | [182] |
Ergotamine | Fescue toxicosis | Similar vasoconstriction effect as ergovaline | [183] |
Ergotamine | Fescue toxicosis | Fever, diarrhoea, weight loss, laboured breathing, salivation, low prolactin | [182,184] |
Ergosine | |||
Agroclavine | |||
Ergovaline | Fescue toxicosis/fescue foot | Inability to regulate body temperature; vasoconstrictor; regulates prolactin | [143,152,182,185,186,187] |
Heat stress | Increased body temperature | [146,188] | |
Lysergic acid | Fescue toxicosis | Lysergic acid is a major breakdown compound from ergovaline in rumen | [153,189] |
1000 times less potent than ergovaline as a vasoconstrictor | [183,190] | ||
Indole-Diterpenoids | |||
Epoxyjanthitrems | Staggers | Can be intense but short lived | [191,192] |
Lolilline | Not tremorgenic | [193] | |
Lolitrems A, B, and F | Ryegrass staggers | Neurotoxin that affects muscular coordination; delayed onset but persistent; marked increases in respiration rate, heart rate, and blood pressure. | [84,152,158,160,193,194,195,196,197,198] |
31-epi-Lolitrem B | Not tremorgenic | - | [193] |
Lolitrem E | Minor tremorgen | Inhibitor of mitotic kinesin (Eg5) | [199,200] |
Lolitriol | Not tremorgenic | - | [201] |
Paspaline | Not tremorgenic | - | [198] |
Paxilline | Moderate tremorgen | Fast acting but short longevity; marked increases in respiration rate, heart rate. and blood pressure. | [160,201,202,203,204,205] |
Terpendole C | Tremorgen | Fast acting, intense but short lived | [206] |
Terpendole M | Mild tremorgen | Short lived | [207] |
Pyrrolopyrazine Alkaloid | |||
Peramine | No known mammalian toxicity | Possible association with causing diarrhoea, but later proven incorrect | [169,208,209] |
Pyrrolizidine Alkaloids [175] | |||
N-acetyl loline (NAL) | No known mammalian toxicity | - | [168,175,210] |
N-acetylnorloline (NANL) | No consistent mammalian toxicity | - | [168,174,175,210] |
N-formyl loline (NFL) | No known mammalian toxicity | - | [168,175,210] |
Animal Trait | Endophyte-Free | Endophyte-Infected (Standard Strain) | Level of Significant Difference |
---|---|---|---|
Daily liveweight gain (g/head/d) | 52 | 30 | ** |
Ryegrass staggers score (0–5 scale) | 0 | 3.3 | ** |
Dags score (0–5 Scale) | 0.3 | 2.3 | ** |
Flystrike (% affected) | 2 | 15 | ** |
Rectal temperature (°C) | 40.2 | 40.5 | * |
Plasma prolactin (ng/mL) | 198 | 90 | ** |
3.2. Plant Persistence and Yield
3.3. Epichloë Effects on Abiotic Stresses
3.4. Epichloë Effects on Invertebrates
3.5. Epichloë Effects on Other Microorganisms
3.6. Epichloë Effects on Plant Growth
4. Delivering Epichloë into Managed Pastoral Systems
4.1. Case Study—AR1TM for Ryegrass
Insect Pest | Endophyte Strain | ||
---|---|---|---|
Nil | Standard | AR1 | |
Argentine Stem Weevil | |||
% tillers with larval damage | 34 b | 4 a | 1 a |
African Black Beetle | |||
% tillers damaged by adults—6-month-old plants | 52 c | 8 a | 22 b |
% plants damaged by larvae | 58 b | 36 a,b | 28 a |
Pasture Mealy Bug | |||
Number per core | 23 b | 0.6 a | 0 a |
Root Aphid | |||
Number per core | 1.4 a | 3.5 a | 2.4 a |
4.2. Case Study—AR37TM for Ryegrass
4.3. Case Study—Endo5TM and NEA Endophytes for Ryegrass
4.4. Case Study—Happe and U2 Both Fescue Epichloë Strains for Use in Ryegrass
4.5. Case Study—AR542 and AR548 (MaxQTM, MaxQIITM, and MaxPTM) for Tall Fescue
4.6. Case Study—E34 for Tall Fescue
4.7. Case Study—Protek (E647) for Tall Fescue
4.8. Case Study—ArkShield in Tall Fescue
4.9. Delivery of Commercial Novel Epichloë Endophytes
5. Future Opportunities
- Genetic modification of Epichloë using traditional gene insertion or deletion [472,473] and the more recent CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-related nuclease 9) system [474] to either:
- ➢
- manipulate existing alkaloid pathways to increase the expression of mammalian safe intermediate pathway compounds, whilst removing toxic end products;
- ➢
- insert secondary metabolite genes to make new compounds in planta; and/or
- ➢
- repair non-functional genes (pseudogenes) in secondary metabolite pathways to restore lost bioactivity
- Using DNA marker information to improve the efficiency of selection for endophyte compatibility in host plants when moving strains across taxa [475];
- Identify and determine the function of bacteria associated with Epichloë in planta [476]; and
- Develop an understanding of molecular processes that underpin compatibility between the host and fungal endophyte so that movement of Epichloë strains across widely separated taxa can be achieved successfully, ensuring normal phenotypes and good transmission through seed [475,477,478]. This may require genetic manipulation of genes in both partners to be successful, but on the other hand, the genetic information may simply be used to screen for compatible endophyte and host germplasm that are more likely able to form stable and beneficial symbioses.
6. Concluding Comment
Author Contributions
Funding
Conflicts of Interest
References
- Brockwell, J.; Bottomley, P.J.; Thies, J.E. Manipulation of rhizobia microflora for improving legume productivity and soil fertility: A critical assessment. Plant Soil 1995, 174, 143–180. [Google Scholar] [CrossRef]
- Rillig, M.C.; Sosa-Hernández, M.A.; Roy, J.; Aguilar-Trigueros, C.A.; Vályi, K.; Lehmann, A. Towards an Integrated Mycorrhizal Technology: Harnessing Mycorrhiza for Sustainable Intensification in Agriculture. Front. Plant Sci. 2016, 7, 1625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, L.J.; de Bonth, A.C.M.; Briggs, L.R.; Caradus, J.R.; Finch, S.C.; Fleetwood, D.J.; Fletcher, L.R.; Hume, D.E.; Johnson, R.D.; Popay, A.J.; et al. The exploitation of epichloae endophytes for agricultural benefit. Fungal Divers. 2013, 60, 171–188. [Google Scholar] [CrossRef]
- Hume, D.E.; Ryan, G.D.; Gibert, A.; Helander, M.; Mirlohi, A.; Sabzalian, M.R. Epichloë fungal endophytes for grassland ecosystems. In Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 233–305. [Google Scholar]
- Hume, D.E.; Stewart, A.V.; Simpson, W.R.; Johnson, R.D. Epichloë fungal endophytes play a fundamental role in New Zealand grasslands. J. R. Soc. N. Z. 2020, 50, 279–298. [Google Scholar] [CrossRef]
- Johnson, L.; Caradus, J. The Science Required to Deliver Epichloë Endophytes to Commerce. In Endophytes for a Growing World; Hodkinson, T., Doohan, F., Saunders, M., Murphy, B., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 343–370. [Google Scholar] [CrossRef]
- Le Cocq, K.; Gurr, S.J.; Hirsch, P.R.; Mauchline, T.H. Exploitation of endophytes for sustainable agricultural intensification. Mol. Plant Pathol. 2017, 18, 469–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Card, S.; Johnson, L.; Teasdale, S.; Caradus, J. Deciphering endophyte behaviour—The link between endophyte biology and efficacious biological control agents. FEMS Microbiol. Ecol. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, J.F., Jr. Endophyte-host associations in grasses. XIX. A systematic study of some sympatric species of Epichloë in England. Mycologia 1993, 85, 444–455. [Google Scholar]
- Saikkonen, K.; Young, C.A.; Helander, M.; Schardl, C.L. Endophytic Epichloë species and their grass hosts: From evolution to applications. Plant Mol. Biol. 2016, 90, 65–675. [Google Scholar] [CrossRef] [Green Version]
- Schardl, C.L.; Leuchtmann, A. Three new species of Epichloë symbiotic with North American grasses. Mycologia 1999, 91, 95–107. [Google Scholar] [CrossRef]
- Caradus, J.R.; Lovatt, S.; Belgrave, B. Adoption of forage technologies. Proc. N. Z. Grassl. Assoc. 2013, 75, 39–44. [Google Scholar] [CrossRef]
- Lane, G.A. Chemistry of Endophytes: Patterns and Diversity. In Proceedings of the Ryegrass Endophyte: An Essential New Zealand Symbiosis; Napier, New Zealand, 8 October 1999, Woodfield, D.R., Matthew, C., Eds.; NZ Grassland Association Grassland Research and Practice Series; Volume 7, pp. 85–94.
- Tadych, M.; Bergen, M.S.; White Jr, J.F. Epichloë spp. associated with grasses: New insights on life cycles, dissemination and evolution. Mycologia 2014, 106, 181–201. [Google Scholar] [CrossRef] [PubMed]
- Leuchtmann, A.; Bacon, C.W.; Schardl, C.L.; White, J.F.; Tadych, M. Nomenclatural realignment of Neotyphodium species with genus Epichloë. Mycologia 2014, 106, 202–215. [Google Scholar] [CrossRef] [PubMed]
- Morgan-Jones, G.; Gams, W. Notes on hyphomycetes. XLI. An endophyte of Festuca arundinacea and the anamorph of Epichloë typhina, new taxa in one of two new sections of Acremonium. Mycotaxon 1982, 15, 311–318. [Google Scholar]
- McNeill, J. (Ed.) International Code of Nomenclature for Algae, Fungi, and Plants (Melbourne Code); Eighteenth International Botanical Congress: Melbourne, Australia, 2012. [Google Scholar]
- Schardl, C.L.; Phillips, T.D. Protective grass endophytes. Where are they from and where are they going? Plant Dis. 1997, 81, 430–438. [Google Scholar] [CrossRef] [Green Version]
- Faeth, S.H. Are endophytic fungi defensive plant mutualists? Oikos 2002, 98, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Leuchtmann, A.; Young, C.A.; Stewart, A.V.; Simpson, W.R.; Hume, D.E.; Scott, B. Epichloë novaezelandiae, a new endophyte from the endemic New Zealand grass Poa matthewsii. N. Z. J. Bot. 2019, 57, 271–288. [Google Scholar] [CrossRef]
- McGranahan, D.A.; Burgdorf, R.; Kirkman, K.P. Epichloae infection in a native South African grass, Festuca costata Nees. Plant Biol. 2015, 17, 914–921. [Google Scholar] [CrossRef]
- Song, H.; Nan, Z.; Song, Q.; Xia, C.; Li, X.; Yao, X.; Xu, W.; Kuang, Y.; Tian, P.; Zhang, Q. Advances in research on Epichloë endophytes in Chinese native grasses. Front. Microbiol. 2016, 7, 1399. [Google Scholar] [CrossRef] [Green Version]
- Zeven, A.C.; de Wet, J.M.J. Dictionary of Cultivated Plants and Their Regions of Diversity; Pudoc.: Wageningen, The Netherlands, 1982. [Google Scholar]
- Iannone, L.J.; Irisarri, J.G.N.; Mc Cargo, P.D.; Perez, L.I.; Gundel, P.E. Occurrence of Epichloë fungal endophytes in the sheep-preferred grass Hordeum comosum from Patagonia. J. Arid Environ. 2015, 115, 19–26. [Google Scholar] [CrossRef]
- Card, S.D.; Faville, M.J.; Simpson, W.R.; Johnson, R.D.; Voisey, C.R.; de Bonth, A.C.M.; Hume, D.E. Mutualistic fungal endophytes in the Triticeae—Survey and description. FEMS Microbiol. Ecol. 2014, 88, 94–106. [Google Scholar] [CrossRef] [Green Version]
- Simpson, W.R.; Faville, M.J.; Moraga, R.A.; Williams, W.M.; McManus, M.T.; Johnson, R.D. Epichloë fungal endophytes and the formation of synthetic symbioses in Hordeeae (= Triticeae) grasses. J. Syst. Evol. 2014, 52, 794–806. [Google Scholar] [CrossRef]
- Simpson, W.R.; Popay, A.J.; Mace, W.J.; Hume, D.E.; Johnson, R.D. Creating synthetic symbioses between Epichloë and rye (Secale cereale) to improve crop performance. In Proceedings of the International Symposium on Fungal Endophyte of Grasses, Salamanca, Spain, 18–21 June 2018; p. 96. [Google Scholar]
- Simpson, W.R.; Tsujimoto, H.; Johnson, R.D. Endophyte Screening. New Zealand Patent 740,055, 21 February 2018. [Google Scholar]
- Moon, C.D.; Craven, K.D.; Leuchtmann, A.; Clement, S.L.; Schardl, C.L. Prevalence of interspecific hybrids among asexual fungal endophytes of grasses. Mol. Ecol. 2004, 13, 1455–1467. [Google Scholar] [CrossRef] [PubMed]
- Schardl, C.L.; Young, C.A.; Faulkner, J.R.; Florea, S.; Pan, S.J. Chemotypic diversity of epichloae, fungal symbionts of grasses. Fungal Ecol. 2012, 5, 331–344. [Google Scholar] [CrossRef]
- Tadych, M.; Ambrose, K.V.; Bergen, M.S.; Belanger, F.C.; White, J.F., Jr. Taxonomic placement of Epichloë poae sp. nov. and horizontal dissemination to seedlings via conidia. Fungal Divers. 2012, 54, 117–131. [Google Scholar] [CrossRef]
- Cagnano, G.; Roulund, N.; Jensen, C.S.; Forte, F.P.; Asp, T.; Leuchtmann, A. Large Scale Screening of Epichloë Endophytes Infecting Schedonorus pratensis and Other Forage Grasses Reveals a Relation Between Microsatellite-Based Haplotypes and Loline Alkaloid Levels. Front. Plant Sci. 2019, 10, 765. [Google Scholar] [CrossRef]
- Moon, C.D.; Scott, B.; Schardl, C.L.; Christensen, M.J. Evolutionary origins of Epichloë endophytes from annual ryegrasses. Mycologia 2000, 92, 1103–1118. [Google Scholar]
- Campbell, M.A.; Tapper, B.A.; Simpson, W.R.; Johnson, R.D.; Mace, W.J.; Ram, A.; Lukito, Y.; Dupont, P.-Y.; Johnson, L.J.; Scott, D.B.; et al. Epichloë hybrida, sp. nov., an emerging model system for investigating fungal allopolyploidy. Mycologia 2017, 109, 715–729. [Google Scholar] [CrossRef] [Green Version]
- Lembicz, M.; Górzyńska, K.; Leuchtmann, A. Choke disease caused by Epichloë bromicola in the grass Agropyron repens in Poland. Plant Dis. 2010, 94, 1372. [Google Scholar] [CrossRef]
- Craven, K.D.; Blankenship, J.D.; Leuchtmann, A.; Highnight, K.; Schardl, C.L. Hybrid fungal endophytes symbiotic with the grass Lolium pratense. Sydowia 2001, 53, 44–73. [Google Scholar]
- Oberhofer, M.; Leuchtmann, A. Genetic diversity in epichloid endophytes of Hordelymus europaeus suggests repeated host jumps and interspecific hybridizations. Mol. Ecol. 2012, 21, 2713–2726. [Google Scholar] [CrossRef]
- Clay, K.; Brown, V.K. Infection of Holcus lanatus and H. mollis by Epichloë in experimental grasslands. Oikos 1997, 79, 363–370. [Google Scholar] [CrossRef]
- Chen, L.; Li, X.Z.; Li, C.J.; Swoboda, G.A.; Young, C.A.; Sugawara, K.; Leuchtmann, A.; Schardl, C.L. Two distinct Epichloë species symbiotic with Achnatherum inebrians, drunken horse grass. Mycologia 2015, 107, 863–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, Y.; Ji, Y.L.; Zhu, K.; Wang, H.; Miao, H.; Wang, Z.W. A new Epichloë species with interspecific hybrid origins from Poa pratensis ssp. pratensis in Liyang, China. Mycologia 2011, 103, 1341–1350. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Ji, Y.-L.; Yu, H.-S.; Wang, Z.-W. A new species of Epichloë symbiotic with Chinese grasses. Mycologia 2006, 98, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Drake, I.; White, J.F., Jr.; Belanger, F.C. Identification of the fungal endophyte of Ammophila breviligulata (American beachgrass) as Epichloë amarillans. PeerJ 2018, 6, e4300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charlton, N.D.; Craven, K.D.; Afkhami, M.E.; Hall, B.A.; Ghimire, S.R.; Young, C.A. Interspecific hybridization and bioactive alkaloid variation increases diversity in endophytic Epichloë species of Bromus laevipes. FEMS Microbiol. Ecol. 2014, 90, 276–289. [Google Scholar] [CrossRef] [Green Version]
- Ghimire, S.R.; Rudgers, J.A.; Charlton, N.D.; Young, C.; Craven, K.D. Prevalence of an intraspecific Neotyphodium hybrid in natural populations of stout wood reed (Cinna arundinacea L.) from eastern North America. Mycologia 2011, 103, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Burr, K.; Mittai, S.; Hopkins, A.; Young, C. Characterisation of fungal endophytes present in Elymus canadensis (Canada rye). In Proceedings of the 6th International Symposium on Fungal Endophytes of Grasses; Christchurch, New Zealand, 25–28 March 2007, Popay, A.J., Thom, E.R., Eds.; NZ Grassland Association Grassland Research and Practice Series; Volume 13, pp. 473–476.
- Shymanovich, T.; Charlton, N.D.; Musso, A.M.; Scheerer, J.; Cech, N.B.; Faeth, S.H.; Young, C.A. Interspecific and intraspecific hybrid Epichloë species symbiotic with the North American native grass Poa alsodes. Mycologia 2017, 109, 459–474. [Google Scholar] [CrossRef] [Green Version]
- McCargo, P.D.; Iannone, L.J.; Vignale, M.V.; Schardl, C.L.; Rossi, M.S. Species diversity of Epichloë symbiotic with two grasses from southern Argentinean Patagonia. Mycologia 2014, 106, 339–352. [Google Scholar] [CrossRef]
- Gentile, A.; Rossi, M.S.; Cabral, D.; Craven, K.D.; Schardl, C.L. Origin, divergence and phylogeny of Epichloë endophytes of native Argentine grasses. Mol. Phylogenet Evol. 2005, 35, 196–208. [Google Scholar] [CrossRef]
- Cabral, D.; Iannone, L.J.; Stewart, A.; Novas, M.V. The distribution and incidence of Neotyphodium endophytes in native grasses from Argentina and its association with environmental factors. In Proceedings of the 6th International Symposium on Fungal Endophytes of Grasses, Christchurch, New Zealand, 25–28 March 2007; Popay, A.J., Thom, E.R., Eds.; Volume 13, pp. 79–82. [Google Scholar]
- Moon, C.D.; Miles, C.O.; Järlfors, U.; Schardl, C.L. The evolutionary origins of three new Neotyphodium endophyte species from grasses indigenous to the Southern Hemisphere. Mycologia 2002, 94, 694–711. [Google Scholar] [CrossRef] [PubMed]
- Iannone, L.J.; Novas, M.V.; Young, C.A.; De Battista, J.P.; Schardl, C.L. Endophytes of native grasses from South America: Diversity and ecology. Fungal Ecol. 2012, 5, 357–363. [Google Scholar] [CrossRef]
- Iannone, L.J.; McCargo, P.D.; Giussani, L.M.; Schardl, C.L. Geographic distribution patterns of vertically transmitted endophytes in two native grasses in Argentina. Symbiosis 2013, 59, 99–110. [Google Scholar] [CrossRef]
- Miles, C.O.; di Menna, M.; Jacobs, S.W.L.; Garthwaite, I.; Lane, G.A.; Prestidge, R.A.; Marshall, S.L.; Wilkinson, H.H.; Schardl, C.L.; Ball, O.-J.P.; et al. Endophytic fungi in indigenous Australasian grasses associated with toxicity to livestock. Appl. Environ. Microbiol. 1998, 64, 601–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selosse, M.A.; Schardl, C.L. Fungal endophytes of grasses: Hybrids rescued by vertical transmission? An evolutionary perspective. New Phytol. 2007, 173, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Schardl, C.L. The epichloae, symbionts of the grass subfamily Poideae. Ann. Mo. Bot. Gard. 2010, 97, 646–665. [Google Scholar] [CrossRef]
- Schardl, C.L.; Craven, K.D. Interspecific hybridization in plant-associated fungi and oomycetes: A review. Mol. Ecol. 2003, 12, 2861–2873. [Google Scholar] [CrossRef]
- Kuldau, G.A.; Tsai, H.-F.; Schardl, C.L. Genome sizes of Epichloë species and anamorphic hybrids. Mycologia 1999, 91, 776–782. [Google Scholar] [CrossRef]
- Chung, K.-R.; Schardl, C.L. Sexual cycle and horizontal transmission of the grass symbiont. Epichloë typhina. Mycol. Res. 1997, 101, 295–301. [Google Scholar] [CrossRef]
- White, J.; Martin, T.I.; Cabral, D. Endophyte-host associations in grasses. XXII. Conidia formation by Acremonium endophytes on the phylloplanes of Agrostis hiemalis and Poa rigidifolia. Mycologia 1996, 88, 174–178. [Google Scholar] [CrossRef]
- Schardl, C.L.; Young, C.; Moore, N.; Krom, N.; Dupont, P.-Y.; Pan, J.; Florea, S.; Webb, J.S.; Jaromczyk, J.; Jaromczyk, J.W.; et al. Genomes of plant-associated Clavicipitaceae. Adv. Bot. Res. 2014, 70, 291–327. [Google Scholar]
- Saari, S.; Faeth, S.H. Hybridization of Neotyphodium endophytes enhances competitive ability of the host grass. New Phytol. 2012, 195, 231–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shymanovich, T.; Faeth, S.H. Environmental factors affect the distribution of two Epichloë fungal endophyte species inhabiting a common host grove bluegrass (Poa alsodes). Ecol. Evol. 2019, 9, 6624–6642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oberhofer, M.; Gusewell, S.; Leuchtmann, A. Effects of natural hybrid and non-hybrid Epichloë endophytes on the response of Hordelymus europaeus to drought stress. New Phytol. 2014, 201, 242–253. [Google Scholar] [CrossRef] [PubMed]
- Schardl, C.L.; Florea, S.; Pan, J.; Nagabhyru, P.; Bec, S.; Calie, P.J. The epichloae: Alkaloid diversity and roles in symbiosis with grasses. Curr. Opin. Plant Biol. 2013, 16, 80–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panaccione, D.G.; Beaulieu, W.T.; Cook, D. Bioactive alkaloids in vertically transmitted fungal endophytes. Funct. Ecol. 2014, 28, 299–314. [Google Scholar] [CrossRef] [Green Version]
- Finch, S.C.; Prinsep, M.R.; Popay, A.J.; Wilkins, A.L.; Webb, N.G.; Bhattarai, S.; Jensen, J.G.; Hawkes, A.D.; Babu, J.V.; Tapper, B.A.; et al. Identification and structure elucidation of epoxyjanthitrems from Lolium perenne infected with the endophytic fungus Epichloë festucae var. lolii and determination of the tremorgenic and anti-insect activity of epoxyjanthitrem I. Toxins 2020, 12, 526. [Google Scholar] [CrossRef]
- Schardl, C.L.; Young, C.A.; Hesse, U.; Amyotte, S.G.; Andreeva, K.; Calie, P.J.; Fleetwood, D.J.; Haws, D.C.; Moore, N.; Oeser, B.; et al. Plant symbiotic fungi as chemical engineers: Multi-genome analysis of the Clavicipitaceae reveals dynamics of alkaloid loci. PLoS Genet. 2013, 9, e1003323. [Google Scholar] [CrossRef] [Green Version]
- Miller, T.A. Insect Bioactive Capabilities of Epichloë Festucae var lolii AR48 Infected Lolium perenne. Ph.D. Thesis, Massey University, Palmerston North, New Zealand, 2018. [Google Scholar]
- Johnson, R.D.; Lane, G.A.; Koulman, A.; Cao, M.; Fraser, K.; Fleetwood, D.J.; Voisey, C.; Dyer, J.M.; Pratt, J.; Christensen, M.; et al. A novel family of cyclic oligopeptides derived from ribosomal peptide synthesis of an in planta-induced gene, gigA, in Epichloë endophytes of grasses. Fungal Genet Biol. 2015, 85, 14–24. [Google Scholar] [CrossRef]
- Song, Q.; Yu, H.; Zhang, X.; Nan, Z.; Kun Gao, K. Dahurelmusin A, a hybrid peptide–polyketide from Elymus dahuricus Infected by the Epichloë bromicola endophyte. Org. Lett. 2017, 19, 298–300. [Google Scholar] [CrossRef]
- Lane, G.A.; Christensen, M.J.; Miles, C.O. Coevolution of fungal endophytes with grasses: The significance of secondary metabolites. In Microbial Endophytes; Bacon, C.W., White, J.F., Eds.; Marcel Dekker: New York, NY, USA, 2000; pp. 341–388. [Google Scholar]
- Easton, H.S.; Latch, G.; Tapper, B.; Ball, J. Ryegrass host genetic control of concentrations of endophyte-derived alkaloids. Crop Sci. 2002, 42, 51–57. [Google Scholar] [PubMed]
- Faeth, S.H.; Bush, L.P.; Sullivan, T. Peramine alkaloid variation in Neotyphodium-infected Arizona fescue: Effects of endophyte and host genotype and environment. J. Chem. Ecol. 2002, 28, 1511–1526. [Google Scholar] [CrossRef] [PubMed]
- Bastias, D.A.; Martinez-Ghersa, M.A.; Ballare, C.L.; Gundel, P.E. Epichloë fungal endophytes and plant defenses: Not just alkaloids. Trends Plant Sci. 2017. [Google Scholar] [CrossRef] [PubMed]
- Lyons, P.C.; Plattner, R.D.; Bacon, C.W. Occurrence of peptide and clavine ergot alkaloids in tall fescue. Science 1986, 232, 487–489. [Google Scholar] [CrossRef] [Green Version]
- Agee, C.; Hill, N. Ergovaline variability in Acremonium-infected tall fescue due to environment and plant genotype. Crop Sci. 1994, 34, 221–226. [Google Scholar] [CrossRef]
- Rasmussen, S.; Parsons, A.J.; Bassett, S.; Christensen, M.J.; Hume, D.E.; Johnson, L.J.; Johnson, R.D.; Simpson, W.R.; Stacke, C.; Voisey, C.R.; et al. High nitrogen supply and carbohydrate content reduce fungal endophyte and alkaloid concentration in Lolium perenne. New Phytol. 2007, 173, 787–797. [Google Scholar] [CrossRef]
- Brosi, G.; McCulley, R.; Bush, L.; Nelson, J.; Classen, A.; Norby, R. Effects of multiple climate change factors on the tall fescue-fungal endophyte symbiosis: Infection frequency and tissue chemistry. New Phytol. 2011, 189, 797–805. [Google Scholar] [CrossRef]
- Repussard, C.; Zbib, N.; Tardieu, D.; Guerre, P. Ergovaline and lolitrem B concentrations in perennial ryegrass in field culture in southern France: Distribution in the plant and impact of climatic factors. J. Agric. Food Chem. 2014, 62, 12707–12712. [Google Scholar] [CrossRef]
- Hennessy, L.M.; Popay, A.J.; Finch, S.C.; Clearwater, M.J.; Cave, V.M. Temperature and plant genotype alter alkaloid concentrations in ryegrass infected with an Epichloë endophyte and this affects an insect herbivore. Front. Plant Sci. 2016, 7, 1097. [Google Scholar] [CrossRef]
- Chujo, T.; Lukito, Y.; Eaton, C.J.; Dupont, P.Y.; Johnson, L.J.; Winter, D.; Cox, M.P.; Scott, B. Complex epigenetic regulation of alkaloid biosynthesis and host interaction by heterochromatin protein I in a fungal endophyte-plant symbiosis. Fungal Genet. Biol. 2019, 125, 71–83. [Google Scholar] [CrossRef]
- Tanaka, A.; Tapper, B.A.; Popay, A.; Parker, E.J.; Scott, B. A symbiosis expressed non-ribosomal peptide synthetase from a mutualistic fungal endophyte of perennial ryegrass confers protection to the symbiotum from insect herbivory. Mol. Microbiol. 2005, 57, 1036–1050. [Google Scholar] [CrossRef]
- Blankenship, J.D.; Spiering, M.J.; Wilkinson, H.H.; Fannin, F.F.; Bush, L.P.; Schardl, C.L. Production of loline alkaloids by the grass endophyte, Neotyphodium uncinatum, in defined media. Phytochemistry 2001, 58, 395–401. [Google Scholar] [CrossRef]
- Rowan, D.D. Lolitrems, peramine and paxilline: Mycotoxins of the ryegrass/endophyte interaction. Agric. Ecosyst. Environ. 1993, 44, 103–122. [Google Scholar] [CrossRef]
- Lukito, Y.; Chujo, T.; Hale, T.K.; Mace, W.; Johnson, L.J.; Scott, B. Regulation of subtelomeric fungal secondary metabolite genes by H3K4me3 regulators CclA and KdmB. Mol. Biol. 2019, 112, 837–853. [Google Scholar] [CrossRef]
- Chujo, T.; Scott, B. Histone H3K9 and H3K27 methylation regulates fungal alkaloid biosynthesis in a fungal endophyte-plant symbiosis. Mol. Microbiol. 2014, 92, 413–434. [Google Scholar] [CrossRef]
- Spiering, M.J.; Lane, G.A.; Christensen, M.J.; Schmid, J. Distribution of the fungal endophyte Neotyphodium lolii is not a major determinant of the distribution of fungal alkaloids in Lolium perenne plants. Phytochemistry 2005, 66, 195–202. [Google Scholar] [CrossRef]
- Ball, O.J.-P.; Barker, G.M.; Prestidge, R.A.; Lauren, D.R. Distribution and accumulation of the alkaloid peramine in Neotyphodium lolii-infected perennial ryegrass. J. Chem. Ecol. 1997, 23, 1419–1434. [Google Scholar] [CrossRef]
- Koulman, A.; Lane, G.A.; Christensen, M.J.; Fraser, K.; Tapper, B.A. Peramine and other fungal alkaloids are exuded in the guttation fluid of endophyte-infected grasses. Phytochemistry 2007, 68, 355–360. [Google Scholar] [CrossRef]
- Ball, O.J.-P.; Bernard, E.C.; Gwinn, K.D. Effect of selected Neotyphodium lolii isolates on root-knot nematode (Meloidogyne marylandi) numbers in perennial ryegrass. In Proceedings of the 50th New Zealand Plant Protection Conference, Canterbury, New Zealand, 18–21 August 1997; pp. 65–68. [Google Scholar]
- Patchett, B.J.; Chapman, R.B.; Fletcher, L.R.; Gooneratne, S.R. Root loline concentration in endophyte infected meadow fescue (Festuca pratensis) is increased by grass grub (Costelytra zealandica) attack. In Proceedings of the 61st NZ Plant Protection Conference, Paihia, New Zealand, 12–14 August 2008; pp. 210–214. [Google Scholar]
- Patchett, B.J.; Gooneratne, S.; Chapman, R.B.; Fletcher, L.R. Effects of loline-producing endophyte-infected meadow fescue ecotypes on New Zealand grass grub (Costelytra zealandica). N. Z. J. Agric. Res. 2011, 54, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Moore, J.R.; Pratley, J.E.; Mace, E.J.; Weston, L.A. Variation in alkaloid production from genetically diverse Lolium accessions infected with Epichloë species. J. Agric. Food Chem. 2015, 63, 10355–10365. [Google Scholar] [CrossRef]
- Justus, M.; Witte, L.; Hartmann, T. Levels and tissue distribution of loline alkaloids in endophyte-infected Festuca pratensis. Phytochemistry 1996, 44, 51–57. [Google Scholar] [CrossRef]
- DeAngelis, D.L.; Post, W.M.; Travis, C.C. Mutualistic and Competitive Systems. In Positive Feedback in Natural Systems, Biomathematics; Springer: Berlin, Germany, 1986; p. 15. [Google Scholar]
- Thompson, J.N. The Coevolutionary Process; University of Chicago Press: Chicago, IL, USA, 1994; p. 383. [Google Scholar]
- Wilkinson, H.H.; Schardl, C.L. The evolution of mutualism in grass-endophyte associations. In Neotyphodium/Grass Interactions; Bacon, C.W., Hill, N.S., Eds.; Plenum Press: New York, NY, USA, 1997; pp. 13–25. [Google Scholar]
- Schardl, C.L. Epichloë festucae and related mutualistic symbionts of grasses. Fungal Genet. Biol. 2001, 33, 69–82. [Google Scholar] [CrossRef]
- Scott, B.; Green, K.; Berry, D. The fine balance between mutualism and antagonism in the Epichloë festucae-grass symbiotic interaction. Curr. Opin. Plant Biol. 2018, 44, 32–38. [Google Scholar] [CrossRef]
- Forester, N.T.; Lane, G.A.; Steringa, M.; Lamont, I.L.; Johnson, L.J. Contrasting roles of fungal siderophores in maintaining iron homeostasis in Epichloë festucae. Fungal Genet. Biol. 2018, 111, 60–72. [Google Scholar] [CrossRef]
- Forester, N.T.; Lane, G.A.; McKenzie, C.M.; Lamont, I.L.; Johnson, L.J. The Role of SreA-mediated iron regulation in maintaining Epichloë festucae–Lolium perenne symbioses. Mol. Plant Microbe Interact. 2019, 32, 1324–1335. [Google Scholar] [CrossRef]
- Johnson, L.J.; Koulman, A.; Christensen, M.; Lane, G.A.; Fraser, K.; Forester, N.; Johnson, R.D.; Bryan, G.T.; Rasmussen, S. An extracellular siderophore is required to maintain the mutualistic interaction of Epichloë festucae with Lolium perenne. PLoS Pathog. 2013, 9, e1003332. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, A.; Christensen, M.J.; Takemoto, D.; Park, P.; Scott, B. Reactive oxygen species play a role in regulating a fungus-perennial ryegrass mutualistic association. Plant Cell 2006, 18, 1052–1066. [Google Scholar] [CrossRef] [Green Version]
- Mitic, M.; Berry, D.; Brasell, E.; Green, K.; Young, C.A.; Saikia, S.; Rakonjac, J.; Scott, B. Disruption of calcineurin catalytic subunit (cnaA) in Epichloë festucae induces symbiotic defects and intrahyphal hyphae formation. Mol. Plant Pathol. 2018, 19, 1414–1426. [Google Scholar] [CrossRef] [Green Version]
- Hassing, B.; Eaton, C.J.; Winter, D.; Green, K.A.; Brandt, U.; Savoian, M.S.; Mesarich, C.H.; Fleissner, A.; Scott, B. Phosphatidic acid produced by phospholipase D is required for hyphal cell-cell fusion and fungal-plant symbiosis. bioRxiv 2020. [Google Scholar] [CrossRef]
- Bisson, A. The Role of the G Protein and cAMP/PKA Signalling Pathway in Establishment and Maintenance of the Mutualistic Epichloë festucae—Ryegrass Association. Ph.D. Thesis, Massey University, Palmerston North, New Zealand, 2017. [Google Scholar]
- Voisey, C.R.; Christensen, M.T.; Johnson, L.J.; Forester, N.T.; Gagic, M.; Bryan, G.T.; Simpson, W.R.; Fleetwood, D.J.; Card, S.D.; Koolaard, J.P.; et al. cAMP signaling regulates synchronised growth of symbiotic Epichloë fungi with the host grass Lolium perenne. Front. Plant Sci. 2016, 7, 1546. [Google Scholar] [CrossRef] [Green Version]
- Eaton, C.J.; Cox, M.P.; Ambrose, B.; Becker, M.; Hesse, U.; Schardl, C.L.; Scott, B. Disruption of signaling in a fungal-grass symbiosis leads to pathogenesis. Plant Physiol. 2010, 153, 1780–1794. [Google Scholar] [CrossRef] [Green Version]
- Becker, Y.; Eaton, C.J.; Brasell, E.; May, K.J.; Becker, M.; Hassing, B.; Cartwright, G.M.; Reinhold, L.; Barry, S.B. The fungal cell-wall integrity MAPK cascade is crucial for hyphal network formation and maintenance of restrictive growth of Epichloë festucae in symbiosis with Lolium perenne. MPMI 2015, 28, 69–85. [Google Scholar] [CrossRef] [Green Version]
- Ambrose, K.V.; Belanger, F.C. SOLiD-SAGE of endophyte-infected red fescue reveals numerous effects on host transcriptome and an abundance of highly expressed fungal secreted proteins. PLoS ONE 2012, 7, e53214. [Google Scholar] [CrossRef] [Green Version]
- Dinkins, R.D.; Nagabhyru, P.; Graham, M.A.; Boykin, D.; Schardl, C.L. Transcriptome response of Lolium arundinaceum to its fungal endophyte Epichloë coenophiala. New Phytol. 2017, 213, 324–337. [Google Scholar] [CrossRef]
- Dupont, P.-Y.; Eaton, C.J.; Wargent, J.J.; Fechtner, S.; Solomon, P.; Schmid, J.; Day, R.C.; Scott, B.; Cox, M.P. Fungal endophyte infection of ryegrass reprograms host metabolism and alters development. New Phytol. 2015, 208, 1227–1240. [Google Scholar] [CrossRef]
- Schmid, J.; Day, R.; Zhang, N.; Dupont, P.Y.; Cox, M.P.; Schardl, C.L.; Minards, N.; Truglio, M.; Moore, N.; Harris, D.R.; et al. Host tissue environment directs activities of an Epichloë endophyte, while it induces systemic hormone and defense responses in its native perennial ryegrass host. Mol. Plant Microbe Interact. 2017, 30, 138–149. [Google Scholar] [CrossRef] [Green Version]
- Nagabhyru, P.; Dinkins, R.D.; Schardl, C.L. Transcriptomics of Epichloë-Grass symbioses in host vegetative and reproductive stages. Mol. Plant Microbe Interact. 2019, 32, 194–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sampson, K. The systemic infection of grasses by Epichloë typhina (Pers.) Tul. Trans. Br. Mycol. Soc. 1933, 18, 30–47. [Google Scholar] [CrossRef]
- Stone, J.K.; Bacon, C.W.; White, J. An Overview of Endophytic Microbes: Endophytism Defined. In Microbial Endophytes; Bacon, C.W., White, J.F., Eds.; Marcel Dekker: New York, NY, USA, 2000; pp. 29–33. [Google Scholar]
- Schardl, C.L.; Leuchtmann, A.; Spiering, M.J. Symbioses of grasses with seedborne fungal endophytes. Ann. Rev. Plant Biol. 2004, 55, 315–340. [Google Scholar] [CrossRef]
- Voisey, C.R. Intercalary growth in hyphae of filamentous fungi. Fungal Biol. Rev. 2010, 24, 123–131. [Google Scholar] [CrossRef]
- Christensen, M.J.; Bennett, R.J.; Ansari, H.A.; Koga, H.; Johnson, R.D.; Bryan, G.T.; Simpson, W.R.; Koolaard, J.P.; Nickless, E.M.; Voisey, D.R. Epichloë endophytes grow by intercalary hyphal extension in elongating grass leaves. Fungal Genet. Biol. 2008, 45, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Schardl, C.L.; Craven, K.D.; Speakman, S.; Stromberg, A.; Lindstrom, A.; Yoshida, R. A novel test for host-symbiont codivergence indicates ancient origin of fungal endophytes in grasses. Syst. Biol. 2008, 5, 483–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schirrmann, M.K.; Zoller, S.; Croll, D.; Stukenbrock, E.H.; Leuchtmann, A.; Fior, S. Genomewide signatures of selection in Epichloë reveal candidate genes for host specialization. Mol. Ecol. 2018, 27, 3070–3086. [Google Scholar] [CrossRef] [PubMed]
- Schirrmann, M.K.; Leuchtmann, A. The role of host-specificity in the reproductive isolation of Epichloë endophytes revealed by reciprocal infections. Fungal Ecol. 2015, 15, 29–38. [Google Scholar] [CrossRef]
- Karimi, S.; Mirlohi, A.; Sabzalain, M.R.; Tabatabaei, B.E.S.; Sharifnabi, B. Molecular evidence for Neotyphodium fungal endophyte variation and specificity within host grass species. Mycologia 2012, 104, 1281–1290. [Google Scholar] [CrossRef]
- Philipson, M.N. A symptomless endophyte of ryegrass (Lolium perenne) that spores on its host—a light microscope study. N. Z. J. Bot. 1989, 27, 513–519. [Google Scholar] [CrossRef] [Green Version]
- Clement, S.L.; Elberson, L.R.; Kynaston, M. High Neotyphodium Infection Frequencies in Tillers and Seed of Infected Wild Tall Fescue Plants. In Proceedings of the 6th International Symposium on Fungal Endophytes of Grasses; Christchurch, New Zealand, 25–28 March 2007, Popay, A.J., Thom, E.R., Eds.; Grassland Association Grassland Research and Practice Series; Volume 13, pp. 49–52.
- Lewis, G.C.; Ravel, C.; Naffaa, W.; Astier, C.; Charmet, G. Occurrence of Acremonium—Endophytes in wild populations of Lolium sp. in European countries and a relationship between level of infection and climate in France. Ann. Appl. Biol. 1997, 130, 27–38. [Google Scholar] [CrossRef]
- Cheplick, G.P.; Clay, K.; Marks, S. Interactions between infection by endophytic fungi and nutrient limitation in the grasses Lolium perenne and Festuca arundinacea. New Phytol. 1989, 111, 89–97. [Google Scholar] [CrossRef]
- Saikkonen, K.; Faeth, S.H.; Helander, M.L.; Sullivan, T.J. Fungal endophytes: A continuum of interactions with host plant. Ann. Rev. Ecol. Syst. 1998, 29, 319–343. [Google Scholar] [CrossRef]
- Ravel, C.; Michalakis, Y.; Charmet, G. The effect of imperfect transmission on the frequency of mutualistic seed-borne endophytes in natural populations of grasses. Oikos 1997, 80, 18–24. [Google Scholar] [CrossRef]
- Rolston, M.P.; Hare, M.D.; Moore, K.K.; Christensen, M.J. Viability of Lolium endophyte fungus in seed stored at different moisture contents and temperatures. N. Z. J. Exp. Agric. 1986, 14, 297–300. [Google Scholar]
- Welty, R.E.; Azevedo, M.D.; Cooper, T.M. Influence of moisture content, temperature, and length of storage on seed germination and survival of endophytic fungi in seeds of tall fescue and perennial ryegrass. Phytopathology 1987, 77, 893–900. [Google Scholar] [CrossRef]
- Gundel, P.E.; Omacini, M.; Sadras, V.O.; Ghersa, C.M. The interplay between the effectiveness of the grass-endophyte mutualism and the genetic variability of the host plant. Evol. Appl. 2010, 3, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Gundel, P.E.; Martinez-Ghersa, M.A.; Omacini, M.; Cuyeu, R.; Pagano, E.; Rios, R.; Ghersa, C.M. Mutualism effectiveness and vertical transmission of symbiotic fungal endophytes in response to host genetic background. Evol. Appl. 2012, 5, 838–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gagic, M.; Faville, M.J.; Zhang, W.; Forester, N.T.; Rolston, M.P.; Johnson, R.D.; Ganesh, S.; Koolaard, J.P.; Easton, H.S.; Hudson, D.; et al. Seed transmission of Epichloë endophytes in Lolium perenne is heavily influenced by host genetics. Front. Plant Sci. 2018, 9, 1580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, P.; Le, T.-N.; Smith, K.F.; Forster, J.W.; Guthridge, K.M.; Spangenberg, G.C. Stability and viability of novel perennial ryegrass host–Neotyphodium endophyte associations. Crop Pasture Sci. 2013, 64, 39–50. [Google Scholar] [CrossRef]
- Hume, D.E.; Schmid, J.; Rolston, M.P.; Vijayan, P.; Hickey, M.J. Effect of climatic conditions on endophyte and seed viability in stored ryegrass seed. Seed Sci. Technol. 2011, 39, 481–489. [Google Scholar] [CrossRef]
- Bacon, C.W.; Porter, J.K.; Robbins, J.D.; Luttrell, E.S. Epichloë typhina from toxic tall fescue grasses. Appl. Environ. Microbiol. 1977, 34, 576–581. [Google Scholar] [CrossRef] [Green Version]
- Hoveland, C.S. Endophyte-research and impact. In Proceedings of the 4th International Neotyphodium/Grass Interactions Symposium, Soest, Germany, 27–29 September 2000; Paul, V.H., Dapprich, P.D., Eds.; pp. 1–8. [Google Scholar]
- Fletcher, L.R.; Harvey, I.C. An association of a Lolium endophyte with ryegrass staggers. N. Z. Vet. J. 1981, 29, 185–186. [Google Scholar] [CrossRef]
- Siegel, M.R.; Latch, G.C.M.; Johnson, M.C. Acremonium fungal endophytes of tall fescue and perennial ryegrass—Significance and control. Plant Dis. 1985, 69, 179–183. [Google Scholar]
- Comis, D. The grass farmers love to hate. Agricl. Res. 2000, 48, 4–7. [Google Scholar]
- Schmidt, S.P.; Hoveland, C.S.; Clark, E.M.; Davis, N.D.; Smith, L.A.; Grimes, H.W.; Holliman, J.L. Association of an endophytic fungus with fescue toxicity in steers fed Kentucky 31 tall fescue seed or hay. J. Anim. Sci. 1982, 55, 1259–1263. [Google Scholar] [CrossRef] [Green Version]
- Hemken, R.W.; Jackson, J.A.; Boling, J.A. Toxic factors in tall fescue. J. Anim. Sci. 1984, 58, 1011–1016. [Google Scholar] [CrossRef] [PubMed]
- Bacon, C.W. Toxic endophyte-infected tall fescue and range grasses: Historic perspectives. J Anim. Sci. 1995, 73, 861–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemken, R.W.; Bull, L.S.; Boling, J.; Kane, E.; Bush, L.P.; Buckner, R.C. Summer fescue toxicosis in lactating dairy cows and sheep fed experimental strains of ryegrass-tall fescue hybrids. J. Anim. Sci. 1979, 49, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Gadberry, M.S.; Denard, T.M.; Spiers, D.E.; Piper, E.L. Effects of feeding ergovaline on lamb performance in a heat stress environment. J. Anim. Sci. 2003, 81, 1538–1545. [Google Scholar] [CrossRef]
- Zbib, N.; Repussard, C.; Tardieu, D.; Priymenko, N.; Domange, C.; Guerre, P. Ergovaline in tall fescue and its effect on health, milk quality, biochemical parameters, oxidative status, and drug metabolizing enzymes of lactating ewes. J. Anim. Sci. 2014, 92, 5112–5123. [Google Scholar] [CrossRef] [Green Version]
- Browning, R.; Donnelly, B., Jr.; Payton, T.; Pandya, P.; Byars, M. Body weight gain and voluntary intake in meat goat does fed endophyte-infected and endophyte-free tall fescue seed. In Proceedings of the 6th International Symposium on Fungal Endophytes of Grasses; Christchurch, New Zealand, 25–28 March 2007, Popay, A.J., Thom, E.R., Eds.; NZ Grassland Association Grassland Research and Practice Series; Volume 13, pp. 427–429.
- Cross, D.L. Fescue Toxicosis in Horses. In Neotyphodium/Grass Interactions; Bacon, C.W., Hill, N.S., Eds.; Springer: Boston, MA, USA, 1997; pp. 289–309. [Google Scholar]
- Wolfe, B.A.; Bush, M.; Monfort, S.L.; Mumford, S.L.; Pessier, A.; Montali, R.J. Abdominal lipomatosis attributed to tall fescue toxicosis in deer. J. Am. Vet. Med. Assoc. 1998, 213, 783–1754. [Google Scholar]
- Sampaio, N.; Gishen, M.; Reed, K.; Brown, M.; Gregory, D.; Munyard, K. The occurrence and severity of grass toxicoses in Australian alpaca (Vicugna pacos) herds. Aust. J. Exp. Agric. 2008, 48, 1099–1104. [Google Scholar] [CrossRef]
- Tor-Agbidye, J.; Blythe, L.L.; Craig, A.M. Correlation of endophyte toxins (ergovaline and lolitrem B) with clinical disease: Fescue foot and perennial ryegrass staggers. Vet. Human Toxicol. 2011, 43, 140–146. [Google Scholar]
- Ayers, A.W.; Hill, N.S.; Rottinghaus, G.E.; Stuedemann, J.A.; Thompson, F.N.; Purinton, P.T.; Seman, D.H.; Dawe, D.L.; Parks, A.H.; Ensley, D. Ruminal metabolism and transport of tall fescue ergot alkaloids. Crop Sci. 2009, 49, 2309–2316. [Google Scholar] [CrossRef] [Green Version]
- Klotz, J.L.; Kirch, B.H.; Aiken, G.E.; Bush, L.P.; Strickland, J.R. Contractile response of fescue-näive bovine lateral saphenous veins to increasing concentrations of tall fescue alkaloids. J. Anim. Sci. 2010, 88, 408–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strickland, J.R.; Looper, M.L.; Matthews, J.C.; Rosenkrans, C.F., Jr.; Flythe, M.D.; Brown, K.R. BOARD-INVITED REVIEW: St. Anthony’s Fire in livestock: Causes, mechanisms, and potential solutions. J. Anim. Sci. 2011, 89, 1603–1626. [Google Scholar] [CrossRef] [PubMed]
- Van Heeswijck, R.; McDonald, G. Acremonium endophytes in perennial ryegrass and other pasture grasses in Australia and New Zealand. Aust. J. Agric. Res. 1992, 43, 1683–1709. [Google Scholar] [CrossRef]
- Di Menna, M.E.; Finch, S.C.; Popay, A.J.; Smith, B.L. A review of the Neotyphodium lolii/Lolium perenne symbiosis and its associated effects on animal and plant health, with particular emphasis on ryegrass staggers. N. Z. Vet. J. 2012, 20, 315–328. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, R.T.; White, E.P.; Mortimer, P.H. Ryegrass staggers: Isolation of potent neurotoxins lolitrem A and lolitrem B from staggers producing pastures. N. Z. Vet. J. 1981, 29, 189–190. [Google Scholar] [CrossRef]
- Gilruth, J.A. Menings-encephalitis (stomach staggers) of horses cattle and sheep. Annu. Rep. N. Z. Depart. Gric. 1906, 14, 293–297. [Google Scholar]
- McLeay, L.M.; Smith, B.L. Effects of the mycotoxins lolitrem B and paxilline on gastrointestinal smooth muscle, the cardiovascular and respiratory systems, and temperature in sheep. In Proceedings of the Ryegrass Endophyte: An Essential New Zealand Symbiosis; Napier, New Zealand, 8 October 1999, Woodfield, D.R., Matthew, C., Eds.; NZ Grassland Association Grassland Research and Practice Series; Volume 7, pp. 69–75.
- Guerre, P. Ergot alkaloids produced by endophytic fungi of the genus Epichloë. Toxins 2015, 7, 773–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fletcher, L.R. Heat stress in lambs grazing ryegrass with different endophytes. In Proceedings of the 2nd International Symposium on Acremonium/Grass Interactions, Palmerston North, New Zealand, 2–12 February 1993; AgResearch: Hamilton, New Zealand, 1993; pp. 114–118. [Google Scholar]
- Fletcher, L.R.; Markham, L.J.; White, S.R. Endophytes and heat tolerance in lambs grazing perennial ryegrass. Proc. N. Z. Grassl. Assoc. 1994, 56, 265–270. [Google Scholar] [CrossRef]
- Stuedemann, J.A.; Thompson, F.N. Management strategies and potential opportunities to reduce the effects of endophyte-infested tall fescue on animal performance. In Proceedings of the 2nd International Symposium Acremonium/Grass Interactions, Palmerston North, New Zealand, 2–12 February 1993; Hume, D.E., Latch, G.C.M., Easton, H.S., Eds.; Plenary Papers. pp. 103–114. [Google Scholar]
- Fletcher, L.R.; Sutherland, B.L.; Fletcher, G.C. The impact of endophyte on the health and productivity of sheep grazing ryegrass-based pasture. In Ryegrass Endophyte: An Essential New Zealand Symbiosis; NZ Grassland Association Grassland Research and Practice Series; Woodfield, D.R., Matthew, C., Eds.; NZ Grassland Association: Napier, New Zealand, 1999; Volume 7, pp. 11–17. [Google Scholar]
- Reed, K.F.M. Pasture ryegrass toxins in Australian pasture. In Proceedings of the Symposium, Meat and Livestock Australia, Attwood, Australia, 18 March 2005; Perennial Ryegrass Toxicosis in Australia. pp. 11–17. [Google Scholar]
- Pennell, C.G.L.; Popay, A.J.; Rolston, M.P.; Townsend, R.J.; Lloyd-West, C.M.; Card, S.D. Avanex unique endophyte technology: Reduced insect food source at airports. Environ. Entomol. 2016, 45, 101–108. [Google Scholar] [CrossRef]
- Finch, S.C.; Munday, J.S.; Munday, R.; Kerby, J.W.F. Short term toxicity studies of loline alkaloids in mice. Food Chem. Toxicol. 2016, 94, 243–249. [Google Scholar] [CrossRef]
- Pownall, D.B.; Familton, A.S.; Field, R.J.; Fletcher, L.R.; Lane, G.A. The effect of peramine ingestion in pen-fed lambs. Proc. N. Z. Soc. Anim. Producti. 1995, 55, 186. [Google Scholar]
- Clay, K.; Schardl, C. Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am. Nat. 2002, 160, S99–S127. [Google Scholar] [CrossRef] [PubMed]
- Ball, O.J.-P.; Tapper, B.A. The production of loline alkaloids in artificial and natural grass/endophyte associations. In Proceedings of the 52nd New Zealand Plant Protection Conference, Auckland Airport Royal-Centra, Auckland, New Zealand, 9–12 August 1999; pp. 264–269. [Google Scholar]
- Adhikari, K.B.; Boelt, B.; Fomsgaard, I.S. Identification and quantification of loline-type alkaloids in endophyte-infected grasses by LC-MS/MS. J. Agric. Food Chem. 2016, 64, 6212–6218. [Google Scholar] [CrossRef]
- Patchett, B.J. Loline alkaloids: Analysis and Effect on Sheep and Pasture Insects. Ph.D. Thesis, Lincoln University, Lincoln, New Zealand, 2007. [Google Scholar]
- Bourke, C.A.; Hunt, E.; Watson, R. Fescue-associated oedema of horses grazing on endophyte inoculated tall fescue grass (Festuca arundinacea) pastures. Aust. Vet. J. 2009, 87, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Finch, S.C.; Munday, J.S.; Sutherland, B.L.; Vlaming, J.B.; Fletcher, L.R. Further investigation of equine fescue oedema induced by Mediterranean tall fescue (Lolium arundinaceum) infected with selected fungal endophytes (Epichloë coenophiala). N. Z. Vet. J. 2017, 65, 322–326. [Google Scholar] [CrossRef]
- Gooneratne, S.R.; Patchett, B.J.; Wellby, M.; Fletcher, L.R. Excretion of loline alkaloids in urine and faeces of sheep dosed with meadow fescue (Festuca pratensis) seed containing high concentrations of loline alkaloids. N. Z. Vet. J. 2012, 60, 176–182. [Google Scholar] [CrossRef]
- Schardl, C.; Panaccione, D.; Tudzynski, P. Ergot alkaloids—Biology and molecular biology. Alkaloids Chem. Biol. 2007, 63, 45–86. [Google Scholar]
- Piper, E.; Denard, T.; Johnson, Z.; Flieger, M. Effect of chanoclavine on in vitro prolactin release. In Proceedings of the 4th International Neoptyphodium/Grass interactions Symposium, Soest, Germany, 27–29 September 2000; Paul, V.H., Dapprich, P.D., Eds.; pp. 531–534. [Google Scholar]
- Finch, S.C.; Munday, J.S.; Sprosen, J.M.; Bhattarai, S. Toxicity studies of chanoclavine in mice. Toxins 2019, 11, 249. [Google Scholar] [CrossRef] [Green Version]
- Petroski, R.J.; Powell, R.G.; Clay, K. Alkaloids of Stipa robusta (sleepygrass) infected with an Acremonium endophyte. Nat. Toxins 1992, 1, 84–88. [Google Scholar] [CrossRef]
- Miles, C.O.; Lane, G.A.; di Menna, M.E.; Garthwaite, I.; Piper, E.L.; Ball, O.J.-P.; Latch, G.C.M.; Allen, J.M.; Hunt, M.B.; Bush, L.P.; et al. High levels of ergonovine and lysergic acid amide in toxic Achnatherum inebrians accompany infection by an Acremonium-like endophytic fungus. J. Agric. Food Chem. 1996, 44, 1285–1290. [Google Scholar] [CrossRef]
- Browning, R.; Leite-Browning, M.L. Effect of ergotamine and ergonovine on thermal regulation and cardiovascular function in cattle. J. Anim. Sci. 1997, 75, 176–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klotz, J.L.; Bush, L.P.; Smith, D.L.; Schafer, W.D.; Smith, L.L.; Arrington, B.C.; Strickland, J.R. Ergovaline-induced vasoconstriction in an isolated bovine lateral saphenous vein bioassay. J. Anim. Sci. 2007, 85, 2330–2336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coulfal-Majewski, S.; Stanford, K.; McAllister, T.; Blakley, B.; McKinnon, J.; Chaves, A.V.; Wang, Y. Impacts of cereal ergot in food animal production. Front. Vet. Sci. 2016, 3, 15. [Google Scholar] [CrossRef] [Green Version]
- Solomons, R.N.; Oliver, J.W.; Linnabary, R.D. Reactivity of the dorsal pedal vein of cattle to selected alkaloids associated with Acremonium coenophialum-infected fescue grass. Am. J. Vet. Res. 1989, 50, 235–238. [Google Scholar]
- Porter, J.K. Chemical constituents of grass endophytes. In Biotechnology of Endophytic Fungi of Grasses; Bacon, C.W., White, J.F., Jr., Eds.; CRC Press: Boca Raton, FL, USA, 1994; pp. 103–123. [Google Scholar]
- Strickland, J.R.; Cross, D.L.; Birrenkott, G.P.; Grimes, L.W. Effect of ergovaline, loline, and dopamine antagonists on rat pituitary cell prolactin-release in-vitro. Am. J. Vet. Res. 1994, 55, 716–721. [Google Scholar]
- Easton, H.S.; Lane, G.A.; Tapper, B.A.; Keogh, R.G.; Cooper, B.M.; Blackwell, M.; Anderson, M.; Fletcher, L.R. Ryegrass endophyte-related heat stress in cattle. Proc. N. Z. Grassl. Assoc. 1996, 57, 37–41. [Google Scholar] [CrossRef]
- De Lorme, M.J.M.; Lodge-Ivey, S.L.; Craig, A.M. Physiological and digestive effects of Neotyphodium coenophialum infected tall fescue fed to lambs. J. Anim. Sci. 2007, 85, 1199–1206. [Google Scholar] [CrossRef] [Green Version]
- Klotz, J.L.; Bush, L.P.; Smith, D.L.; Schafer, W.D.; Smith, L.L.; Vevoda, A.O.; Craig, A.M.; Arrington, B.C.; Strickland, J.R. Assessment of vasoconstrictive potential of d-lysergic acid using an isolated bovine lateral saphenous vein bioassay. J. Anim. Sci. 2006, 84, 3167–3175. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, L.R.; Sutherland, B.L. Sheep responses to grazing ryegrass with AR37 endophyte. Proc. N. Z. Grassl. Assoc. 2009, 71, 127–132. [Google Scholar] [CrossRef]
- Babu, J.V.; Popay, A.J.; Miles, C.O.; Wilkins, A.L.; di Menna, M.E.; Finch, S.C. Identification and structure elucidation of janthitrems A and D from Penicillium janthinellum and determination of the tremorgenic and anti-insect activity of janthitrems A and B. J. Agric. Food Chem. 2018, 66, 13116–13125. [Google Scholar] [CrossRef] [PubMed]
- Munday-Finch, S.C.; Wilkins, A.L.; Miles, C.O.; Ede, R.M.; Thomson, R.A. Structure elucidation of lolitrem F, a naturally-occurring stereoisomer of the tremorgenic mycotoxin lolitrem B, isolated from Lolium perenne infected with Acremonium lolii. J. Agric. Food Chem. 1996, 44, 2782–2788. [Google Scholar] [CrossRef]
- Gallagher, R.T.; Campbell, A.G.; Hawkes, A.D.; Holland, P.T.; McGaveston, D.A.; Pansier, E.A. Ryegrass staggers: The presence of lolitrem neurotoxins in perennial ryegrass seed. N. Z. Vet. J. 1982, 30, 183–184. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, R.T.; Hawkes, A.D. Estimation of neurotoxin levels in perennial ryegrass by mouse bioassay. N. Z. J. Agric. Res. 1985, 28, 427–431. [Google Scholar] [CrossRef]
- Munday-Finch, S.C.; Miles, C.O.; Wilkins, A.L.; Hawkes, A.D. Isolation and structure elucidation of lolitrem A, a tremorgenic mycotoxin from perennial ryegrass infected with Acremonium lolii. J. Agric. Food Chem. 1995, 43, 1283–1288. [Google Scholar] [CrossRef]
- Blythe, L.; Estill, C.; Males, J.; Craig, A.M. Determination of the Toxic Threshold of Lolitrem B in Cattle Eating Endophyte-Infected Perennial Ryegrass. In Proceedings of the 6th International Symposium on Fungal Endophytes of Grasses; Christchurch, New Zealand, 25–28 March 2007, Popay, A.J., Thom, E.R., Eds.; NZ Grassland Association Grassland Research and Practice Series; Volume 13, pp. 399–402.
- Guerre, P. Lolitrem B and indole diterpene alkaloids produced by endophytic fungi of the genus Epichloë and their toxic effects in livestock. Toxins 2016, 8, 47. [Google Scholar] [CrossRef] [Green Version]
- Miles, C.O.; Munday, S.C.; Wilkins, A.L.; Ede, R.M.; Towers, N.R. Large-scale isolation of lolitrem B and structure determination of lolitrem E. J. Agric. Food Chem. 1994, 42, 1488–1492. [Google Scholar] [CrossRef]
- Nakazawa, J.; Yajima, J.; Usui, T.; Ueki, M.; Takatsuki, A.; Imoto, M.; Toyoshima, Y.Y.; Osada, H. A novel action of terpendole E on the motor activity of mitotic Kinesin Eg5. Chem. Biol. 2003, 10, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Miles, C.O.; Wilkins, A.L.; Gallagher, R.T.; Hawkes, A.D.; Munday, S.C.; Towers, N.R. Synthesis and tremorgenicity of paxitriols and lolitriol: Possible biosynthetic precursors of lolitrem B. J. Agric. Food Chem. 1992, 40, 234–238. [Google Scholar] [CrossRef]
- Cole, R.J.; Kirksey, J.W.; Wells, J.M. A new tremorgenic metabolite from Penicillium paxilli. Can. J. Microb. 1974, 20, 1159–1162. [Google Scholar] [CrossRef]
- Gallagher, R.T.; Hawkes, A.D. The potent tremorgenic neurotoxins lolitrem B and aflatrem: A comparison of the tremor response in mice. Experientia 1986, 42, 823–825. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, L.R.; Popay, A.J.; Tapper, B.A. Evaluation of several lolitrem-free endophyte/perennial ryegrass combinations. Proc. N. Z. Grassl. Assoc. 1991, 53, 215–219. [Google Scholar] [CrossRef]
- Fletcher, L.R.; Garthwaite, I.; Towers, N. Ryegrass staggers in the absence of lolitrem B. In Proceedings of the 2nd International Symposium Acremonium/Grass Interactions, Palmerston North, New Zealand, 2–12 February 1993; Hume, D.E., Ed.; pp. 119–121. [Google Scholar]
- Munday-Finch, S.C.; Wilkins, A.L.; Miles, C.O.; Tomoda, H.; Omura, S. Isolation and structure elucidation of lolilline, a possible biosynthetic precursor of the lolitrem family of tremorgenic mycotoxins. J. Agric. Food Chem. 1997, 45, 199–204. [Google Scholar] [CrossRef]
- Gatenby, W.A.; Munday-Finch, S.C.; Wilkins, A.L.; Miles, C.O. Terpendole M, a novel indole-diterpenoid isolated from Lolium perenne infected with the endophytic fungus Neotyphodium lolii. J. Agric. Food Chem. 1999, 47, 1092–1097. [Google Scholar] [CrossRef] [PubMed]
- Pownall, D.B.; Lucas, R.J.; Familton, A.S.; Love, B.G.; Hines, S.E.; Fletcher, L.R. The relationship between staggers and diarrhoea in lambs grazing different components of endophyte-infected ryegrass. Proc. N. Z. Soc. Anim. Product. 1993, 53, 19–22. [Google Scholar]
- Fletcher, L.R.; Easton, H.S. The evaluation of a Lolium endophyte with ryegrass staggers. N. Z. Vet. J. 1997, 29, 185–186. [Google Scholar] [CrossRef]
- Schardl, C.L.; Grossman, R.B.; Nagabhyru, P.; Faulkner, J.R.; Mallik, U.P. Loline alkaloids: Currencies of mutualism. Phytochemist 2007, 68, 980–996. [Google Scholar] [CrossRef]
- Hume, D.E.; Card, S.D.; Rolston, M.P. Effects of storage conditions on endophyte and seed viability in pasture grasses. In Proceedings of the 22nd International Grassland Congress, Sydney, Australia, 15–19 September 2013; pp. 405–408. [Google Scholar]
- Latch, G.C.M. Physiological interactions of endophytic fungi and their hosts. Biotic stress tolerance imparted to grasses by endophytes. Agric. Ecosyst. Environ. 1993, 44, 143–156. [Google Scholar] [CrossRef]
- Joost, R.E. Acremonium in fescue and ryegrass: Boon or bane? A Review. J. Anim. Sci. 1995, 73, 881–888. [Google Scholar] [CrossRef]
- Kuldau, G.; Bacon, C.W. Clavicipitaceous endophytes: Their ability to enhance resistance of grasses to multiple stresses. Biol. Control. 2008, 46, 57–71. [Google Scholar] [CrossRef]
- Hume, D.E.; Sewell, J.C. Agronomic advantages conferred by endophyte infection of perennial ryegrass (Lolium perenne L.) and tall fescue (Festuca arundinacea Schreb.) in Australia. Crop Pasture Sci. 2014, 65, 747–757. [Google Scholar] [CrossRef]
- Thom, E.R.; Popay, A.J.; Waugh, C.D.; Minneé, E.M.K. Impact of novel endophytes in perennial ryegrass on herbage production and insect pests from pastures under dairy cow grazing in northern New Zealand. Grass Forage Sci. 2014, 69, 191–204. [Google Scholar] [CrossRef]
- Crutchfield, B.A.; Potter, D.A. Damage Relationships of Japanese Beetle and Southern Masked Chafer (Coleoptera: Scarabaeidae) Grubs in Cool-Season Turfgrasses. J. Econ. Entomol. 1995, 88, 1049–1056. [Google Scholar] [CrossRef]
- Arachevaleta, M.; Bacon, C.W.; Plattner, R.D.; Hoveland, C.S.; Radcliffe, D.E. Accumulation of ergopeptide alkaloids in symbiotic tall fescue grown under deficits of soil water and nitrogen fertilizer. Appl. Environ. Microbiol. 1992, 58, 857–861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bacon, C.W. Abiotic stress tolerances (moisture, nutrients) and photosynthesis in endophyte-infected tall fescue. Agric. Ecosyst. Environ. 1993, 44, 123–141. [Google Scholar] [CrossRef]
- West, C.P. Physiology and drought tolerance of endophyte-infected grasses. In Biotechnology of endophytic fungi of grasses. In Biotechnology of Endophytic Fungi of Grasses; Bacon, C.W., White, J.F., Jr., Eds.; CRC Press: Boca Raton, FL, USA, 1994; pp. 87–99. [Google Scholar]
- Elbersen, H.W.; West, C.P. Growth and water relations of field-grown tall fescue as influenced by drought and endophyte. Grass Forage Sci. 1996, 51, 333–342. [Google Scholar] [CrossRef]
- Buck, G.W.; West, C.P.; Elbersen, H.W. Endophyte effect on drought tolerance in diverse Festuca species. In Neotyphodium/Grass Interactions; Bacon, C., Hill, N., Eds.; Springer: New York, NY, USA, 1997; pp. 141–143. [Google Scholar] [CrossRef]
- Elmi, A.A.; West, C.P. Endophyte infection effects on stomatal conductance, osmotic adjustment and drought recovery of tall fescue. New Phytol. 1995, 131, 61–67. [Google Scholar] [CrossRef]
- Cheplick, G.P.; Perera, A.; Koulouris, K. Effect of drought on the growth of Lolium perenne genotypes with and without fungal endophytes. Funct. Ecol. 2000, 14, 657–667. [Google Scholar] [CrossRef]
- Malinowski, D.P.; Belesky, D.P. Adaptations of endophyte-infected cool-season grasses to environmental stresses: Mechanisms of drought and mineral stress tolerance. Crop Sci. 2000, 40, 923–940. [Google Scholar] [CrossRef]
- Nagabhyru, P.; Dinkins, R.D.; Wood, C.L.; Bacon, C.W.; Schardl, C.L. Tall fescue endophyte effects on tolerance to water-deficit stress. BMC Plant Biol. 2013, 13, 127. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Li, X.; Han, L.; Li, D.; Song, G. Epichloë endophyte infection improved drought and heat tolerance of tall fescue through altered antioxidant enzyme activity. Eur. J. Hortic. Sci. 2017, 82, 90–97. [Google Scholar] [CrossRef]
- Barker, D.J.; Davies, E.; Lane, G.A.; Latch, G.C.M.; Nott, H.M.; Tapper, B.A. Effect of water deficit on alkaloid concentrations in perennial ryegrass endophyte associations. In Proceedings of the International Symposium on Acremonium Interaction, Palmerston North, New Zealand, 2–12 February 1993; pp. 67–71. [Google Scholar]
- Hahn, H.; McManus, M.T.; Warnstorff, K.; Monahan, B.J.; Young, C.A.; Davies, E.; Tapper, B.A.; Scott, B. Neotyphodium fungal endophytes confer physiological protection to perennial ryegrass (Lolium perenne L.) subjected to a water deficit. Environ. Exp. Bot. 2008, 63, 183–199. [Google Scholar] [CrossRef]
- Davitt, A.; Chen, C.; Rudgers, J.A. Understanding context-dependency in plant–microbe symbiosis: The influence of abiotic and biotic contexts on host fitness and the rate of symbiont transmission. Environ. Exp. 2011, 71, 137–145. [Google Scholar] [CrossRef]
- Barker, D.J.; Hume, D.E.; Quigley, P.E. Negligible physiological responses to water deficit in endophyte-infected and uninfected perennial ryegrass. In Proceedings of the 3rd International Symposium on Neotyphodium/Grass Interactions, Athens, GA, USA, 28–31 May 1997; pp. 137–139. [Google Scholar]
- Belesky, D.P.; Stringer, W.C.; Hill, N.S. Influence of endophyte and water regime upon tall fescue accessions. 1. Growth characteristics. Ann. Bot. 1989, 63, 495–503. [Google Scholar]
- White, R.H.; Engelke, M.C.; Morton, S.J.; Johnson-Cicalese, J.M.; Ruemmele, B.A. Acremonium endophyte effects on tall fescue drought tolerance. Crop Sci. 1992, 32, 1392–1396. [Google Scholar] [CrossRef]
- Hill, N.S.; Pachon, J.G.; Bacon, C.W. Acremonium coenophialum-mediated short- and long-term drought acclimation in tall fescue. Crop Sci. 1996, 36, 665–672. [Google Scholar] [CrossRef]
- Marks, S.; Clay, K. Physiological responses of Festuca arundinacea to fungal endophyte infection. New Phytol. 1996, 133, 727–733. [Google Scholar] [CrossRef]
- Assuero, S.G.; Matthew, C.; Kemp, P.D.; Latch, G.C.M.; Barker, D.J.; Haslett, S.J. Morphological and physiological effects of water deficit and endophyte infection on contrasting tall fescue cultivars. N. Z. J. Agric. Res. 2000, 43, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Miranda, M.I.; Omacini, M.; Chaneton, E.J. Environmental context of endophyte symbioses: Interacting effects of water stress and insect herbivory. Int. J. Plant Sci. 2011, 172, 499–508. [Google Scholar] [CrossRef] [Green Version]
- Hall, S.L.; McCulley, R.L.; Barney, R.J.; Phillips, T.D. Does fungal endophyte infection improve tall fescue’s growth response to fire and water limitation? PLoS ONE 2014, 9, e86904. [Google Scholar] [CrossRef]
- Tian, Z.; Huang, B.; Belanger, F.C. Effects of Epichloë festucae fungal endophyte infection on drought and heat stress responses of strong creeping Red Fescue. J. Am. Soc. Hortic. Sci. 2015, 140, 257–264. [Google Scholar] [CrossRef]
- Reza Sabzalian, M.; Mirlohi, A. Neotyphodium endophytes trigger salt resistance in tall and meadow fescues. J. Plant Nutr. Soil Sci. 2010, 173, 952–957. [Google Scholar] [CrossRef]
- Yin, L.; Ren, A.; Wei, M.; Wu, L.; Zhou, Y.; Li, X.; Gao, Y. Neotyphodium coenophialum-infected tall fescue and its potential application in the phytoremediation of saline soils. Int. J. Phytoremediat 2014, 16, 235–246. [Google Scholar] [CrossRef]
- Wang, J.; Tian, P.; Christensen, M.J.; Zhang, X.; Li, C.; Nan, Z. Effect of Epichloë gansuensis endophyte on the activity of enzymes of nitrogen metabolism, nitrogen use efficiency and photosynthetic ability of Achnatherum inebrians under various NaCl concentrations. Plant Soil 2018. [Google Scholar] [CrossRef]
- Malinowski, D.P.; Belesky, D.P. Neotyphodium coenophialum-endophyte infection affects the ability of tall fescue to use sparingly available phosphorus. J. Plant Nutr. 1999, 22, 835–853. [Google Scholar] [CrossRef]
- Malinowski, D.P.; Alloush, G.A.; Belesky, D.P. Leaf endophyte Neotyphodium coenophialum modifies mineral uptake in tall fescue. Plant Soil 2000, 227, 115–126. [Google Scholar] [CrossRef]
- Ren, A.Z.; Li, C.A.; Gao, Y.B. Endophytic fungus improves growth and metal uptake of Lolium arundinaceum Darbyshire Ex. Schreb. Int. J. Phytoremediat 2011, 13, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Mirzahossini, Z.; Shabani, L.; Sabzalian, M.R.; Sharifi-Tehrani, M. ABC transporter and metallothionein expression affected by NI and Epichloë endophyte infection in tall fescue. Ecotox. Environ. Safe 2015, 120, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Gaynor, D.L.; Rowan, D.D. Insect resistance, animal toxicity and endophyte-infected grass. Proc. N. Z. Grassl. Assoc. 1986, 47, 115–120. [Google Scholar] [CrossRef]
- Popay, A.J.; Hume, D.E. Endophytes improve ryegrass persistence by controlling insects. In New Zealand Grassland Association Pasture Persistence; Mercer, C.F., Ed.; NZ Grassland Association: Napier, New Zealand, 2011; Volume 15, pp. 149–156. [Google Scholar]
- Zydenbos, S.M.; Barratt, B.I.P.; Bell, N.L.; Ferguson, C.M.; Gerard, P.J.; McNeill, M.R.; Phillips, C.B.; Townsend, R.J.; Jackson, T.A. The impact of invertebrate pests on pasture persistence and their interrelationship with biotic and abiotic factors. Pasture Persistence N. Z. Grassl. Res. Pract. Ser. 2011, 15, 109–118. [Google Scholar]
- Popay, A.J.; Rowan, D.D. Endophytic fungi as mediators of plant insect interactions. In Insect-Plant Interactions; Bernays, E.A., Ed.; CRC Press: Boca Raton, FL, USA, 1994; Volume 5, pp. 83–103. [Google Scholar]
- Bush, L.P.; Wilkinson, H.H.; Schardl, C.L. Bioprotective alkaloids of grass-fungal endophyte symbioses. Plant Physiol. 1997, 114, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breen, J.P. Acremonium endophyte interactions with enhanced plant resistance to insects. Ann. Rev. Entomol. 1994, 39, 401–423. [Google Scholar] [CrossRef]
- Ahmad, S.; Govindarajan, S.; Funk, C.R.; Johnson-Cicalese, J.M. Fatality of house crickets on perennial ryegrass infected with a fungal endophyte. Entomol. Exp. Appl. 1985, 39, 183–190. [Google Scholar] [CrossRef]
- Bryant, R.H.; Cameron, N.E.; Edwards, G.R. Response of black beetle and red-headed pasture cockchafer larvae to loline alkaloids in meadow fescue roots. Proc. N. Z. Plant Protect. 2010, 63, 219–223. [Google Scholar]
- Muegge, M.A.; Quisenberry, S.S.; Bates, G.E.; Joost, R.E. Influence of Acremonium infection and pesticide use on seasonal abundance of leafhoppers and froghoppers (Homoptera: Cicadellidae; Cercopidae) in tall fescue. Environm. Entomol. 1991, 20, 1531–1536. [Google Scholar] [CrossRef]
- Potter, D.A.; Stokes, J.T.; Redmond, C.T.; Schardl, C.L.; Panaccione, D.G. Contribution of ergot alkaloids to suppression of a grass-feeding caterpillar assessed with gene-knockout endophytes in perennial ryegrass. Entomol. Exp. Appl. 2007, 126, 138–147. [Google Scholar] [CrossRef]
- Baldauf, M.W.; Mace, W.J.; Richmond, D.S. Endophyte mediated resistance to black cutworm as a function of plant cultivar and endophyte strain in tall fescue. Environ. Entomol. 2011, 40, 639–647. [Google Scholar] [CrossRef] [Green Version]
- Pennell, C.G.L.; Hume, D.E.; Ball, O.J.-P.; Easton, H.S.; Lyons, T.B. Effects of Neotyphodium lolii infection in ryegrass on root aphid and pasture mealy bug. In Proceedings of the 4th International Neotyphodium/Grass Interactions Symposium, Soest, Germany, 27–29 September 2000; Paul, V.H., Dapprich, P.D., Eds.; pp. 465–469. [Google Scholar]
- Popay, A.J.; Silvester, W.B.; Gerard, P.J. New endophyte isolate suppresses root aphid, Aploneura lentisci, in perennial ryegrass. In Proceedings of the 5th International Symposium on Neotyphodium/Grass Interactions, Fayetteville, AR, USA, 23–26 May 2004; Kallenbach, R., Ed.; p. 317. [Google Scholar]
- Popay, A.J.; Hickey, M.J.; Stewart, A.V.; Hume, D.E. Potential use of a selected strain of fungal endophyte for insect control in turf ryegrass. In Proceedings of the 1st European Turfgrass Society Conference, Pisa, Italy, 19–20 May 2008; pp. 151–152. [Google Scholar]
- Popay, A.J.; Gerard, P.J. Cultivar and endophyte effects on a root aphid, Aploneura lentisci, in perennial ryegrass. N. Z. Plant Protect. 2007, 60, 223–227. [Google Scholar] [CrossRef] [Green Version]
- Moate, P.J.; Williams, S.R.O.; Grainger, C.; Hannah, M.C.; Mapleson, D.; Auldist, M.J.; Greenwood, J.S.; Popay, A.J.; Hume, D.E.; Mace, W.J.; et al. Effects of wild-type, AR1 and AR37 endophyte-infected perennial ryegrass on dairy production in Victoria, Australia. Anim. Prod. Sci. 2012, 52, 1117–1130. [Google Scholar] [CrossRef]
- Popay, A.J.; Cox, N.R. Aploneura lentisci (Homoptera: Aphididae) and its interactions with fungal endophytes in perennial ryegrass (Lolium perenne). Front. Plant Sci. 2016, 7, 1395. [Google Scholar] [CrossRef] [Green Version]
- Popay, A.J.; Hume, D.E.; Mace, W.J.; Faville, M.J.; Finch, S.C.; Cave, V. A root aphid, Aploneura lentisci is affected by Epichloë endophyte strain and impacts perennial ryegrass growth in the field. Crop Pasture Sci. 2021, in press. [Google Scholar]
- Schmidt, D. Effects of Acremonium uncinatum and a Phialophora-like endophyte on vigour, insect and disease resistance of meadow fescue. In Proceedings of the 2nd International Symposium on Acremonium/Grass Interactions, Palmerston Nth, New Zealand, 2–12 February 1993; pp. 185–188. [Google Scholar]
- Schmidt, D.; Guy, P.L. Effects of the presence of the endophyte Acremonium uncinatum and of an insecticidal treatment on seed production of meadow fescue. Rev. Suisse Agric. 1997, 29, 97–99. [Google Scholar]
- Jensen, J.G.; Popay, A.J. Reduction in root aphid populations by non-toxic endophyte strains in tall fescue. In Proceedings of the 6th International Symposium on Fungal Endophytes of Grasses; Christchurch, New Zealand, 25–28 March 2007, Popay, A.J., Thom, E.R., Eds.; NZ Grassland Association Research and Practice Series; Volume 13, pp. 341–344.
- Popay, A.J.; Easton, H.S. Interactions between host plant genotype and Neotyphodium fungal endophytes affects insects. In Proceedings of the 13th Australasian Plant Breeding Conference, Christchurch, New Zealand, 18–21 April 2006; Mercer, C.F., Ed.; Breeding for Success: Diversity in Action. pp. 561–567. [Google Scholar]
- Pearson, W.D. The pasture mealy bug, Balanococcus poae (Maskell), in Canterbury: A preliminary report. In Proceedings of the 5th Australasian Conference of Grassland Invertebrate Ecology, Victoria, Australia, 5–19 August 1988; pp. 297–303. [Google Scholar]
- Popay, A.J.; Baltus, J.G.; Pennell, C.G.L. Insect resistance in perennial ryegrass infected with toxin-free Neotyphodium endophytes. In Proceedings of the 4th International Neotyphodium/Grass Interactions Symposium, Soest, Germany, 27–29 September 2000; Paul, V.H., Dapprich, P.D., Eds.; pp. 187–193. [Google Scholar]
- Pennell, C.G.L.; Popay, A.J.; Ball, O.-P.; Hume, D.E.; Baird, D.B. Occurrence and impact of pasture mealybug (Balanococcus poae) and root aphid (Aploneura lentisci) on ryegrass (Lolium spp.) with and without infection by Neotyphodium fungal endophytes. N. Z. J. Agric.Res. 2005, 48, 329–337. [Google Scholar] [CrossRef] [Green Version]
- Pennell, C.G.L.; Ball, O. J-P. The effects of Neotyphodium endophytes in tall fescue on pasture mealy bug (Balanococcus poae). Proc. N. Z. Plant Protect. Conf. 1999, 52, 259–263. [Google Scholar] [CrossRef] [Green Version]
- Saha, D.C.; Johnson-Cicalese, J.M.; Halisky, P.M.; van Heemstra, M.I.; Funk, C.R. Occurrence and significance of endophytic fungi in the fine fescues. Plant Dis. 1987, 71, 1021–1024. [Google Scholar] [CrossRef]
- Mathias, J.K.; Ratcliffe, R.H.; Hellman, J.L. Association of an endophytic fungus in perennial ryegrass and resistance to the hairy chinch bug (Hemiptera: Lygaeidae). J. Econ. Entomol. 1990, 83, 1640–1646. [Google Scholar] [CrossRef]
- Carrie`re, Y.; Bouchard, A.; Bourassa, S.; Brodeur, J. Effect of endophyte incidence in perennial ryegrass on distribution, host-choice, and performance of the hairy chinch bug (Hemiptera: Lygaeidae). J. Econ. Entomol. 1998, 91, 324–328. [Google Scholar] [CrossRef]
- Richmond, D.S.; Shetlar, D.J. Hairy chinch bug (Hemiptera: Lygaeidae) damage, population, density, and movement in relation to the incidence of perennial ryegrass infected by Neotyphodium endophytes. J. Econ. Entomol. 2000, 93, 1167–1172. [Google Scholar] [CrossRef]
- Yue, Q.; Johnson-Cicalese, J.; Gianfagna, T.J.; Meyer, W.A. Alkaloid production and chinch bug resistance in endophyte-inoculated chewings and strong creeping red fescues. J. Chem. Ecol. 2000, 26, 279–292. [Google Scholar] [CrossRef]
- Anderson, W.G.; Heng-Moss, T.M.; Baxendale, F.P. Evaluation of cool- and warm season grasses for resistance to multiple chinch bug (Hemiptera: Blissidae) species. J. Econ. Entomol. 2006, 99, 203–211. [Google Scholar] [CrossRef]
- Popay, A.J.; Latch, G.C.M. Prospects for utilising endophytes for grass resistance to insect pests in New Zealand. In Proceedings of the 6th Australasian Grassland Invertebrate Ecology Conference, Hamilton, New Zealand, 17–19 February 1993; pp. 129–155. [Google Scholar]
- Popay, A.J.; Ball, O.J.-P. The development of fungal endophytes as a pest management tool for New Zealand grasslands. In Proceedings of the 6th Australasian Applied Entomological Research Conference, Brisbane, Queensland, Australia, 29 September–2 October 1998; pp. 373–381. [Google Scholar]
- Fletcher, L.R.; Popay, A.J.; Stewart, A.V.; Tapper, B.A. Herbage and sheep production from meadow fescue with and without the endophyte Neotyphodium uncinatum. In Proceedings of the 4th International Neotyphodium/Grass Interactions Symposium, Soest, Germany, 27–29 September 2000; Volker, P.H., Dapprich, P.D., Eds.; pp. 447–453. [Google Scholar]
- Popay, A.J.; Lane, G.A. The effect of crude extracts containing loline alkaloids on two New Zealand insect pests. In Proceedings of the 4th International Neotyphodium/Grass Interactions Symposium, Soest, Germany, 27–29 September 2000; Paul, V.H., Dapprich, P.D., Eds.; pp. 471–475. [Google Scholar]
- Popay, A.J.; Townsend, R.J.; Fletcher, L.R. The effect of endophyte (Neotyphodium uncinatum) in meadow fescue on grass grub larvae. N. Z. Plant Protect. 2003, 5, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Popay, A.J.; Tapper, B.A. Endophyte effects on consumption of seed and germinated seedlings of ryegrass and fescue by grass grub (Costelytra zealandica) larvae. Endophyte Symposium. N. Z. Grassl. Res. Pract. Ser. 2007, 13, 353–355. [Google Scholar]
- Popay, A.J.; Jensen, J.G.; Mace, W.J. Root herbivory: Grass species, Epichloë endophytes and moisture status make a difference. Microorganisms 2020, 8, 997. [Google Scholar] [CrossRef] [PubMed]
- Popay, A.J.; Mainland, R.A.; Sanders, A.J. The effects of endophytes in fescue grass on growth and survival of third instar grass grub larvae. In Proceedings of the 2nd International Symposium on Acremonium/Grass Interactions, Palmerston North, New Zealand, 2–12 February 1993; pp. 174–177. [Google Scholar]
- Jensen, J.G.; Miller, T.A.; Cave, V.M.; Johnson, R.D.; Scott, B.; Popay, A.J. Two novel Epichloë festucae var. lolii endophytes reduce larval populations of the wheat sheath miner Cerodontha australis (Diptera: Agromyzidae). J. Pest Sci. 2021, in press. [Google Scholar]
- Funk, C.R.; Halisky, P.M.; Johnson, M.C.; Siegel, M.R.; Stewart, A.V.; Ahmed, S.; Hurley, R.H.; Harvey, I.C. An endophytic fungus and resistance to sod webworms: Association in Lolium perenne L. Bio/Technology 1983, 1, 189–191. [Google Scholar] [CrossRef]
- Bush, L.P.; Fannin, F.F.; Siegel, M.R.; Dahlman, D.L.; Burton, H.R. Chemistry, occurrence and biological effects of saturated pyrrolizidine alkaloids associated with endophyte-grass interactions. Agric. Ecosyst. Environ. 1993, 44, 81–102. [Google Scholar] [CrossRef]
- Clement, S.L.; Pike, K.S.; Kaiser, W.J.; Wilson, A.D. Resistance of endophyte-infected plants of tall fescue and perennial ryegrass to the Russian wheat aphid (Homoptera: Aphididae). J. Kan. Entomol. Soc. 1990, 63, 646–654. [Google Scholar]
- Kindler, S.D.; Breen, J.P.; Springer, T.L. Reproduction and damage by Russian wheat aphid (Homoptera: Aphididae) as influenced by fungal endophytes and cool-season turfgrasses. J. Econ. Entomol. 1991, 84, 685–692. [Google Scholar] [CrossRef]
- Kirfman, G.W.; Brandenburg, R.L.; Garner, G.B. Relationship between insect abundance and endophyte infestation level in tall fescue in Missouri. J. Kansas Entomol. Soc. 1986, 59, 552–554. [Google Scholar]
- Cole, A.M.; Pless, C.D.; Gwinn, K.D. Survival of Drosophila melanogaster (Diptera: Drosophiliae) on Diets Containing Roots or Leaves of Acremonium-Infected or Non-Infected Tall Fescue. In Proceedings of the 1st International Symposium on Acremonium/Grass Interactions, Baton Rouge, LA, USA, 9 October–14 November 1990; Quisenberry, S.S., Joost, R.E., Eds.; p. 128. [Google Scholar]
- Koppenhofer, A.M.; Cowles, R.S.; Fuzy, E.M. Effects of turfgrass endophytes (Clavicipitaceae: Ascomycetes) on white grub (Coleoptera: Scarabaeidae) larval development and field populations. Environ. Entomol. 2003, 32, 895–906. [Google Scholar] [CrossRef]
- Dymock, J.J.; Rowan, D.D.; McGee, I.R. Effects of endophyte-produced mycotoxins on Argentine stem weevil and the cutworm Graphania mutans. In Proceedings of the 5th Australasian Conference Grassland Invertebrate Ecology, Melbourne, Australia, 15–19 August 1988; Stahle, P.P., Ed.; Vie D & D Printing Pty.: Victoria, Australia, 1988; pp. 35–43. [Google Scholar]
- Ball, O.J.-P.; Prestidge, R.A. The effect of the endophytic fungus Acremonium lolii on adult black beetle (Heteronychus arator) feeding. Proc. N. Z. Plant Prot. Conf. 1992, 45, 201–204. [Google Scholar] [CrossRef] [Green Version]
- Ball, O.J.-P.; Prestidge, R.A. The use of the endophytic fungus Acremonium lolii as a biological control agent of black beetle, Heteronychus arator (Coleoptera: Scarabaeidae). In Proceedings of the 6th Australasian Conference on Grassland Invertebrate Ecology, Hamilton, New Zealand, 17–19 February 1993; Prestidge, R.A., Ed.; pp. 283–289. [Google Scholar]
- Ball, O.J.-P.; Miles, C.O.; Prestidge, R.A. Ergopeptine alkaloids and Neotyphodium lolii mediated resistance in perennial ryegrass against adult Heteronychus arator (Coleoptera:Scarabaeidae). J. Econ. Entomol. 1997, 90, 1382–1391. [Google Scholar] [CrossRef]
- Popay, A.J.; Hume, D.E.; Baltus, J.G.; Latch, G.C.M.; Tapper, B.A.; Lyons, T.B.; Cooper, B.M.; Pennell, C.G.; Eerens, J.P.J.; Marshall, S.L. Field performance of perennial ryegrass (Lolium perenne) infected with toxin-free fungal endophytes (Neotyphodium spp.). In Proceedings of the Ryegrass endophyte: An Essential New Zealand Symbiosis; Napier, New Zealand, 8 October 1999, Woodfield, D.R., Matthew, C., Eds.; NZ Grassland Association Grassland Research and Practice Series; Volume 7, pp. 113–122.
- Popay, A.J.; Bonos, S.A. Biotic responses in endophytic grasses. In Neotyphodium in Cool-Season Grasses; Roberts, C.A., West, C.P., Spiers, D.E., Eds.; Blackwell Publishing: Ames, IA, USA, 2005; pp. 163–185. [Google Scholar]
- Ball, O.J.-P.; Christensen, M.J.; Prestidge, R.A. Effect of selected isolates of Acremonium endophytes on adult black beetle (Heteronychus arator) feeding. In Proceedings of the 47th New Zealand Plant Protection Conference, Auckland, New Zealand, 9–11 August 1994; pp. 227–231. [Google Scholar]
- Barker, G.M.; Patchett, B.J.; Cameron, N.E. Epichloë uncinata infection and loline content afford Festulolium grasses protection from black beetle (Heteronychus arator). N. Z. J. Agric. Res. 2015, 58, 35–56. [Google Scholar] [CrossRef]
- Barker, G.M.; Patchett, B.J.; Cameron, N.E. Epichloë uncinata infection and loline content protect Festulolium grasses from crickets (Orthoptera: Gryllidae). J. Econ. Entomol. 2015, 108, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Prestidge, R.A.; Pottinger, R.P.; Barker, G.M. An association of Lolium endophyte with ryegrass resistance to Argentine stem weevil. In Proceedings of the 35th NZ Weed Pest Control Conference, Hamilton, New Zealand, 9–12 August 1982; pp. 119–122. [Google Scholar]
- Prestidge, R.A.; Lauren, D.R.; van der Zujpp, S.G.; di Menna, M.E. Isolation of feeding deterrents to Argentine stem weevil in cultures of endophytes of perennial ryegrass and tall fescue. N. Z. J. Agric. Res. 1985, 28, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Gaynor, D.L.; Hunt, W.F. The relationship between nitrogen supply, endophytic fungus, and Argentine stem weevil resistance in ryegrasses. Proc. N. Z. Grassl. Assoc. 1983, 44, 257–263. [Google Scholar] [CrossRef]
- Barker, G.M.; Pottinger, R.P.; Addison, P.J. Effect of tall fescue and ryegrass endophytes on Argentine stem weevil. Proc. N.Z. Weed Pest Control Conf. 1983, 36, 216–219. [Google Scholar] [CrossRef]
- Barker, G.M.; Pottinger, R.P.; Addison, P.J.; Prestidge, R.A. Effect of Lolium endophyte fungus infection on behaviour of adult Argentine stem weevil. N. Z. J. Agric. Res. 1984, 27, 271–277. [Google Scholar] [CrossRef]
- Gaynor, D.L.; Rowan, D.D. Peramine–An Argentine stem weevil feeding deterrent from endophytic-infected ryegrass. In Proceedings of the 4th Australasian Conference on Grassland Invertebrate Ecology, Canterbury, New Zealand, 13–17 May 1985; pp. 338–343. [Google Scholar]
- Rowan, D.D.; Hunt, M.B.; Gaynor, D.L. Peramine, a novel insect feeding deterrent from ryegrass infected with the endophyte Acremonium loliae. J. Chem. Soc. Chem. Commun. 1986, 12, 935–936. [Google Scholar] [CrossRef]
- Rowan, D.D.; Dymock, J.J.; Brimble, M.A. Effect of fungal metabolite peramine and analogs on feeding and development of argentine stem weevil (Listronotus bonariensis). J. Chem. Ecol. 1990, 16, 1683–1695. [Google Scholar] [CrossRef]
- Dymock, J.J.; Latch, G.C.M.; Tapper, B.A. Novel combinations of endophytes in ryegrasses and fescues and their effects on Argentine stem weevil (Listronotus bonariensis) feeding. In Proceedings of the 5th Australasian Conference Grassland Invertebrate Ecology, Melbourne, Australia, 15–19 August 1988; Stahle, P.P., Ed.; Vie D & D Printing Pty.: Victoria, Australia, 1988; pp. 28–34. [Google Scholar]
- Popay, A.J.; Mainland, R.A. Seasonal damage by Argentine stem weevil to perennial ryegrass pastures with different levels of Acremonium lolii. In Proceedings of the 44th New Zealand Weed and Pest Control Conference, Tauranga, New Zealand, 13–15 August 1991; pp. 171–175. [Google Scholar]
- Popay, A.J.; Hume, D.E.; Mainland, R.A.; Saunders, C.J. Field resistance to Argentine stem weevil (Listronotus bonariensis) in different ryegrass cultivars infected with an endophyte deficient in lolitrem B. N. Z. J. Agric. Res. 1995, 38, 519–528. [Google Scholar] [CrossRef] [Green Version]
- Popay, A.J.; Hume, D.E.; Davis, K.L.; Tapper, B.A. Interactions between endophyte (Neotyphodium spp.) and ploidy in hybrid and perennial ryegrass cultivars and their effects on Argentine stem weevil (Listronotus bonariensis). N. Z. J. Agric. Res. 2003, 46, 311–319. [Google Scholar] [CrossRef]
- Popay, A.J.; Mace, W.J.; Finch, S.C.; Faville, M.J.; Jensen, J.G.; Cave, V.M. Epichloë fungal endophyte strains and their ryegrass (Lolium spp.) hosts affects resistance to Listronotus bonariensis (Coleoptera: Curculionidae). N. Z. J. Agric. Res. 2021, in press. [Google Scholar]
- Rowan, D.D.; Gaynor, D.L. Isolation of feeding deterrents against Argentine stem weevil from ryegrass infected with the endophyte Acremonium loliae. J. Chem. Ecol. 1986, 12, 647–658. [Google Scholar] [CrossRef] [PubMed]
- Prestidge, R.A.; Gallagher, R.T. Lolitrem B–A stem weevil toxin isolated from Acremonium-infected ryegrass. In Proceedings of the 38th NZ Weed and Pest Control Conference, Rotorua, New Zealand, 13–15 August 1985; pp. 38–40. [Google Scholar]
- Prestidge, R.A.; Gallagher, R.T. Endophyte fungus confers resistance to ryegrass: Argentine stem weevil studies. Ecol. Entomol. 1988, 13, 429–435. [Google Scholar] [CrossRef]
- Dymock, J.J.; Prestidge, R.A.; Rowan, D.D. The effects of lolitrem B on Argentine stem weevil larvae. In Proceedings of the 42nd NZ Weed and Pest Conference, Taranaki, New Zealand, 13–15 August 1989; pp. 73–75. [Google Scholar]
- Patchett, B.J.; Chapman, R.B.; Fletcher, L.R.; Gooneratne, S.R. Endophyte-infected Festuca pratensis containing loline alkaloids deter feeding by Listronotus bonariensis. N. Z. Plant Protect. 2008, 61, 5–209. [Google Scholar]
- Jensen, J.; Popay, A.; Tapper, B. Argentine stem weevil adults are affected by meadow fescue endophyte and its loline alkaloids. N. Z. Plant Prot. 2009, 62, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Popay, A.J.; Tapper, B.A.; Podmore, C. Endophyte-infected meadow fescue and loline alkaloids affect argentine stem weevil larvae. N. Z. Plant Protect. 2009, 62, 19–27. [Google Scholar]
- Popay, A.J.; Prestidge, R.A.; Rowan, D.D.; Dymock, J.J. The role of Acremonium lolii mycotoxins in the insect resistance in perennial ryegrass (Lolium perenne). In Proceedings of the International Symposium on Acremonium/Grass Interactions, Baton Rouge, LA, USA, 9 October–14November 1990; Quisenberry, S.S., Joost, R.R., Eds.; pp. 44–47. [Google Scholar]
- Latch, G.C.M.; Christensen, M.J.; Gaynor, D.L. Aphid detection of endophyte infection in tall fescue. N. Z. J. Agric. Res. 1985, 28, 129–132. [Google Scholar] [CrossRef]
- Johnson, M.C.; Dahlman, D.L.; Siegel, M.R.; Bush, L.P.; Latch, G.C.M.; Potter, D.A.; Varney, D.R. Insect feeding deterrents in endophyte-infected tall fescue. Appl. Environ. Microbiol. 1985, 49, 568–571. [Google Scholar] [CrossRef] [Green Version]
- Riedell, W.E.; Kieckhefer, R.E.; Petroski, R.J.; Powell, R.G. Naturally occurring and synthetic loline alkaloid derivatives: Insect feeding behavior modification and toxicity. J. Entomol. Sci. 1991, 26, 122–129. [Google Scholar] [CrossRef]
- Kanda, K.; Hirai, H.; Koga, H.; Hasegawa, K. Endophyte enhanced resistance in perennial ryegrass [Lolium perenne] and tall fescue [Festuca arundinacea] to bluegrass webworm, Parapediasia teterrella. Jpn. Appl. Entomol. Zool. 1994, 3, 141–145. [Google Scholar] [CrossRef] [Green Version]
- Kanda, K.; Koga, H.; Hirai, Y.; Kasegawa, K.; Uematu, T.; Tsukiboshi, T. Resistance of Acremonium endophyte-infected perennial ryegrass and tall fescue to bluegrass webworm, Parapediasia teterella. Abstract. Proc. Phytopathol. Soc. Jpn. 1992, 58, 587. [Google Scholar]
- Koga, H.; Hirai, Y.; Kanda, K.I.; Tsukiboshi, T.; Uematsu, T. Successive transmission of resistance to bluegrass webworm to perennial ryegrass and tall fescue plants by artificial inoculation with Acremonium endophytes. Jpn. Agric. Res. Q. 1997, 31, 109–115. [Google Scholar]
- Sabzalian, M.R.; Hatami, B.; Mirlohi, A. Mealybug, Phenococcus solani, and barley aphid, Sipha maydis, response to endophyte-infected tall and meadow fescue. Entomol. Exp. Appl. 2004, 113, 205–209. [Google Scholar] [CrossRef]
- Patterson, C.G.; Potter, D.A.; Fannin, F.F. Feeding deterrency of alkaloids from endophyte-infected grasses to Japanese beetle grubs. Entomol. Exp. Appl. 1991, 61, 285–289. [Google Scholar] [CrossRef]
- Murphy, J.A.; Sun, S.; Betts, L.L. Endophyte-enhanced resistance to billbug (Coleoptera: Curculionidae), sod webworm (Lepidoptera: Pyralidae) and white grub (Coleoptera: Scarabaeidae) in tall fescue. Environ. Entomol. 1993, 22, 699–703. [Google Scholar] [CrossRef]
- Oliver, J.B.; Pless, C.D.; Gwinn, K.D. Effect of endophyte, Acremonium coenophialum in ‘Kentucky 31′ tall fescue, Festuca arundinacae, on survival of Popillia japonica. In Proceedings of the Internation Symposium Acremonium/Grass Interactions, Louisiana Agric. Expt Station, Baton Rouge, LA, USA, 9 October–14 November 1990; pp. 173–175. [Google Scholar]
- Potter, D.A.; Patterson, C.G.; Redmond, C.T. Influence of turfgrass species and tall fescue endophyte on feeding ecology of Japanese beetle and southern masked chafer grubs (Coleoptera: Scarabaeidae). J. Econ. Entomol. 1992, 8, 900–909. [Google Scholar] [CrossRef]
- Davidson, A.W.; Potter, D.A. Response of plant-feeding, predatory, and soil inhabiting invertebrates to Acremonium endophyte and nitrogen fertilisation in tall fescue turf. J. Econ. Entomol. 1995, 88, 376–379. [Google Scholar] [CrossRef]
- Richmond, D.S.; Grewal, P.S.; Cardina, J. Influence of Japanese beetle Popillia japonica larvae and fungal endophytes on competition between turfgrasses and dandelion. Crop Sci. 2004, 44, 600–606. [Google Scholar] [CrossRef]
- Siegel, M.R.; Latch, G.C.M.; Bush, L.P.; Fannin, F.F.; Rowan, D.D.; Tapper, B.A.; Bacon, C.W.; Johnson, M.C. Fungal endophyte-infected grasses: Alkaloid accumulation and aphid response. J. Chem. Ecol. 1990, 16, 3301–3315. [Google Scholar] [CrossRef] [PubMed]
- Eichenseer, H.; Dahlman, D.L.; Bush, L.P. Influence of endophyte infection, plant age and harvest interval on Rhopalosiphum padi survival and its relation to quantity of N-formyl and N-acetyl loline in tall fescue. Entomol. Exp. Appl. 1991, 60, 29–38. [Google Scholar] [CrossRef]
- Wilkinson, H.H.; Siegel, M.R.; Blankenship, J.D.; Mallory, A.C.; Bush, L.P.; Schardl, C.L. Contribution of fungal loline alkaloids to protection from aphids in a grass-endophyte mutualism. Mol. Plant Microbe Interact. 2000, 13, 1027–1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bultman, T.L.; Pulas, C.; Grant, L.; Bell, G.; Sullivan, T.J. Effects of fungal endophyte isolate on performance and preference of bird cherry oat aphid. Environ. Entomol. 2006, 35, 1690–1695. [Google Scholar] [CrossRef]
- Li, C.; Zhang, X.; Li, F.; Nan, Z.; Schardl, C.L. Disease and pest resistance of endophyte infected and non-infected drunken horse grass. In Proceedings of the 6th International Symposium on Fungal Endophytes of Grasses; Christchurch, New Zealand, 25–28 March 2007, Popay, A.J., Thom, E.R., Eds.; NZ Grassland Association Research and Practice Series; Volume 13, pp. 111–114.
- Ahmad, S.; Johnson-Cicalese, J.M.; Dickson, W.K.; Funk, C.R. 1986. Endophyte-enhanced resistance in perennial ryegrass to the bluegrass billbug, Sphenophorus parvulus. Entomol. Exp. Appl. 1986, 41, 3–10. [Google Scholar] [CrossRef]
- Ahmad, S.; Funk, C.R. Bluegrass billbug tolerance of ryegrass cultivars and selections. J. Econ. Entomol. 1983, 76, 414–416. [Google Scholar] [CrossRef]
- Clay, K.; Hardy, T.N.; Hammond, A.M. Fungal endophytes of grasses and their effects on an insect herbivore. Oecologia 1985, 66, 1–6. [Google Scholar] [CrossRef]
- Hardy, T.; Clay, K.; Hammond, A.M., Jr. Fall armyworm (Lepidoptera: Noctuidae): A laboratory bioassay and larval preference study for the fungal endophyte of perennial ryegrass. J. Econ. Entomol. 1985, 78, 571–574. [Google Scholar] [CrossRef]
- Hardy, T.; Clay, K.; Hammond, A.M., Jr. Leaf age and reated factors affecting endophyte-mediated resistance to fall armyworm (Lepidoptera: Noctuidae) in tall fescue. Environ. Entomol. 1986, 15, 1083–1089. [Google Scholar] [CrossRef]
- Breen, J.P. Enhanced resistance to fall armyworm (Lepidoptera: Noctuidae) in Acremonium endophyte infected turfgrasses. J. Econ. Entomol. 1993, 86, 621–629. [Google Scholar] [CrossRef]
- Clay, K.; Cheplick, G.P. Effect of ergot alkaloids from fungal endophyte-infected grasses on fall armyworm (Spodoptera frugiperda). J. Chem. Ecol. 1989, 15, 169–182. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Govindarajan, S.; Johnson-Cicalese, J.M.; Funk, C.R. Association of a fungal endophyte in perennial ryegrass with antibiosis to larvae of the southern armyworm. Entomol. Exp. Appl. 1987, 43, 287–294. [Google Scholar] [CrossRef]
- Shiba, T.; Sugawara, K. Fungal loline alkaloids in grass endophyte associations confer resistance to the rice leaf bug, Trigonotylus caelestialium. Entomol. Exp. Appl. 2009, 130, 55–62. [Google Scholar] [CrossRef]
- Jensen, J.G.; Popay, A.J. Perennial ryegrass infected with AR37endophyte reduces survival of porina larvae. N. Z. Plant Prot. 2004, 57, 323–328. [Google Scholar]
- Popay, A.J.; Cotching, B.; Moorhead, A.; Ferguson, C.M. AR37 reduces porina populations and plant damage in the field. Proc. N. Z. Grassl. Assoc. 2012, 74, 165–169. [Google Scholar] [CrossRef]
- Babu, J.V. Bioactive chemicals of importance in endophyte-infected grasses. Ph.D. Thesis, University of Waikato, Hillcrest, New Zealand, 2009. [Google Scholar]
- Cook, R.; Lewis, G.C. Fungal endophytes and nematodes of agricultural and amenity grasses. In Biotic Interactions in Plant-Pathogen Associations; Jeger, M.J., Spence, N.J., Eds.; CABI Publishing: Wallingford, UK, 2001; pp. 35–61. [Google Scholar]
- Kimmons, C.A.; Gwinn, K.D.; Bernard, E.C. Nematode reproduction on endophyte-infected and endophyte-free tall fescue. Plant Dis. 1990, 74, 757–761. [Google Scholar] [CrossRef]
- Kirkpatrick, T.L.; Barham, J.D.; Bateman, R.J. Host status for Meloidogyne graminis of tall fescue selections and clones with and without the endophyte Acremonium coenophialum. In Proceedings of the 1st International Symposium on Acremonium/Grass Interactions, New Orleans, LA, USA, 9 October–14 November 1990; pp. 154–156. [Google Scholar]
- Elmi, A.A.; West, C.P.; Robbins, R.T.; Kirkpatrick, T.L. Endophyte effects on reproduction of root-knot nematode (Meloidogyne marylandi) and osmotic adjustment in tall fescue. Grass Forage Sci. 2000, 55, 166–172. [Google Scholar] [CrossRef]
- Stewart, T.M.; Mercer, C.F.; Grant, J.L. Development of Meloidogyne nassi on endophyte-infected and endophyte-free perennial ryegrass. Australas. Plant Pathol. 1993, 22, 40–41. [Google Scholar] [CrossRef]
- Pedersen, J.F.; Rodriguez-Kabana, R.; Shelby, R.A. Ryegrass cultivars and endophyte in tall fescue affect nematodes in grass and succeeding soybean. Agron. J. 1988, 80, 811–814. [Google Scholar] [CrossRef]
- Bacetty, A.A.; Snook, M.E.; Glenn, A.E.; Noe, J.P.; Nagabhyru, P.; Bacon, C.W. Chemotaxis disruption in Pratylenchus scribneri by tall fescue root extracts and alkaloids. J. Chem. Ecol. 2009, 35, 844–850. [Google Scholar] [CrossRef]
- West, C.P.; Izekor, E.; Oosterhuis, D.M.; Robbins, R.T. The effect of Acremonium coenophialum on the growth and nematode infestation of tall fescue. Plant Soil 1988, 112, 3–6. [Google Scholar] [CrossRef]
- Gwinn, K.D.; Bernard, E.C. Interactions of endophyte-infected grasses with the nematodes Meloidogyne marylandii and Pratylenchus scribneri. In Proceedings of the 2nd International Symposium on Acremonium/Grass Interactions, Palmerston North, New Zealand, 2–12 February 1993; pp. 156–160. [Google Scholar]
- Watson, R.N.; Prestidge, R.A.; Ball, O.J.-P. Suppression of white clover by ryegrass infected with Acremonium endophyte. In Proceedings of the 2nd International Symposium on Acremonium/Grass Interactions, Palmerston North, New Zealand, 2–12 February 1993; pp. 218–221. [Google Scholar]
- Eerens, J.P.J.; Visker, M.H.P.W.; Lucas, R.J.; Easton, H.S.; White, J.G.H. Influence of the ryegrass endophyte (Neotyphodium lolii) in a cool moist environment: IV. Plant parasitic nematodes. N. Z. J. Agric. Res. 1998, 41, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Barker, G.M. Mollusc herbivory influenced by endophytic claviciptaceous fungal infections in grasses. Ann. Appl. Biol. 2008, 153, 381–393. [Google Scholar] [CrossRef]
- Watson, B. The effect of endophyte in perennial ryegrass and tall fescue on red and black headed pasture cockchafers. In Proceedings of the 6th International Symposium on Fungal Endophytes on Grasses; Christchurch, New Zealand, 25–28 March 2007, Popay, A.J., Thom, E.R., Eds.; NZ Grassland Association Grassland Research and Practice Series; Volume 13, pp. 347–352.
- Lopez, J.E.; Faeth, S.H.; Miller, M. Effect of endophytic fungi on herbivory by red legged grasshoppers (Orthoptera: Acrididae) on Arizona fescue. Environ. Entomol. 1995, 24, 1576–1580. [Google Scholar] [CrossRef]
- Watson, R.N.; Hume, D.E.; Bell, N.L.; Neville, F.J. Plant-parasitic nematodes associated with perennial ryegrass and tall fescue with and without Acremonium endophyte. N. Z. Plant Protect. 1995, 48, 199–203. [Google Scholar] [CrossRef]
- Wiewiora, B.; Zurek, G.; Zurek, M. Endophyte-mediated disease resistance in wild populations of perennial ryegrass (Lolium perenne). Fungal Ecol. 2015, 15, 1–8. [Google Scholar] [CrossRef]
- Xia, C.; Li, N.; Zhang, Y.; Li, C.; Zhang, X.; Nan, Z. Role of Epichloë endophytes in defense responses of cool-season grasses to pathogens: A review. Plant Disease 2018, 102, 2061–2073. [Google Scholar] [CrossRef] [Green Version]
- Christensen, M.J.; Latch, G.C.M.; Tapper, B.A. Variation within isolates of Acremonium endophytes from perennial rye-grasses. Mycol. Res. 1991, 95, 918–923. [Google Scholar] [CrossRef]
- Christensen, M.J. Antifungal activity in grasses infected with Acremonium and Epichloë endophytes. Australas. Plant Pathol. 1996, 25, 186–191. [Google Scholar] [CrossRef]
- Niones, J.T.; Takemoto, D. VibA, a homologue of a transcription factor for fungal heterokaryon incompatibility, is involved in antifungal compound production in the plant-symbiotic fungus Epichloë festucae. Eukaryot Cell 2015, 14, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhou, Y.; Ren, A.; Gao, Y. Effect of endophyte infection on fungal disease resistance of Leymus chinensis. Acta Ecol. Sin. 2014, 23. Available online: http://en.cnki.com.cn/Article_en/CJFDTotal-STXB201423003.htm. (accessed on 17 June 2020).
- Purev, E.; Kondo, T.; Takemoto, D.; Niones, J.T.; Ojika, M. Identification of ε-Poly-L-lysine as an antimicrobial product from an Epichloë endophyte and isolation of fungal ε-PL synthetase gene. Molecules 2020, 25, 1032. [Google Scholar] [CrossRef] [Green Version]
- Nissinen, R.; Helander, M.; Kumar, M.; Saikkonen, K. Heritable Epichloë symbiosis shapes fungal but not bacterial communities of plant leaves. Sci. Rep. 2019, 9, 5253. [Google Scholar] [CrossRef]
- Roberts, E.L.; Ferraro, A. Rhizosphere microbiome selection by Epichloë endophytes of Festuca arundinacea. Plant Soil 2015. [Google Scholar] [CrossRef]
- Zhong, R.; Xia, C.; Ju, Y.; Li, N.; Zhang, X.; Nan, Z.; Christensen, M.J. Effects of Epichloë gansuensis on root-associated fungal communities of Achnatherum inebrians under different growth conditions. Fungal Ecol. 2018, 31, 29–36. [Google Scholar] [CrossRef]
- Ju, Y.; Zhong, R.; Christensen, M.J.; Zhang, X. Effects of Epichloë gansuensis endophyte on the root and rhizosphere soil bacteria of Achnatherum inebrians under different moisture conditions. Front. Microbiol. 2020, 11. [Google Scholar] [CrossRef]
- Roberts, E.; Lindow, S. Loline alkaloid production by fungal endophytes of Fescue species select for particular epiphytic bacterial microflora. ISME J. 2014, 8, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Mormile, B.W. Influence of seed microbiome on fitness of Epichloë infected tall fescue seedlings. Master’s Thesis, Southern Connecticut State University, New Haven, CT, USA, 2016. [Google Scholar]
- Tian, P.; Nan, Z.; Li, C.; Spangenberg, G. Effect of the endophyte Neotyphodium lolii on susceptibility and host physiological response of perennial ryegrass to fungal pathogens. Eur. J. Plant Pathol. 2008, 122, 593–602. [Google Scholar] [CrossRef]
- Nan, Z.B.; Li, C.J. Neotyphodium in native grasses in China and observations on endophyte/host interactions. In Proceedings of the 4th International Neotyphodium/Grass Interactions Symposium, Soest, Germany, 27–29 September 2000; Paul, V.H., Dapprich, P.D., Eds.; pp. 41–50. [Google Scholar]
- Wang, X.Y.; Qin, J.H.; Chen, W.; Zhou, Y.; Ren, A.Z.; Goa, Y.B. Pathogen resistance advantage of endophyte-infected over endophyte-free Leymus chinensis is strengthen by pre-drought treatment. Eur. J. Plant Pathol. 2016, 144, 477–486. [Google Scholar] [CrossRef]
- Panka, D.; Jeske, M.; Troczynski, M. Occurrence of Neotyphodium and Epichloë fungi in meadow fescue and red fescue in Poland and screening of endophyte isolates as potential biological control agents. Acta Sci. Pol. Hortorum Cultus 2013, 12, 67–83. [Google Scholar]
- Xia, C.; Zhang, X.X.; Christensen, M.J.; Nan, Z.B.; Li, C.J. Epichloë endopyte affects the ability of powdery mildew (Blumeria graminis) to colonise drunken horse grass (Achnatherum inebrians). Fungal Ecol. 2015, 16, 26–33. [Google Scholar] [CrossRef]
- Perez, L.I.; Gundel, P.E.; Ghersa, C.M.; Omacini, M. Family issues: Fungal endophyte protects host grass from the closely related pathogen Claviceps purpurea. Fungal Ecol. 2013, 6, 379–386. [Google Scholar] [CrossRef]
- Trevathan, L.E. Performance of endophyte-free and endophyte-infected tall fescue seedlings in soil infested with Cochliobolus sativus. Can. J. Plant Pathol. 1996, 18, 415–418. [Google Scholar] [CrossRef]
- Chen, W.; Liu, H.; Wurihan; Gao, Y.; Card, S.D.; Ren, A. The advantages of endophyte infected over uninfected tall fescue in the growth and pathogen resistance are counteracted by elevated CO2. Sci. Rep. 2017, 7, 6952. [Google Scholar] [CrossRef]
- Reddy, M.N.; Faeth, S.H. Damping-off of Festuca arizonica caused by Fusarium. Am. J. Plant Sci. 2010, 1, 104–105. [Google Scholar] [CrossRef] [Green Version]
- Hume, D.E.; Quigley, P.E.; Aldaoud, R. Influence of Neotyphodium infection on plant survival of disease tall fescue and ryegrass. In Neotyphodium/Grass Interactions; Bacon, C.W., Hill, N.S., Eds.; Springer Science + Business Media: New York, NY, USA, 1997; pp. 171–172. [Google Scholar]
- Bonos, S.A.; Wilson, M.M.; Meyer, W.A.; Funk, R.C. Suppression of red thread in fine fescues through endophyte-mediated resistance. Appl. Turfgrass Sci. 2005, 2, 1–7. [Google Scholar] [CrossRef]
- Zabalgogeazcoa, I.; Gundel, P.E.; Helander, M.; Saikkonen, K. Non-systemic fungal endophytes in Festuca rubra plants infected by Epichloë festucae in subarctic habitats. Fungal Divers. 2013, 60, 25–32. [Google Scholar] [CrossRef]
- Welty, R.E.; Barker, R.E.; Azevedo, M.D. Reaction of tall fescue infected and noninfected by Acremonium coenophialum to Puccinia graminis subsp. Graminicola Plant Dis. 1991, 75, 883–886. [Google Scholar] [CrossRef]
- Panka, D.; Jeske, M.; Troczynski, M. Effect of Neotyphodium uncinatum endophyte on meadow fescue yielding, health status and ergovaline production in host-plants. J. Plant Protect. 2011, 51, 362–370. [Google Scholar]
- Wheatley, W.M.; Nicol, H.I.; Hunt, E.R.; Nikandrow, A.; Cother, N. An association between perennial ryegrass endophyte, a leafspot caused by Pyrenophora semeniperda and preferential grazing by sheep. In Proceedings of the 3rd International Conference on Harmful and Beneficial Microorganisms in Grassland, Pasture and Turf, Paderbom, Germany, 26–29 September 2000; pp. 71–75. [Google Scholar]
- Burpee, L.L.; Bouton, J.H. Effect of eradication of the endophyte Acremonium coenophialum on epidemics of Rhizoctonia blight in tall fescue. Plant Dis. 1993, 77, 157–159. [Google Scholar] [CrossRef]
- Gwinn, K.D.; Gavin, A.M. Relationship between endophyte infestation level of tall fescue seed lots and Rhizoctonia zeae seedling disease. Plant Dis. 1992, 76, 911–914. [Google Scholar] [CrossRef]
- Clarke, B.B.; White, J.F.; Hurley, R.H.; Torres, M.S.; Suns, S.; Huff, D.R. Endophyte-Mediated Suppression of Dollar Spot Disease in Fine Fescues. Plant Dis. 2006, 90, 994–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, Z.; Wang, R.; Ambrose, K.; Clarke, B.B.; Belanger, F.C. The Epichloë festucae antifungal protein has activity against the plant pathogen Sclerotinia homoeocarpa, the causal agent of dollar spot disease. Sci. Rep. 2017, 7, 5643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wäli, P.R.; Helander, M.; Nissinen, O.; Saikkonen, K. Susceptibility of endophyte-infected grasses to winter pathogens (snow molds). Can. J. Bot. 2006, 84, 1043–1051. [Google Scholar] [CrossRef]
- Vignale, M.V.; Astiz-Gassó, M.M.; Novas, M.V.; Iannone, L.J. Epichloid endophytes confer resistance to the smut Ustilago bullata in the wild grass Bromus auleticus (Trin.). Biol. Control. 2013, 67, 1–7. [Google Scholar] [CrossRef]
- Siegel, M.R.; Latch, G.C.M.; Johnson, M.C. Fungal endophytes of grasses. Annu. Rev. Phytopathol. 1987, 25, 293–315. [Google Scholar] [CrossRef]
- Latch, G.C.M.; Hunt, W.F.; Musgrave, D.R. Endophytic fungi affect growth of perennial ryegrass. N. Z. J. Agric. Res. 1985, 28, 165–168. [Google Scholar] [CrossRef]
- Belesky, D.P.; Fedders, J.M. Does endophyte influence regrowth of tall fescue? Ann. Bot. 1996, 78, 499–505. [Google Scholar] [CrossRef] [Green Version]
- Monnet, F.; Vaillant, N.; Hitmi, A.; Sallanon, H. Photosynthetic activity of Lolium perenne as a function of endophyte status and zinc nutrition. Funct. Plant Biol. 2005, 32, 131–139. [Google Scholar] [CrossRef]
- Easton, H.S.; Fletcher, L.R. The importance of endophyte in agricultural systems—Changing plant and animal productivity. In Proceedings of the 6th International Symposium on Fungal Endophytes of Grasses; Christchurch, New Zealand, 25–28 March 2007, Popay, A.J., Thom, E.R., Eds.; NZ Grassland Association Grassland Research and Practice Series; Volume 13, pp. 11–18.
- Young, C.A.; Hume, D.E.; McCulley, R.L. Forages and Pastures Symposium: Fungal endophytes of tall fescue and perennial ryegrass: Pasture friend or foe? J. Animal Sci. 2013, 91, 2379–2394. [Google Scholar] [CrossRef] [Green Version]
- Caradus, J.R. The commercial impact of Neotyphodium endophyte science and technology. In Proceedings of the 8th International Grass Endophyte Symposium, Lanzhou, China, 13–16 August 2012; pp. 203–206. [Google Scholar]
- Fletcher, L.R. Novel Endophytes in New Zealand Grazing Systems: The Perfect Solution or a Compromise? In Epichloaëe, Endophytes of Cool Season Grasses: Implications, Utilization and Biology; Young, C.A., Aiken, G.E., McCulley, R.L., Strickland, J.R., Schardl, C.L., Eds.; Samuel Roberts Noble Foundation: Ardmore, OK, USA, 2012; pp. 5–13. [Google Scholar]
- Thom, E.R.; Popay, A.J.; Hume, D.E.; Fletcher, L.R. Evaluating the performance of endophytes in farm systems to improve farmer outcomes—A review. Crop Pasture Sci. 2012, 63, 927–943. [Google Scholar] [CrossRef]
- Hume, D.E.; Cosgrove, G.P. Endophyte-what is it and its significance in New Zealand pastoral agriculture. In Proceedings of the 20th Annual Conference of the Grassland Society of NSW, Orange, Australia; 19–21 July 2005; pp. 31–36. [Google Scholar]
- Fletcher, L.R. “Non-toxic” endophytes in ryegrass and their effect on livestock health and production. In Ryegrass Endophyte—An Essential New Zealand Symbiosis; Woodfield, D.R., Matthew, C., Eds.; NZ Grassland Association Grassland Research and Practice Series; NZ Grassland Association: Napier, New Zealand, 1999; Volume 7, pp. 133–139. [Google Scholar]
- Tapper, B.A.; Latch, G.C.M. Selection against toxin production in endophyte infected perennial ryegrass. In Ryegrass Endophyte—An Essential New Zealand Symbiosis; Woodfield, D.R., Matthew, C., Eds.; NZ Grassland Association Grassland Research and Practice Series; NZ Grassland Association: Napier, New Zealand, 1999; Volume 7, pp. 107–111. [Google Scholar]
- Hume, D.E.; Ryan, D.L.; Cooper, B.M.; Popay, A.J. Agronomic performance of AR37-infected ryegrass in northern New Zealand. Proc. N. Z. Grassl. Assoc. 2007, 69, 201–205. [Google Scholar] [CrossRef]
- Fletcher, L.R. Managing ryegrass-endophyte toxicosis. In Neotyphodium in Cool-Season Grasses; Roberts, C.A., West, C.P., Spiers, D.E., Eds.; Blackwell Publishing: Ames, IA, USA, 2005; pp. 229–241. [Google Scholar]
- Easton, H.S.; Tapper, B.A. Neotyphodium down under—Research developments in New Zealand. In Proceedings of the 5th International Symposium, Neotyphodium/Grass Interactions, Fayetteville, AR, USA, 23–26 May 2004. [Google Scholar]
- Bluett, S.J.; Thom, E.R.; Clark, D.A.; Macdonald, K.A.; Minneé, E.M.K. Effects of perennial ryegrass infected with either AR1 or standard (wild) endophyte on dairy production in the Waikato. N. Z. J. Agric. Res. 2005, 48, 197–212. [Google Scholar] [CrossRef]
- Bluett, S.J.; Thom, E.R.; Clark, D.A.; Waugh, C.D. Effects of a novel ryegrass endophyte on pasture production, dairy cow milk production and calf liveweight gain. Aust. J. Exp. Agric. 2005, 45, 11–19. [Google Scholar] [CrossRef]
- Ussher, G. Northlands Pasture Toxin Project. N. Z. Large Herds Assoc. Annu. Conf. 2003, 34, 62–64. [Google Scholar]
- Milne, G.D. Technology transfer of novel ryegrass endophytes in New Zealand. In Proceedings of the 6th International Symposium on Fungal Endophytes of Grasses; Christchurch, New Zealand, 25–28 March 2007, Popay, A.J., Thom, E.R., Eds.; NZ Grassland Association Grassland Research and Practice Series; Volume 13, pp. 237–239.
- Easton, H.S.; Cooper, B.M.; Lyons, T.B.; Pennell, C.G.L.; Popay, A.J.; Tapper, B.A.; Simpson, W.R. Selected endophyte and plant variation. In Proceedings of the 4th International Neotyphodium/Grass Interactions Symposium, Soest, Germany, 27–29 September 2000; Paul, V.H., Dapprich, P.D., Eds.; pp. 351–356. [Google Scholar]
- Ferguson, C.M.; Barratt, B.I.P.; Bell, N.; Goldson, S.L.; Hardwick, S.; Jackson, M.; Jackson, T.A.; Phillips, C.B.; Popay, A.J.; Rennie, G.; et al. Quantifying the economic cost of invertebrate pests to New Zealand’s pastoral industry. N. Z. J. Agric. Res. 2019, 62, 255–315. [Google Scholar] [CrossRef] [Green Version]
- Tapper, B.A.; Lane, G.A. Janthitrems found in a Neotyphodium endophyte of perennial ryegrass. In Proceedings of the 5th International Symposium Neotyphodium/Grass Interactions, Fayetteville, AR, USA, May 23–26 2004; p. 301. [Google Scholar]
- Finch, S.C.; Fletcher, L.R.; Babu, J.V. The evaluation of endophyte toxin residues in sheep fat. N. Z. Vet. J. 2012, 60, 56–60. [Google Scholar] [CrossRef]
- Thom, E.R.; Waugh, C.D.; Minneé, E.M.K.; Waghorn, G.C. A new generation ryegrass endophyte—The first results from dairy cows fed AR37. In Proceedings of the 6th International Symposium on Fungal Endophytes of Grasses; Christchurch, New Zealand, 25–28 March 2007, Popay, A.J., Thom, E.R., Eds.; NZ Grassland Association Grassland Research and Practrice Series; Volume 13, pp. 293–296.
- Popay, A.J.; Wyatt, R.T. Resistance to Argentine stem weevil in perennial ryegrass infected with endophytes producing different alkaloids. In Proceedings of the 48th NZ Plant Protection Conference, Wellington, New Zealand, 21–23 July 1995; pp. 229–236. [Google Scholar]
- Popay, A.J.; Thom, E.R. Endophyte effects on major insect pests in Waikato dairy pasture. Pasture persistence symposium. N. Z. Grassl. Res. Pract. Ser. 2009, 15, 121–126. [Google Scholar]
- Stewart, A.; Kerr, G.; Lissaman, W.; Rowarth, J. Endophyte in Ryegrass and Tall Fescue. In Pasture and Forage Plants for New Zealand; Davies, K., Casey, M., Eds.; NZ Grassland Assoaciation Grassland and Research Practice Series; NZ Grassland Assoaciation Grassland: Napier, New Zealand, 2014; Volume 8, pp. 66–77. [Google Scholar]
- Popay, A.J.; Rijswijk, K.; Goldson, S.L. Argentine stem weevil: Farmer awareness and the effectiveness of different ryegrass/endophyte associations. J. N. Z. Grassl. 2017, 79, 147–152. [Google Scholar]
- Hume, D.E.; Popay, A.J.; Cooper, B.M.; Eerens, J.P.J.; Lyons, T.B.; Pennell, G.C.L.; Tapper, B.A.; Latch, G.C.M.; Baird, D.B. Effect of a novel endophyte on the productivity of perennial ryegrass (Lolium perenne) in New Zealand. In Proceedings of the 5th International Symposium on Neotyphodium/Grass Interactions, Fayetteville, AR, USA, 23–26 May 2004; p. 313. [Google Scholar]
- Thom, E.R.; Waugh, C.D.; Minneé, E.M.; Waghorn, G.C. Effects of novel and wild-type endophytes in perennial ryegrass on cow health and production. N. Z. Vet. J. 2013, 61, 87–97. [Google Scholar] [CrossRef]
- Fletcher, L.R.; Finch, S.C.; Sutherland, B.L.; de Nicolo, G.; Mace, W.J.; van Kote, C.; Hume, D.E. The occurrence of ryegrass staggers and heat stress in sheep grazing ryegrass endophyte associations with diverse alkaloid profiles. N. Z. Vet. J. 2017, 65, 232–241. [Google Scholar] [CrossRef] [Green Version]
- van Zijll, E.; Dobrowolski, M.P.; Sandford, A.; Smith, K.F.; Willocks, M.J.; Spangenberg, G.C.; Forster, J.W. Detection and characterisation of novel fungal endophyte genotypic variation in cultivars of perennial ryegrass (Lolium perenne L.). Aust. J. Agric. Res. 2008, 59, 214–221. [Google Scholar] [CrossRef]
- Eady, C.C.; Corkran, J.R.; Bailey, K.M.; Kerr, G.A.; Nicol, A.M. Estimation of ergovaline intake of cows from grazed perennial ryegrass containing NEA2 or standard endophyte. J. N. Z. Grassl. 2007, 79, 189–196. [Google Scholar]
- Ruppert, K.G.; Matthew, C.; McKenzie, C.M.; Popay, A.J. Impact of Epichloë endophytes on adult Argentine stem weevil damage to perennial ryegrass seedlings. Entomol. Exp. Appl. 2017, 163, 328–337. [Google Scholar] [CrossRef]
- Popay, A.J.; McNeill, M.R.; Goldson, S.L.; Ferguson, C.M. The current status of Argentine stem weevil (Listronotus bonariensis) as a pest in the North Island of New Zealand. N. Z. Plant Protect. 2011, 64, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Caradus, J.R.; Card, S.D.; Finch, S.C.; Hume, D.E.; Johnson, L.J.; Mace, W.J.; Popay, A.J. Ergot alkaloids in New Zealand pastures and their impact. N. Z. J. Agric. Res. 2020. [Google Scholar] [CrossRef]
- Logan, C.M.; Edwards, G.R.; Kerr, G.A.; Williams, S. Ryegrass staggers and liveweight gain of ewe lambs and hoggets grazing four combinations of perennial ryegrass and strains of endophyte. Proc. N. Z. Soc. Anim. Prod. 2015, 75, 175–178. [Google Scholar]
- Cameron, N.E. Grass Endophyte. U.S. Patent 9,133,434 B1, 26 May 2015. [Google Scholar]
- Clayton, W. Molecular and cellular analysis of the endophyte Neotyphodium uncinatum and its association with Festulolium. Master’s Thesis, Massey University, Palmerston North, New Zealand, 2013; p. 143. [Google Scholar]
- Nboyine, J.A.; Saville, D.; Boyer, S.; Cruickshank, R.H.; Wratten, S.D. When host-plant resistance to a pest leads to higher plant damage. J. Pest Sci. 2017, 90, 173–182. [Google Scholar] [CrossRef]
- Barker, G.M.; Patchett, B.J.; Gillanders, T.J.; Brown, G.S.; Montel, S.J.Y.; Cameron, N.E. Feeding and oviposition by Argentine stem weevil on Epichloë uncinata-infected, loline-containing Festulolium. Proc. N. Z. Plant Protect. 2015, 68, 212–217. [Google Scholar]
- Thompson, F.N.; Stuedemann, J.A. Pathophysiology of fescue toxicosis. Agric. Ecosyst. Environ. 1993, 44, 263–281. [Google Scholar] [CrossRef]
- Strickland, J.R.; Oliver, J.W.; Cross, D.L. Fescue toxicosis and its impact on animal agriculture. Vet. Hum. Toxicol. 1993, 35, 454–464. [Google Scholar]
- Bouton, J.H.; Hill, N.S.; Hoveland, C.S.; McCann, M.A.; Thompson, F.N.; Hawkins, L.L.; Latch, G.C.M. Performance of tall fescue cultivars infected with nontoxic endophytes. In Proceedings of the 4th International Neotyphodium/ Grass Interactions Symposium, Soest, Germany, 27–29 September 2000; Paul, V.H., Dapprich, P.D., Eds.; pp. 179–185. [Google Scholar]
- Parish, J.A.; McCann, M.A.; Watson, R.H.; Hoveland, C.S.; Hawkins, L.L.; Hill, N.S.; Bouton, J.H. Use of non-ergot alkaloid-producing endophytes for alleviating tall fescue toxicosis in sheep. J. Anim. Sci. 2003, 81, 1316–1322. [Google Scholar] [CrossRef] [PubMed]
- Parish, J.A.; McCann, M.A.; Watson, R.H.; Paiva, N.N.; Hoveland, C.S.; Parks, A.H.; Upchurch, B.L.; Hill, N.S.; Bouton, J.H. Use of non-ergot alkaloid-producing endophytes for alleviating tall fescue toxicosis in stocker cattle. J. Anim. Sci. 2003, 81, 2856–2868. [Google Scholar] [CrossRef] [PubMed]
- Watson, R.H.; McCann, M.A.; Parish, J.A.; Hoveland, C.S.; Thompson, F.N.; Bouton, J.H. Productivity of cow-calf pairs grazing tall fescue pastures infected with either the wild-type endophyte or a nonergot alkaloid-producing endophyte strain, AR542. J. Anim. Sci. 2004, 82, 3388–3393. [Google Scholar] [CrossRef] [PubMed]
- Ball, D.M.; Lacefield, G.D.; Agee, C.S.; Hoveland, C.S. Introduction and acceptance of novel endophyte tall fescue in the USA. In Proceedings of the 6th International Symposium on Fungal Endophytes of Grasses; Christchurch, New Zealand, 25–28 March 2007, Popay, A.J., Thom, E.R., Eds.; NZ Grassland Association Grassland Research and Practice Series; Volume 13, pp. 249–251.
- Hill, N.; Roach, P. Endophyte survival during seed storage: Endophyte–host interactions and heritability. Crop Sci. 2009, 49, 1425–1430. [Google Scholar] [CrossRef]
- Popay, A.J.; Jensen, J.G.; Cooper, B.M. The effect of non-toxic endophytes in tall fescue on two major insect pests. Proc. N. Z. Grassl. Assoc. 2005, 67, 169–173. [Google Scholar] [CrossRef]
- Ball, O.J.-P.; Coudron, T.A.; Tapper, B.A.; Davies, E.; Trently, D.; Bush, L.P.; Gwinn, K.D.; Popay, A.J. Importance of host plant species, Neotyphodium endophyte isolate, and alkaloids on feeding by Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae. J. Econ. Entomol. 2006, 99, 1462–1473. [Google Scholar] [CrossRef] [PubMed]
- Ball, O.J.-P.; Gwinn, K.D.; Pless, C.D.; Popay, A.J. Endophyte isolate and host grass effects on Chaetocnema pulicaria (Coleoptera: Chrysomelidae) feeding. J. Econ. Entomol. 2011, 104, 665–672. [Google Scholar] [CrossRef]
- Hunt, M.G.; Newman, J.A. Reduced herbivore resistance from a novel grass-endophyte association. J. Appl. Ecol. 2005, 42, 762–769. [Google Scholar] [CrossRef]
- Tozer, K.N.; Ates, S.; Mapp, N.R.; Smith, M.C.; Lucas, R.J.; Edwards, G.R. Effects of MaxPTM endophyte in tall fescue on pasture production and composition, and sheep grazing preference, in a dryland environment. In Proceedings of the 6th International Symposium Fungal Endophytes Grasses; Christchurch, New Zealand, 25–28 March 2007, Popay, A.J., Thom, E.R., Eds.; N.Z Grassland Association Grassland Research and Practice Series; Volume 13, pp. 259–272.
- Hopkins, A.A.; Young, C.A.; Simpson, W.R.; Panaccione, D.G.; Mittal, S.; Bouton, J.H. Agronomic performance and lamb safety of tall fescue novel endophyte combinations in the south-central USA. Crop Sci. 2010, 50, 1552–1561. [Google Scholar] [CrossRef]
- Shymanovich, T.; Crowley, G.; Ingram, S.; Steen, C.; Panaccione, D.G.; Young, C.A.; Watson, W.; Poore, M. Endophytes matter: Variation of dung beetle performance across different endophyte-infected tall fescue cultivars. Appl. Soil Ecol. 2020, 152. [Google Scholar] [CrossRef]
- Van Hanja, N.; de Bruin, J. Tall Fescue Endophyte E34. U.S. Patent 7,642,424 B2, 5 January 2010. [Google Scholar]
- Dillard, S.L.; Smith, S.R.; Hancock, D.W. variability of ergovaline and total ergot alkaloid expression among endophytic tall fescue cultivars. Crop Sci. 2019, 59, 2866–2875. [Google Scholar] [CrossRef]
- Craig, A.M.; Blythe, L.L.; Duringer, J.M. The role of the Oregon State University Endophyte service laboratory in diagnosing clinical cases of endophyte toxicoses. J. Agric. Food Chem. 2014, 62, 7376–7381. [Google Scholar] [CrossRef] [PubMed]
- Beck, P.A.; Stewart, C.B.; Gunter, S.A.; Singh, D. Evaluation of tall fescues for stocker cattle in the Gulf Coastal Plain. Prof. Anim. Sci. 2009, 25, 569–579. [Google Scholar] [CrossRef]
- Roulund, N.; Jensen, A.M.D. Tall Fescue Endophyte Isolate 647. U.S. Patent 9,706,779 B2, 23 August 2013. [Google Scholar]
- Nihsen, M.E.; Piper, E.L.; West, C.P.; Crawford, R.J., Jr.; Denard, T.M.; Johnson, Z.B.; Roberts, C.A.; Spiers, D.A.; Rosenkrans, C.F., Jr. Growth rate and physiology of steers grazing tall fescue inoculated with novel endophytes. J. Anim. Sci. 2004, 82, 878–883. [Google Scholar] [CrossRef]
- Rolston, M.P.; Agee, C. Delivering Quality Seed to Specification—The USA and NZ Novel Endophyte Experience. In Proceedings of the 6th International Symposium on Fungal Endophytes of Grasses; Christchurch, New Zealand, 25–28 March 2007, Popay, A.J., Thom, E.R., Eds.; NZ Grassland Association Grassand Research and Practice Series; Volume 13, pp. 229–231.
- Rolston, M.P.; Archie, W.J.; Simpson, W. Tolerance of AR1 Neotyphodium endophyte to fungicides used in perennial ryegrass seed production. Proc. N. Z. Plant Protect. 2002, 55, 322–325. [Google Scholar] [CrossRef] [Green Version]
- Hume, D.E.; Barker, D.J. Growth and Management of Endophytic Grasses in Pastoral Agriculture. In Neotyphodium in Cool-Season Grasses; Roberts, C.A., West, C.P., Speirs, D.E., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2005; pp. 201–226. [Google Scholar]
- Easton, S.; Tapper, B. Neotyphodium research and application in New Zealand. In Neotyphodium in Cool-Season Grasses; Roberts, C.A., West, C.P., Speirs, D.E., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2008; pp. 35–42. [Google Scholar]
- Andrea, J.G.; Roberts, C.A. Transferring endophytes technology to North American farmers. In Proceedings of the 6th International Symposium on Fungal Endophytes of Grasses; Christchurch, New Zealand, 25–28 March 2007, Popay, A.J., Thom, E.R., Eds.; NZ Grassland Association Grassland Research and Practice Series; Volume 13, pp. 233–236.
- Parish, J.A.; Watson, R.H. On-farm impacts of endophyte technology in the United States. In Proceedings of the 6th International Symposium on Fungal Endophytes of Grasses; Christchurch, New Zealand, 25–28 March 2007, Popay, A.J., Thom, E.R., Eds.; NZ Grassland Association Grassland Research and Practice Series; Volume 13, pp. 243–248.
- Murray, F.R.; Latch, G.C.M.; Scott, D.B. Surrogate transformation of perennial ryegrass Lolium perenne, using genetically modified Acremonium endophyte. Mol. Gen. Genet. 1992, 233, 1–9. [Google Scholar] [CrossRef]
- Schardl, C.L. Molecular and genetic methodologies and transformation of grass endophytes. In Biotechnology of Endophytic Fungi of Grasses; Bacon, C.W., White, J., Jr., Eds.; CRC Press: Boca Raton, FL, USA, 1994; pp. 151–165. [Google Scholar]
- Shi, T.-Q.; Liu, G.-N.; Ji, R.-Y.; Shi, K.; Song, P.; Ren, L.-J.; Huang, H.; Ji, X.-J. CRISPR/Cas9-based genome editing of the filamentous fungi: The state of the art. Appl. Microbiol. Biotechnol. 2017, 101, 7435–7443. [Google Scholar] [CrossRef]
- Johnson, L.J.; Voisey, C.R.; Faville, M.J.; Moon, C.D.; Simpson, W.R.; Johnson, R.D.; Stewart, A.V.; Caradus, J.R.; Hume, D.E. Advances and perspectives in breeding for improved grass-endophyte associations. In Proceedings of the Improving Sown Grasslands through Breeding and Management, Joint Symposium EFG/Eucarpia, Zurich, Switzerland, 24–27 June 2019; Grassland Science in Europe: Eucarpia, Italy, 2019; Volume 24, pp. 351–363. [Google Scholar]
- Bastias, D.A.; Johnson, L.J.; Card, S.D. Symbiotic bacteria of plant-associated fungi: Friends or foes? Curr. Opinion Plant Biol. 2020, 56, 1–8. [Google Scholar] [CrossRef]
- Easton, H.S.; Lyons, T.B.; Cooper, B.M.; Mace, W.J. Loline alkaloids for better protection of pastures from insect pests. Proc. N. Z. Grassl. Assoc. 2009, 71, 151–154. [Google Scholar] [CrossRef]
- Bassett, S.A.; Johnson, R.D.; Simpson, W.R.; Laugraud, A.; Jordan, T.W.; Bryan, G.T. Identification of a gene involved in the regulation of hyphal growth of Epichloë festucae during symbiosis. FEMS Microbiol. Lett. 2016, 363. [Google Scholar] [CrossRef]
- Spiering, M.J.; Moon, C.D.; Wilkinson, H.H.; Schardl, C.L. Gene clusters for insecticidal loline alkaloids in the grass-endophytic fungus Neotyphodium uncinatum. Genetics 2005, 169, 1403–1414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pennell, C.G.L. Pesticidal Plant Extract Containing Loline Derivatives. U.S. Patent 9,375,011 B2, 12 March 2008. [Google Scholar]
- Yue, Q.; Miller, C.J.; White, J.F., Jr.; Richardson, M.D. Isolation and characterization of fungal inhibitors from Epichloë festucae. J. Agric. Food Chem. 2000, 48, 4687–4692. [Google Scholar] [CrossRef] [PubMed]
- Fernando, K.; Reddy, P.; Hettiarachchige, I.K.; Spangenberg, G.C.; Rochfort, S.J.; Guthridge, K.M. Novel antifungal activity of Lolium-associated Epichloë endophytes. Microorganisms 2020, 8, 955. [Google Scholar] [CrossRef] [PubMed]
Organism | Impact | Alkaloid Involved | Epichloë Strain/Type | Reference |
---|---|---|---|---|
Insects | ||||
Acheta domesticus—house crickets | Toxic to nymphs | ns * | Ryegrass types | [253] |
Adoryphorus coulonii—Red-headed cockchafer | Reduced (10–20%) root consumption at >1000 µg/g DM | Loline | Meadow fescue types | [254] |
Agallica constricta—leaf hopper | Resistance | ns | Fescue types | [255] |
Agrostis ipsilon—Black cutworm | Deterrence and toxicity | Ergovaline and/or ergine most potent, with lolines also effective | E. lolii x E. typhina hybrid from ryegrass | [256,257] |
Aploneura lentisci—root aphid | Reduced survival; possible neurotoxin | Unknown (in case of AR5), and possibly epoxy janthitrems | AR37, AR5, AR6, and standard ryegrass endophyte | [258,259,260,261,262,263,264] |
Reduced root aphid numbers per plant | Possibly lolines—NFL and NAL | Fescue types | [265,266,267] | |
Minimal effect | Despite having similar ergovaline levels in roots as AR5 | NEA2 and NEA6 endophytes | [264] | |
Increased numbers | ns | AR1 endophyte | [268] | |
Balanococcus poae—Pasture mealybug | Reduced survival | ns | Ryegrass types including AR1 | [258,269,270,271] |
Reduced infestation | ns | Fescue types that do not express ergovaline | [272] | |
Blissus leucopterus hirtus—hairy chinch bug | Deterrence and toxicity to larvae and adults | ns | Fescue and ryegrass types | [273,274,275,276,277] |
No effect | Fescue types | [278] | ||
Costelytra zealandica or C. giveni—Grass grub | Reduced root feeding and larval weight gain; a deterrent effect | Loline and increased levels due to grass grub attack | Fescue and meadow fescue types; E. uncinatum | [91,92,279,280,281,282,283,284,285,286] |
Cerodontha australis—wheat sheath miner | Toxicity or deterrence to larvae, but no effect on oviposition | ns | AR47 and AR48 ryegrass strains | [287] |
Crambus roman—sod webworm | Deterrent | ns | Ryegrass types (turf) | [288] |
Ctenocephalides felis—cat flea larvae | Contact toxicity | NFL | Fescue types | [289] |
Cyclocephala lurida—southern masked chafer | Reduced numbers | ns | Fescue types | [217] |
Diuraphis noxia—Russian wheat aphid | Toxic to nymphs and adults; deterrent to adults | ns | Ryegrass and fescue types | [290,291] |
Draeculacephala spp.—leaf hopper | Resistance | ns | Fescue types | [25,292] |
Drosophila melanogaster—fruit fly | Toxic to adults | ns | Fescue types | [293] |
Exitianus exitiosus—leaf hopper | Resistance | ns | Fescue types | [255] |
Exomala orientalis | Reduced survival | ns | Fescue types | [294] |
Graminella nigrifrons—leaf hopper | Resistance | ns | Fescue types | [255] |
Graphania mutans—cutworm | Not a deterrent, but disrupted development | Peramine | Ryegrass types | [295] |
Heteronychus arator—African black beetle | Antifeeding effect on adults | Ergopeptine alkaloids - ergotamine, ergovaline, ergocryptine | Standard ryegrass endophyte; AR22, AR12 endophytes | [260,270,280,296,297,298,299,300] |
Reduced numbers | ns | AR37 endophyte | [260] | |
Deterrent, antifeeding effect on larval and adult stages | Loline | Fescue and meadow fescue types; E. uncinata | [254,301,302] | |
No effect | Peramine, lolitrem B, paxilline, festuclavine, lysergol, and lysergic acid amide | Ryegrass and fescue types | [280,297,298] | |
Lepidogryllus spp.—mottled field cricket | Deterrent | Loline | Meadow fescue types; E. uncinatum | [303] |
Listronotis bonariensis—Argentine stem weevil | Feeding deterrent for both adults and larvae; reduced oviposition | Peramine—higher concentration required to control larvae | Ryegrass types; AR1, AR5, NEA2 endophytes | [84,245,260,270,299,304,305,306,307,308,309,310,311,312,313,314,315,316,317] |
Feeding deterrent and toxin of larvae, but not adults | Lolitrem B | Ryegrass types | [315,318,319,320] | |
Feeding deterrent | Paxilline | Ryegrass types | [84] | |
Reduce larval damage of tillers | ns | AR37 endophyte | [260] | |
Feeding deterrent and death of larvae | Loline level above 400 µg/g DM; NANL possibly more potent than NFL at moderate concentrations | Meadow fescue types | [279,321,322,323] | |
Feeding deterrent | Ergovaline; ergocryptine; ergotamine | Ryegrass types | [295,324] | |
No effect | Ryegrass and fescue types | [325] | ||
Oncopeltus fasciatus—large milkweed bug | Feeding deterrent and toxic | NFL | Fescue types | [140,326] |
Ostrinia nubilalis—European corn borer larvae | Toxic effects and reduced larval weight gain | NAL | Fescue types | [327] |
Parapediasa teterella—bluegrass webworm | Deterrent, reduced feeding | ns | Fescue and ryegrass types | [328,329,330] |
Periplaneta Americana—American cockroach | Contact toxicity | NFL | Fescue types | [289] |
Phenococcus solani—mealybug | Reduced numbers | ns | Fescue types | [331] |
Philobota spp.—Pasture tunnel moths | Reduced numbers | ns | AR37 | [262] |
Popillia japonica—Japanese beetle larvae | Contact toxicity | NFL | Fescue types | [289] |
Reduced feeding | Particularly NFL and NAL; and lesser effect of ergotamine, ergonovine, ergocryptine | Fescue types | [294,332] | |
Inconsistent effects | Fescue types | [294,333] | ||
No effect | Fescue and ryegrass types | [334,335,336,337] | ||
Prosapia bicincta—leaf hopper | Resistance | ns | Fescue types | [255] |
Pseudococcidae—mealybugs | Reduced numbers | ns | AR37 | [262] |
Rhopalosiphum padi—aphid | Feeding deterrent and toxic | Loline | Fescue types | [325,326,338,339,340,341] |
Reduced numbers | ns | E. gansuense | [342] | |
No effect | Ergovaline | Ryegrass and fescue types | [338] | |
Rhopalosiphum maidis—Corn leaf aphid | Some resistance, but less than for R. padi and S. graminum | ns | Ryegrass types; lesser impact of fescue types | [326] |
Schizaphis graminum—aphid | Toxic causing reduced numbers | Loline | Fescue types; E festucae and E. uncinatum | [326,327,340] |
Feeding deterrent and toxic | Peramine | Ryegrass and fescue types | [338] | |
No effect | Ergovaline | |||
Resistance | ns | Fescue types | [140] | |
Sphenphorus parvulus—Bluegrass billbug | Resistance/ toxicity to adults | ns | Ryegrass and fescue types (turf) | [288,292,343,344] |
Spodoptero frugiperda—fall army worm | Reduced worm survival and liveweight gains | ns | Fescue and ryegrass types | [345,346,347,348] |
NFL, NAL | Fescue types | [327] | ||
Ergotamine, ergonovine, ergocryptine | Fescue types | [349] | ||
Spodoptera eridania—southern army worm | Toxic | ns | Ryegrass types | [350] |
Teleogryllus commodus—black field cricket | Deterrent | Loline | Meadow fescue types; E. uncinatum | [303] |
Trigonotylus caelestialium—rice leaf bug | Resistance | Loline | Fescue types | [351] |
Wiseana cervinata—Porina | Reduced survival | ns | AR37 ryegrass type | [80,192,256,352,353] |
Reduce feeding and weight gain | Paxilline | [354] | ||
Loline | Fescue types | [282] | ||
Mites | ||||
Tetranychus cinnabarinus | Reduced numbers | ns | E. gansuense | [342] |
Nematodes (refer to [355] Cook and Lewis 2001) | ||||
Helicotylenchus pseudorobustus—spiral nematodes | Reduced numbers | ns | Fescue types | [356] |
Meloidogyne marylandi | Fewer egg masses and eggs and reduced infection | ns | Fescue types | [356,357,358] |
Reduced infection | ns, but not ergovaline | Ryegrass types | [90] | |
Meloidogyne nassi | Reduced galls and females | ns | Ryegrass types | [359] |
Paratrichodorus minor—stubby root nematodes | Reduced numbers | ns | Fescue types | [360] |
Pratylenchus scribneri—Lesion nematode | Repellent and death | NFL at high concentrations; and ergovaline | Fescue types | [356,361] |
Reduced numbers | ns | Fescue types | [362,363] | |
Attractant and causes death | Ergovaline, ergotamine | Fescue types | [361] | |
Repellent | Ergocryptine, ergonovine | Fescue types | ||
Attractant at <20 µg/m and repellent at high concentrations | NFL | Fescue types | ||
Pratylenchus spp. | Reduced numbers in soil | ns | Ryegrass types | [364,365] |
Tylenchorhynchus acutus—stunt nematodes | Reduced numbers in soil | ns | Fescue types | [362] |
Molluscs | ||||
Deroceras reticulatum | Reduced feeding | Lolitrem B and possibly lolines | Used artificial diets incorporating the secondary metabolites | [366] |
No effect | Peramine | |||
Stimulated feeding | Ergotamine and ergovaline | |||
Attractant | Paxilline, lolitriol, a-paxitriol and b-paxitriol |
Pathogen | Impact of Endophyte | Alkaloid Involved | Epichloë Strain/Type | Reference |
---|---|---|---|---|
Alternaria alternata | Moderate resistance | Enhanced superoxide dismutase or peroxidases activity | Ryegrass types | [383] |
Reduced incidence of infection | ns * | Host: Elymus cylindricus | [384] | |
Bipolaris sorokiniana | No effect in planta | E. bromicola | [375] | |
No effect in planta | E. gansuensis | [342] | ||
Reduced incidence of infection | ns | Host: Leymus chinensis | [385] | |
ns | Fescue types | [386] | ||
Resistance to infection | Enhanced superoxide dismutase or peroxidases activity | Ryegrass types | [383] | |
Blumeria graminis—powdery mildew | Lower disease incidence | ns | E. gansuensis | [342,387] |
Cladosporium sp. | No effect in planta | E. bromicola | [375] | |
Claviceps purpurea | Reduced infection unless plants water stressed | ns | Annual ryegrass types | [388] |
Cochliobolus sativus—soil pathogen | No effect | Fescue types | [389] | |
Curvularia lunata | No effect in planta | E. bromicola | [375] | |
Moderate resistance | Enhanced superoxide dismutase or peroxidases activity | Ryegrass types | [383] | |
Reduced incidence of infection | ns | Host: Leymus chinensis | [385] | |
Reduced disease symptoms | ns | Fescue types | [390] | |
Drechsler sp. | Reduced incidence infection | ns | Fescue types | [386] |
Drechslera erythrospila | Inhibited hyphal growth | ns | Ryegrass and fescue types | [373] |
Reduced disease symptoms in planta | Protease and endoglucanase activity | E. fesctucae | [374] | |
Drechslera siccans—brown blight | Resistance to infection | ns | Ryegrass types | [370] |
Fusarium avenaceum | Resistance to infection | Enhanced superoxide dismutase or peroxidases activity | Ryegrass types | [383] |
F. avenaceum | Reduced incidence of infection | ns | Host: Elymus cylindricus | [384] |
F. culmorum | Reduced incidence of infection | ns | Host: Elymus cylindricus | |
F. oxysporum | Reduced incidence of infection | ns | Host: Elymus cylindricus | |
Increased resistance | ns | Fescue arizonica type | [391] | |
F. poae | Reduced incidence of infection | ns | Fescue types | [386] |
Fusarium spp. | No effect | Ryegrass and fescue types | [392] | |
Resistance to infection | ns | Ryegrass types | [370] | |
Laetisaria fuciformis—red thread | Lower disease incidence and severity | ns | Meadow fescue types | [393] |
Microdochim bolleyi | No effect | Ryegrass and fescue types | [392] | |
Phaeosphaeria—leaf spot | No effect | Meadow fescue types | [394] | |
Puccinia graminis subsp. graminicola | No effect | Fescue types | [395] | |
Puccinia spp. | No effect | E. uncinatum | [396] | |
Pyrenophora semeniperda—leaf spot | Reduced disease symptoms in planta | ns | Ryegrass types | [397] |
Rhizoctonia blight | No effect | Fescue types | [398] | |
Rhizoctonia zeae | Reduced disease symptoms in planta | Phenolic compounds | Fescue types | [399] |
Reduced hyphal growth | ns | E. uncinatum | [373] | |
R. solani | Reduced incidence of infection | ns | Fescue types | [386] |
Sclerotinia homoeocarpa—Dollar spot disease | Lower disease incidence and severity | Antifungal protein | Meadow fescue types | [400,401] |
Typhula ishikariensis—snow mold | Increased susceptibility | ns | Meadow fescue types | [402] |
Ustilago bullata—head smut | Suppressed infection | ns | E. tembladerae | [403] |
Endophyte Strain | Tillers Damaged by ASW (%) | Number of Black Beetles per m2 | Tillers Damaged by Porina Larvae (%) | Number of Root Aphids per Plant * |
---|---|---|---|---|
AR37 | 2.1 | 23 | 13.6 | 2 (0.5) |
Standard | 2.8 | 17 | 28.7 | 171 (1.23) |
Nil endophyte | 25.7 | 64 | 34.9 | 244 (1.93) |
LSD0.05 | 14.2 | 26 | 19.9 | (0.67) |
Tall Fescue Variety | Total Ergot Alkaloid Concentration (µg kg−1) | Ergovaline Concentration (µg kg−1) | ||
---|---|---|---|---|
Leaf Blade | Leaf Sheath | Leaf Blade | Leaf Sheath | |
BarOptima Plus E34 | 133 b | 337 b | 37 b | 343 b |
KY31 | 1667 a | 6312 a | 268 a | 2848 a |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Tall Fescue and Endophyte | ADG (kg/day) | Grazing Days per ha | Blood Serum Prolactin (ng/mL) |
---|---|---|---|
KY31 | 0.58 | 529 | 1.5 |
Endophyte free | 1.08 | 384 | 62 |
BarOptima E34 | 0.93 | 553 | 38 |
Jesup AR542 (MaxQ) | 0.88 | 611 | 79 |
SEM * | 0.08 | 30 | 14 |
Tall Fescue and Endophyte | Endophyte Infection Rate (% Viable in Seed) | Alkaloid Levels (µg/g of DM) | ADG (kg/day) | Prolactin (ng/mL) | ||
---|---|---|---|---|---|---|
Total Ergot Alkaloids | NFL | NAL | ||||
HiMag—ArkShield | 94 | 0 | 161 | 117 | 0.6 a | 155 a |
KY31 | 80 | 0.70 | 305 | 117 | 0.34 b | 17 b |
HiMag—Nil endophyte | 0 | 0 | 0 | 0 | 0.62 a | 108 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caradus, J.R.; Johnson, L.J. Epichloë Fungal Endophytes—From a Biological Curiosity in Wild Grasses to an Essential Component of Resilient High Performing Ryegrass and Fescue Pastures. J. Fungi 2020, 6, 322. https://doi.org/10.3390/jof6040322
Caradus JR, Johnson LJ. Epichloë Fungal Endophytes—From a Biological Curiosity in Wild Grasses to an Essential Component of Resilient High Performing Ryegrass and Fescue Pastures. Journal of Fungi. 2020; 6(4):322. https://doi.org/10.3390/jof6040322
Chicago/Turabian StyleCaradus, John R., and Linda J. Johnson. 2020. "Epichloë Fungal Endophytes—From a Biological Curiosity in Wild Grasses to an Essential Component of Resilient High Performing Ryegrass and Fescue Pastures" Journal of Fungi 6, no. 4: 322. https://doi.org/10.3390/jof6040322
APA StyleCaradus, J. R., & Johnson, L. J. (2020). Epichloë Fungal Endophytes—From a Biological Curiosity in Wild Grasses to an Essential Component of Resilient High Performing Ryegrass and Fescue Pastures. Journal of Fungi, 6(4), 322. https://doi.org/10.3390/jof6040322