Genetic Transformation in Cryptococcus Species
Abstract
:1. Introduction
2. Genetic Elements Required for Transformation
2.1. Origin of Replication (ORI) and Autonomously Replicating Sequences (ARSs)
2.2. Telomeres
2.3. Promoter and Terminator Sequences
2.4. Selectable Marker Genes
2.4.1. Auxotrophic Gene Markers
2.4.2. Positive Selectable Gene Marker
3. Transformation Methods
3.1. Protoplast/PEG-CaCl2
3.2. Electroporation
3.3. Biolistic Transformation
3.4. Agrobacterium Tumefaciens-Mediated Transformation (ATMT)
3.5. Other Transformation Approaches
4. Enhancing Homology-Directed Repairs (HDRs)
4.1. Circular vs. Linearized DNA Plasmids
4.2. Split Marker Genes
4.3. Additional HDR Enhancing Methods
5. Application of CRISPR-Cas9 Technology
5.1. CRISPR-Cas9-Mediated Gene Editing and Components Elimination
5.2. Biolistic Transformation with Self-Cleaving Ribozyme-Fused sgRNAs and Electroporation with a Transient Expression System
5.3. Transformation with Single Vectors Expressing Cas9 and sgRNA and a Cas9-sgRNA Ribonucleoprotein (RNP) Complex
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hinnen, A.; Hicks, J.B.; Fink, G.R. Transformation of yeast. Proc. Natl. Acad. Sci. USA 1978, 75, 1929–1933. [Google Scholar] [CrossRef] [Green Version]
- Beggs, J.D. Transformation of yeast by a replicating hybrid plasmid. Nature 1978, 275, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.M.; Liu, Y.T.; Ma, C.H.; Jayaram, M.; Sau, S. The 2 micron plasmid of Saccharomyces cerevisiae: A miniaturized selfish genome with optimized functional competence. Plasmid 2013, 70, 2–17. [Google Scholar] [CrossRef]
- Tsukuda, T.; Carleton, S.; Fotheringham, S.; Holloman, W.K. Isolation and characterization of an autonomously replicating sequence from Ustilago maydis. Mol. Cell. Biol. 1988, 8, 3703–3709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varma, A.; Kwon-Chung, K.J. Construction of stable episomes in Cryptococcus neoformans. Curr. Genet. 1998, 34, 60–66. [Google Scholar] [CrossRef]
- Mondon, P.; Chang, Y.C.; Varma, A.; Kwon-Chung, K.J. A novel episomal shuttle vector for transformation of Cryptococcus neoformans with the ccdB gene as a positive selection marker in bacteria. FEMS Microbiol. Lett. 2000, 187, 41–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hull, C.M.; Heitman, J. Genetics of Cryptococcus neoformans. Annu. Rev. Genet. 2002, 36, 557–615. [Google Scholar] [CrossRef] [PubMed]
- Edman, J.C. Isolation of telomerelike sequences from Cryptococcus neoformans and their use in high-efficiency transformation. Mol. Cell. Biol. 1992, 12, 2777–2783. [Google Scholar] [CrossRef] [Green Version]
- Ory, J.J.; Griffith, C.L.; Doering, T.L. An efficiently regulated promoter system for Cryptococcus neoformans utilizing the CTR4 promoter. Yeast 2004, 21, 919–926. [Google Scholar] [CrossRef]
- Varma, A.; Kwon-Chung, K.J. Characterization of the glyceraldehyde-3-phosphate dehydrogenase gene. Gene 1999, 232, 155–163. [Google Scholar] [CrossRef]
- Shen, G.; Whittington, A.; Song, K.; Wang, P. Pleiotropic function of intersectin homologue Cin1 in Cryptococcus neoformans. Mol. Microbiol. 2010, 76, 662–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, G.; Zhou, E.; Alspaugh, J.A.; Wang, P. Wsp1 is downstream of Cin1 and regulates vesicle transport and actin cytoskeleton as an effector of Cdc42 and Rac1 in Cryptococcus neoformans. Eukaryot. Cell 2012, 11, 471–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Meara, T.R.; Norton, D.; Price, M.S.; Hay, C.; Clements, M.F.; Nichols, C.B.; Alspaugh, J.A. Interaction of Cryptococcus neoformans Rim101 and protein kinase A regulates capsule. PLoS Pathog. 2010, 6, e1000776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, K.W.; Yang, D.H.; Kim, M.K.; Seo, H.S.; Lim, S.; Bahn, Y.S. Unraveling fungal radiation resistance regulatory networks through the genome-wide transcriptome and genetic analyses of Cryptococcus neoformans. mBio 2016, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wickes, B.L.; Edman, J.C. The Cryptococcus neoformans GAL7 gene and its use as an inducible promoter. Mol. Microbiol. 1995, 16, 1099–1109. [Google Scholar] [CrossRef]
- Palmer, D.A.; Thompson, J.K.; Li, L.; Prat, A.; Wang, P. Gib2, a novel Gbeta-like/RACK1 homolog, functions as a Gbeta subunit in cAMP signaling and is essential in Cryptococcus neoformans. J. Biol. Chem. 2006, 281, 32596–32605. [Google Scholar] [CrossRef] [Green Version]
- Baker, L.G.; Lodge, J.K. Galactose-Inducible promoters in Cryptococcus neoformans var. grubii. Methods Mol. Biol. 2012, 845, 211–226. [Google Scholar] [CrossRef]
- Ruff, J.A.; Lodge, J.K.; Baker, L.G. Three galactose inducible promoters for use in C. neoformans var. grubii. Fungal. Genet. Biol. 2009, 46, 9–16. [Google Scholar] [CrossRef] [Green Version]
- McDade, H.C.; Cox, G.M. A new dominant selectable marker for use in Cryptococcus neoformans. Med. Mycol. 2001, 39, 151–154. [Google Scholar] [CrossRef]
- Edman, J.C.; Kwon-Chung, K.J. Isolation of the URA5 gene from Cryptococcus neoformans var. neoformans and its use as a selective marker for transformation. Mol. Cell. Biol. 1990, 10, 4538–4544. [Google Scholar]
- Wang, P.; Cardenas, M.E.; Cox, G.M.; Perfect, J.R.; Heitman, J. Two cyclophilin A homologs with shared and distinct functions important for growth and virulence of Cryptococcus neoformans. EMBO Rep. 2001, 2, 511–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narasipura, S.D.; Ault, J.G.; Behr, M.J.; Chaturvedi, V.; Chaturvedi, S. Characterization of Cu,Zn superoxide dismutase (SOD1) gene knock-out mutant of Cryptococcus neoformans var. gattii: Role in biology and virulence. Mol. Microbiol. 2003, 47, 1681–1694. [Google Scholar] [CrossRef] [PubMed]
- Perfect, J.R.; Toffaletti, D.L.; Rude, T.H. The gene encoding phosphoribosylaminoimidazole carboxylase (ADE2) is essential for growth of Cryptococcus neoformans in cerebrospinal fluid. Infect. Immun. 1993, 61, 4446–4451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sudarshan, S.; Davidson, R.C.; Heitman, J.; Alspaugh, J.A. Molecular analysis of the Cryptococcus neoformans ADE2 gene, a selectable marker for transformation and gene disruption. Fungal. Genet. Biol. 1999, 27, 36–48. [Google Scholar] [CrossRef] [PubMed]
- Erpf, P.E.; Stephenson, C.J.; Fraser, J.A. amdS as a dominant recyclable marker in Cryptococcus neoformans. Fungal. Genet. Biol. 2019, 131, 103241. [Google Scholar] [CrossRef] [Green Version]
- Lodge, J.K.; Jackson-Machelski, E.; Toffaletti, D.L.; Perfect, J.R.; Gordon, J.I. Targeted gene replacement demonstrates that myristoyl-CoA: Protein N-myristoyltransferase is essential for viability of Cryptococcus neoformans. Proc. Natl. Acad. Sci. USA 1994, 91, 12008–12012. [Google Scholar] [CrossRef] [Green Version]
- Cox, G.M.; Toffaletti, D.L.; Perfect, J.R. Dominant selection system for use in Cryptococcus neoformans. J. Med. Vet. Mycol. 1996, 34, 385–391. [Google Scholar] [CrossRef] [Green Version]
- Hua, J.; Meyer, J.D.; Lodge, J.K. Development of positive selectable markers for the fungal pathogen Cryptococcus neoformans. Clin. Diagn. Lab. Immunol. 2000, 7, 125–128. [Google Scholar] [CrossRef] [Green Version]
- Shen, G.; Whittington, A.; Wang, P. Wsp1, a GBD/CRIB domain-containing WASP homolog, is required for growth, morphogenesis, and virulence of Cryptococcus neoformans. Eukaryot. Cell 2011, 10, 521–529. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Shen, G.; Gong, J.; Shen, D.; Whittington, A.; Qing, J.; Treloar, J.; Boisvert, S.; Zhang, Z.; Yang, C.; et al. Noncanonical Gbeta Gib2 is a scaffolding protein promoting cAMP signaling through functions of Ras1 and Cac1 in Cryptococcus neoformans. J. Biol. Chem. 2014, 289, 12202–12216. [Google Scholar] [CrossRef] [Green Version]
- Kawai, S.; Hashimoto, W.; Murata, K. Transformation of Saccharomyces cerevisiae and other fungi: Methods and possible underlying mechanism. Bioeng. Bugs 2010, 1, 395–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Nuss, D.L. Induction of a Cryphonectria parasitica cellobiohydrolase I gene is suppressed by hypovirus infection and regulated by a GTP-binding-protein-linked signaling pathway involved in fungal pathogenesis. Proc. Natl. Acad. Sci. USA 1995, 92, 11529–11533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Larson, T.G.; Chen, C.-H.; Pawlyk, D.M.; Clark, J.A.; Nuss, D.L. Cloning and characterization of a general amino acid control transcriptional activator from the chestnut blight fungus Cryphonectria parasitica. Fungal. Gen. Biol. 1998, 23, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Gao, C.; Wang, J.; Yin, Z.; Zhang, J.; Ji, J.; Zhang, H.; Zheng, X.; Zhang, Z.; Wang, P. Disruption of actin motor function due to MoMyo5 mutation impairs host penetration and pathogenicity in Magnaporthe oryzae. Mol. Plant Pathol. 2018, 19, 689–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhodes, J.C.; Kwon-Chung, K.J. Production and regeneration of protoplasts from Cryptococcus. Sabouraudia 1985, 23, 77–80. [Google Scholar] [CrossRef]
- Varma, A.; Kwon-Chung, K.J. Rapid method to extract DNA from Cryptococcus neoformans. J. Clin. Microbiol. 1991, 29, 810–812. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Chacko, N.; Wang, L.; Pavuluri, Y. Generation of stable mutants and targeted gene deletion strains in Cryptococcus neoformans through electroporation. Med. Mycol. 2015, 53, 225–234. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, D.; Zhu, X.; Pan, J.; Zhang, P.; Huo, L.; Zhu, X. A ‘suicide’ CRISPR-Cas9 system to promote gene deletion and restoration by electroporation in Cryptococcus neoformans. Sci. Rep. 2016, 6, 31145. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Lin, X. Multiple applications of a transient CRISPR-Cas9 coupled with electroporation (TRACE) system in the Cryptococcus neoformans species complex. Genetics 2018, 208, 1357–1372. [Google Scholar] [CrossRef] [Green Version]
- Wang, P. Two distinct approaches for CRISPR-Cas9-mediated gene editing in Cryptococcus neoformans and related species. mSphere 2018, 3. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Fan, Y.; Lin, X. Transformation of Cryptococcus neoformans by electroporation using a transient CRISPR-Cas9 expression (TRACE) system. Fungal. Genet. Biol. 2020, 138, 103364. [Google Scholar] [CrossRef] [PubMed]
- Wickes, B.L.; Edman, J.C. Development of a transformation system for Cryptococcus neoformans. In Molecular Biology of Pathogenic Fungi: A Laboratory Manual; Maresca, B., Kobayashi, G., Eds.; Telos Press: New York, NY, USA, 1994; pp. 309–313. [Google Scholar]
- Toffaletti, D.L.; Rude, T.H.; Johnston, S.A.; Durack, D.T.; Perfect, J.R. Gene transfer in Cryptococcus neoformans by use of biolistic delivery of DNA. J. Bacteriol. 1993, 175, 1405–1411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Idnurm, A.; Reedy, J.L.; Nussbaum, J.C.; Heitman, J. Cryptococcus neoformans virulence gene discovery through insertional mutagenesis. Eukaryot. Cell 2004, 3, 420–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, G.; Kronstad, J.W. Gene disruption in Cryptococcus neoformans and Cryptococcus gattii by in vitro transposition. Curr Genet 2006, 49, 341–350. [Google Scholar] [CrossRef]
- Liu, O.W.; Chun, C.D.; Chow, E.D.; Chen, C.; Madhani, H.D.; Noble, S.M. Systematic genetic analysis of virulence in the human fungal pathogen Cryptococcus neoformans. Cell 2008, 135, 174–188. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Perfect, J.R.; Heitman, J. The G-protein beta subunit GPB1 is required for mating and haploid fruiting in Cryptococcus neoformans. Mol. Cell. Biol. 2000, 20, 352–362. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Cutler, J.E.; King, J.; Palmer, D. Mutation of the regulator of G protein signaling Crg1 increases virulence in Cryptococcus neoformans. Eukaryot. Cell 2004, 3, 1028–1035. [Google Scholar] [CrossRef] [Green Version]
- Shen, G.; Wang, Y.L.; Whittington, A.; Li, L.; Wang, P. The RGS protein Crg2 regulates pheromone and cyclic AMP signaling in Cryptococcus neoformans. Eukaryot. Cell 2008, 7, 1540–1548. [Google Scholar] [CrossRef] [Green Version]
- Gong, J.; Grodsky, J.D.; Zhang, Z.; Wang, P. A Ric8/synembryn homolog promotes Gpa1 and Gpa2 activation to respectively regulate cyclic AMP and pheromone signaling in Cryptococcus neoformans. Eukaryot. Cell 2014, 13, 1290–1299. [Google Scholar] [CrossRef] [Green Version]
- Davidson, R.C.; Cruz, M.C.; Sia, R.A.; Allen, B.; Alspaugh, J.A.; Heitman, J. Gene disruption by biolistic transformation in serotype D strains of Cryptococcus neoformans. Fungal. Genet. Biol. 2000, 29, 38–48. [Google Scholar] [CrossRef]
- McClelland, C.M.; Chang, Y.C.; Kwon-Chung, K.J. High frequency transformation of Cryptococcus neoformans and Cryptococcus gattii by Agrobacterium tumefaciens. Fungal. Genet. Biol. 2005, 42, 904–913. [Google Scholar] [CrossRef] [PubMed]
- Rehman, L.; Su, X.; Guo, H.; Qi, X.; Cheng, H. Protoplast transformation as a potential platform for exploring gene function in Verticillium dahliae. BMC Biotechnol. 2016, 16, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Tang, Y.; Lin, J.; Cai, W. Methods for genetic transformation of filamentous fungi. Microb. Cell Fact. 2017, 16, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chai, R.; Zhang, G.; Sun, Q.; Zhang, M.; Zhao, S.; Qiu, L. Liposome-mediated mycelial transformation of filamentous fungi. Fungal. Biol. 2013, 117, 577–583. [Google Scholar] [CrossRef]
- Shen, C.; Gao, X.; Li, T.; Zhang, J.; Gao, Y.; Qiu, L.; Zhang, G. Heterologous expression of Rhizopus oryzae CYP509C12 gene in Rhizopus nigricans enhances reactive oxygen species production and 11alpha-hydroxylation rate of 16alpha, 17-epoxyprogesterone. Mycobiology 2019, 47, 301–307. [Google Scholar] [CrossRef]
- Riggle, P.J.; Kumamoto, C.A. Genetic analysis in fungi using restriction-enzyme-mediated integration. Curr. Opin. Microbiol. 1998, 1, 395–399. [Google Scholar] [CrossRef]
- Kim, M.S.; Kim, S.Y.; Yoon, J.K.; Lee, Y.W.; Bahn, Y.S. An efficient gene-disruption method in Cryptococcus neoformans by double-joint PCR with NAT-split markers. Biochem. Biophys. Res. Commun. 2009, 390, 983–988. [Google Scholar] [CrossRef]
- Kim, M.S.; Kim, S.Y.; Jung, K.W.; Bahn, Y.S. Targeted gene disruption in Cryptococcus neoformans using double-joint PCR with split dominant selectable markers. Methods Mol. Biol. 2012, 845, 67–84. [Google Scholar] [CrossRef]
- Fu, J.; Hettler, E.; Wickes, B.L. Split marker transformation increases homologous integration frequency in Cryptococcus neoformans. Fungal. Genet. Biol. 2006, 43, 200–212. [Google Scholar] [CrossRef]
- Jung, K.W.; Yang, D.H.; Maeng, S.; Lee, K.T.; So, Y.S.; Hong, J.; Choi, J.; Byun, H.J.; Kim, H.; Bang, S.; et al. Systematic functional profiling of transcription factor networks in Cryptococcus neoformans. Nat. Commun. 2015, 6, 6757. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.T.; So, Y.S.; Yang, D.H.; Jung, K.W.; Choi, J.; Lee, D.G.; Kwon, H.; Jang, J.; Wang, L.L.; Cha, S.; et al. Systematic functional analysis of kinases in the fungal pathogen Cryptococcus neoformans. Nat. Commun. 2016, 7, 12766. [Google Scholar] [CrossRef] [PubMed]
- Nelson, R.T.; Pryor, B.A.; Lodge, J.K. Sequence length required for homologous recombination in Cryptococcus neoformans. Fungal. Genet. Biol. 2003, 38, 1–9. [Google Scholar] [CrossRef]
- Goins, C.L.; Gerik, K.J.; Lodge, J.K. Improvements to gene deletion in the fungal pathogen Cryptococcus neoformans: Absence of Ku proteins increases homologous recombination, and co-transformation of independent DNA molecules allows rapid complementation of deletion phenotypes. Fungal. Genet. Biol. 2006, 43, 531–544. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Stead, D.; Selway, L.; Walker, J.; Riba-Garcia, I.; McLnerney, T.; Gaskell, S.; Oliver, S.G.; Cash, P.; Brown, A.J. Proteomic response to amino acid starvation in Candida albicans and Saccharomyces cerevisiae. Proteomics 2004, 4, 2425–2436. [Google Scholar] [CrossRef]
- Arras, S.D.; Chua, S.M.; Wizrah, M.S.; Faint, J.A.; Yap, A.S.; Fraser, J.A. Targeted genome editing via CRISPR in the pathogen Cryptococcus neoformans. PLoS ONE 2016, 11, e0164322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruni, G.O.; Zhong, K.; Lee, S.C.; Wang, P. CRISPR-Cas9 induces point mutation in the mucormycosis fungus Rhizopus delemar. Fungal. Genet. Biol. 2019, 124, 1–7. [Google Scholar] [CrossRef]
- Morio, F.; Lombardi, L.; Butler, G. The CRISPR toolbox in medical mycology: State of the art and perspectives. PLoS Pathog. 2020, 16, e1008201. [Google Scholar] [CrossRef] [Green Version]
- Harrison, M.M.; Jenkins, B.V.; O’Connor-Giles, K.M.; Wildonger, J. A CRISPR view of development. Genes Dev. 2014, 28, 1859–1872. [Google Scholar] [CrossRef] [Green Version]
- Sander, J.D.; Joung, J.K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 2014, 32, 347–355. [Google Scholar] [CrossRef]
- Banakar, R.; Eggenberger, A.L.; Lee, K.; Wright, D.A.; Murugan, K.; Zarecor, S.; Lawrence-Dill, C.J.; Sashital, D.G.; Wang, K. High-frequency random DNA insertions upon co-delivery of CRISPR-Cas9 ribonucleoprotein and selectable marker plasmid in rice. Sci. Rep. 2019, 9, 19902. [Google Scholar] [CrossRef]
Method | Key features | References |
---|---|---|
Electroporation | Easy, both time constant and exponential decay pulse types, episomal DNA maintenance. | [20,37,42] |
Biolistic transformation | Versatile and efficient, preferred for gene knockout, high initial cost. | [43,51] |
Agrobacterium tumefaciens-mediated transformation (ATMT) | Feasible for insertional mutagenesis, require co-cultures, not for gene knockout. | [44,52] |
PEG/CaCl2-mediated protoplast, REMI, and liposome-mediated transformation | Not reported |
gRNA Expression | Delivery Method | Species | References |
---|---|---|---|
RNA Pol III promoter (U6) | Electroporation Biolistic transformation | C. denewformans C. newformans | [38,39,40,41] |
RNA Pol II promoter with self-cleaving ribozymes | Biolistic transformation | C. newformans | [66] |
Ribonucleotide protein (RNP) complex | Electroporation | C. denewformans | [40] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P. Genetic Transformation in Cryptococcus Species. J. Fungi 2021, 7, 56. https://doi.org/10.3390/jof7010056
Wang P. Genetic Transformation in Cryptococcus Species. Journal of Fungi. 2021; 7(1):56. https://doi.org/10.3390/jof7010056
Chicago/Turabian StyleWang, Ping. 2021. "Genetic Transformation in Cryptococcus Species" Journal of Fungi 7, no. 1: 56. https://doi.org/10.3390/jof7010056
APA StyleWang, P. (2021). Genetic Transformation in Cryptococcus Species. Journal of Fungi, 7(1), 56. https://doi.org/10.3390/jof7010056