Facile Bio-Fabrication of Ag-Cu-Co Trimetallic Nanoparticles and Its Fungicidal Activity against Candida auris
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Extract
2.3. Preparation and Characterization of Ag-Cu-Co Trimetallic Nanoparticles
2.4. Biological Assays
2.5. Antifungal Activity of Ag-Cu-Co Trimetallic Nanoparticle
2.6. Cell Count and Viability
2.7. Apoptotic Studies
2.7.1. Protoplast Preparation
2.7.2. Effect on C. auris Mitochondrial Membrane Potential (Δψm)
2.7.3. Effect on Cytochrome c Discharge
2.7.4. Annexin V-FITC/PI Staining
2.7.5. Cell Cycle Arrest
2.8. Cytotoxicity
2.9. Statistics
3. Results and Discussion
3.1. Phytogenic Synthesis of Ag-Cu-Co Trimetallic Nanoparticles
3.2. Anti-Candida Activity of Ag-Cu-Co Trimetallic Nanoparticle
3.3. Cell Count and Viability Assay
3.4. Apoptotic Studies
3.4.1. Loss of Mitochondrial Membrane Potential (Δψm)
3.4.2. Ag-Cu-Co Trimetallic Nanoparticle Activates Apoptotic Factors in C. auris
3.4.3. Ag-Cu-Co Trimetallic Nanoparticles Trigger PS Externalization in C. auris
3.5. Cell Cycle Arrest in C. auris
3.6. Haemolytic Activity of Ag-Cu-Co Trimetallic Nanoparticle
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chowdhary, A.; Prakash, A.; Sharma, C.; Kordalewska, M.; Kumar, A.; Sarma, S.; Tarai, B.; Singh, A.; Upadhyaya, G.; Upadhyay, S. A multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009–2017) in India: Role of the ERG11 and FKS1 genes in azole and echinocandin resistance. J. Antimicrob. Chemother. 2018, 73, 891–899. [Google Scholar] [PubMed]
- Ademe, M.; Girma, F. Candida auris: From multidrug resistance to pan-resistant strains. Infect. Drug Resist. 2020, 13, 1287–1294. [Google Scholar] [PubMed]
- Available online: https://www.cdc.gov/fungal/candida-auris/c-auris-drug-resistant.html (accessed on 5 January 2021).
- Shaban, S.; Patel, M.; Ahmad, A. Improved efficacy of antifungal drugs in combination with monoterpene phenols against Candida auris. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Mohammadinejad, R.; Karimi, S.; Iravani, S.; Varma, R.S. Plant-derived nanostructures: Types and applications. Green Chem. 2016, 18, 20–52. [Google Scholar] [CrossRef]
- Mohammadinejad, R.; Shavandi, A.; Raie, D.S.; Sangeetha, J.; Soleimani, M.; Hajibehzad, S.S.; Thangadurai, D.; Hospet, R.; Popoola, J.O.; Arzani, A. Plant molecular farming: Production of metallic nanoparticles and therapeutic proteins using green factories. Green Chem. 2019, 21, 1845–1865. [Google Scholar] [CrossRef] [Green Version]
- Nasrollahzadeh, M.; Sajjadi, M.; Dadashi, J.; Ghafuri, H. Pd-based nanoparticles: Plant-assisted biosynthesis, characterization, mechanism, stability, catalytic and antimicrobial activities. Adv. Colloid Interface Sci. 2020, 276, 102103. [Google Scholar] [CrossRef]
- Nadagouda, M.N.; Varma, R.S. Green and controlled synthesis of gold and platinum nanomaterials using vitamin B2: Density-assisted self-assembly of nanospheres, wires and rods. Green Chem. 2006, 8, 516–518. [Google Scholar] [CrossRef]
- Iravani, S.; Varma, R.S. Bacteria in heavy metal remediation and nanoparticle biosynthesis. ACS Sustain. Chem. Eng. 2020, 8, 5395–5409. [Google Scholar] [CrossRef]
- Alshehri, A.A.; Malik, M.A. Facile one-pot biogenic synthesis of Cu-Co-Ni trimetallic nanoparticles for enhanced photocatalytic dye degradation. Catalysts 2020, 10, 1138. [Google Scholar] [CrossRef]
- Paul, D.; Mangla, S.; Neogi, S. Antibacterial study of CuO-NiO-ZnO trimetallic oxide nanoparticle. Mater. Lett. 2020, 271, 127740. [Google Scholar] [CrossRef]
- Dlugaszewska, J.; Dobrucka, R. Effectiveness of biosynthesized trimetallic Au/Pt/Ag nanoparticles on planktonic and biofilm enterococcus faecalis and enterococcus faecium forms. J. Clust. Sci. 2019, 30, 1091–1101. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, A.; Tripathy, S.K.; Dehury, N.; Patra, S. A porous trimetallic Au@Pd@Ru nanoparticle system: Synthesis, characterisation and efficient dye degradation and removal. J. Mater. Chem. A 2015, 3, 19376–19383. [Google Scholar] [CrossRef]
- Yadav, N.; Jaiswal, A.K.; Dey, K.K.; Yadav, V.B.; Nath, G.; Srivastava, A.K.; Yadav, R.R. Trimetallic Au/Pt/Ag based nanofluid for enhanced antibacterial response. Mater. Chem. Phys. 2018, 218, 10–17. [Google Scholar] [CrossRef]
- Rodríguez-Proenza, C.A.; Palomares-Báez, J.P.; Chávez-Rojo, M.A.; García-Ruiz, A.F.; Azanza-Ricardo, C.L.; Santoveña-Uribe, A.; Luna-Bárcenas, G.; Rodríguez-López, J.L.; Esparza, R. Atomic surface segregation and structural characterization of PdPt bimetallic nanoparticles. Materials 2018, 11, 1882. [Google Scholar] [CrossRef] [Green Version]
- Ge, S.; Zhang, Y.; Zhang, L.; Liang, L.; Liu, H.; Yan, M.; Huang, J.; Yu, J. Ultrasensitive electrochemical cancer cells sensor based on trimetallic dendritic Au@PtPd nanoparticles for signal amplification on lab-on-paper device. Sens. Actuators B Chem. 2015, 220, 665–672. [Google Scholar] [CrossRef]
- Chakraborty, D.; Mohan, L.; Alex, S.A.; Chandrasekaran, N.; Mukherjee, A. Bimetallic gold nanorods with enhanced biocorona formation for doxorubicin loading and sustained release. Biomater. Sci. 2019, 7, 63–75. [Google Scholar] [CrossRef]
- Li, X.; Du, X. Molybdenum disulfide nanosheets supported Au-Pd bimetallic nanoparticles for non-enzymatic electrochemical sensing of hydrogen peroxide and glucose. Sens. Actuators B Chem. 2017, 239, 536–543. [Google Scholar] [CrossRef]
- Adekoya, J.A.; Dare, E.O.; Mesubi, M.A. Tunable morphological properties of silver enriched platinum allied nanoparticles and their catalysed reduction of p-nitrophenol. Adv. Nat. Sci. Nanosci. Nanotechnol. 2014, 5, 035007. [Google Scholar] [CrossRef] [Green Version]
- Karle, A.; Deepa, S.; Kapur, I.; Therese, H.A. An investigation on the synergistic effect of Cu2O-Ag nanoparticle on its bactericidal and anticancerous properties. Mater. Res. Express 2020, 7, 015410. [Google Scholar] [CrossRef]
- Ferreira, L.; Almeida-Aguiar, C.; Parpot, P.; Fonseca, A.M.; Neves, I.C. Preparation and assessment of antimicrobial properties of bimetallic materials based on NaY zeolite. RSC Adv. 2015, 5, 37188–37195. [Google Scholar] [CrossRef]
- Ferreira, L.; Guedes, J.F.; Almeida-Aguiar, C.; Fonseca, A.M.; Neves, I.C. Microbial growth inhibition caused by Zn/Ag-Y zeolite materials with different amounts of silver. Colloids Surf. B Biointerfaces 2016, 142, 141–147. [Google Scholar] [CrossRef]
- Arora, N.; Thangavelu, K.; Karanikolos, G.N. Bimetallic nanoparticles for antimicrobial applications. Front. Chem. 2020, 8, 412. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Sharma, A.S.; Ahmad, W.; Zareef, M.; Hassan, M.M.; Viswadevarayalu, A.; Jiao, T.; Li, H.; Chen, Q. Noble metals based bimetallic and trimetallic nanoparticles: Controlled synthesis, antimicrobial and anticancer applications. Crit. Rev. Anal. Chem. 2020, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Abou-Gamra, Z.; Salem, A. Photocatalytic degradation of methylene blue dye over novel spherical mesoporous Cr2O3/TiO2 nanoparticles prepared by sol-gel using octadecylamine template. J. Environ. Chem. Eng. 2017, 5, 4251–4261. [Google Scholar] [CrossRef]
- Yang, Y.; Saoud, K.M.; Abdelsayed, V.; Glaspell, G.; Deevi, S.; El-Shall, M.S. Vapor phase synthesis of supported Pd, Au, and unsupported bimetallic nanoparticle catalysts for CO oxidation. Catal. Commun. 2006, 7, 281–284. [Google Scholar] [CrossRef]
- Kanhe, N.S.; Tak, A.K.; Nawale, A.B.; Raut, S.A.; Bhoraskar, S.V.; Das, A.K.; Mathe, V.L. Understanding the crystalline phase formation in FeNi and AlNi binary alloy-nanoparticles produced by thermal plasma assisted gas phase condensation method. Mater. Des. 2016, 112, 495–504. [Google Scholar] [CrossRef]
- Nabiyouni, G.; Ghanbari, D.; Karimzadeh, S.; SAMANI, G.B. Sono-Chemical Synthesis Fe3O4-Mg(OH)2 Nanocomposite and Its Photocatalyst Investigation in Methyl Orange Degradation. 2014. Available online: https://1library.net/document/yjom71kz-chemical-synthesis-nanocomposite-catalyst-investigation-methyl-orange-degradation.html (accessed on 10 January 2021).
- Houshiar, M.; Zebhi, F.; Razi, Z.J.; Alidoust, A.; Askari, Z. Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: A comparison study of size, structural, and magnetic properties. J. Magn. Magn. Mater. 2014, 371, 43–48. [Google Scholar] [CrossRef]
- Azarafza, A.; Ziarati, M.; Khandan, N.; Aminian, J.; Esfeh, H.K.; Setarekokab, M.R. Experimental and numerical study of iron pyrite nanoparticles synthesis based on hydrothermal method in a laboratory-scale stirred autoclave. Powder Technol. 2016, 287, 177–189. [Google Scholar] [CrossRef]
- Al-Thabaiti, S.A.; Khan, Z.; Malik, M.A. Bimetallic Ag-Ni nanoparticles as an effective catalyst for hydrogen generation from hydrolysis of sodium borohydride. Int. J. Hydrog. Energy 2019, 44, 16452–16466. [Google Scholar] [CrossRef]
- Alzahrani, S.A.; Al-Thabaiti, S.A.; Al-Arjan, W.S.; Malik, M.A.; Khan, Z. Preparation of ultra long α-MnO2 and Ag@MnO2 nanoparticles by seedless approach and their photocatalytic performance. J. Mol. Struct. 2017, 1137, 495–505. [Google Scholar] [CrossRef]
- Alruqi, S.S.; Al-Thabaiti, S.A.; Malik, M.A.; Khan, Z. Role of surfactants: One step facile synthesis of hetero structured Ag-Ni alloy by seed less approach. Colloids Surf. A Physicochem. Eng. Asp. 2018, 540, 36–47. [Google Scholar] [CrossRef]
- Khan, Z.; Al-Thabaiti, S.A.; Obaid, A.Y.; Malik, M.A.; Khan, M.N.; Khan, T.A. Cobalt@ silver bimetallic nanoparticles: Solution based seedless surfactant assisted synthesis, optical properties, and morphology. J. Mol. Liq. 2016, 222, 272–278. [Google Scholar] [CrossRef]
- Zaheer, Z.; Malik, M.A.; Al-Nowaiser, F.M.; Khan, Z. Preparation of silver nanoparticles using tryptophan and its formation mechanism. Colloids Surf. B Biointerfaces 2010, 81, 587–592. [Google Scholar] [CrossRef] [PubMed]
- Nasrollahzadeh, M.; Sajjadi, M.; Iravani, S.; Varma, R.S. Trimetallic nanoparticles: Greener synthesis and their applications. Nanomaterials 2020, 10, 1784. [Google Scholar] [CrossRef]
- Weng, X.; Guo, M.; Luo, F.; Chen, Z. One-step green synthesis of bimetallic Fe/Ni nanoparticles by eucalyptus leaf extract: Biomolecules identification, characterization and catalytic activity. Chem. Eng. J. 2017, 308, 904–911. [Google Scholar] [CrossRef]
- Albeladi, S.S.R.; Malik, M.A.; Al-thabaiti, S.A. Facile biofabrication of silver nanoparticles using Salvia officinalis leaf extract and its catalytic activity towards Congo red dye degradation. J. Mater. Res. Technol. 2020, 9, 10031–10044. [Google Scholar] [CrossRef]
- Alshehri, A.A.; Malik, M.A. Biogenic fabrication of ZnO nanoparticles using Trigonella foenum-graecum (Fenugreek) for proficient photocatalytic degradation of methylene blue under UV irradiation. J. Mater. Sci. Mater. Electron. 2019, 30, 16156–16173. [Google Scholar] [CrossRef]
- Alshehri, A.; Malik, M.A.; Khan, Z.; Al-Thabaiti, S.A.; Hasan, N. Biofabrication of Fe nanoparticles in aqueous extract of Hibiscus sabdariffa with enhanced photocatalytic activities. RSC Adv. 2017, 7, 25149–25159. [Google Scholar] [CrossRef] [Green Version]
- Radini, I.A.; Hasan, N.; Malik, M.A.; Khan, Z. Biosynthesis of iron nanoparticles using Trigonella foenum-graecum seed extract for photocatalytic methyl orange dye degradation and antibacterial applications. J. Photochem. Photobiol. B Biol. 2018, 183, 154–163. [Google Scholar] [CrossRef]
- AL-Thabaiti, N.S.; Malik, M.A.; Khan, Z. Protein interactions with silver nanoparticles: Green synthesis, and biophysical approach. Int. J. Biol. Macromol. 2017, 95, 421–428. [Google Scholar] [CrossRef]
- Siddiquee, M.A.; ud din Parray, M.; Mehdi, S.H.; Alzahrani, K.A.; Alshehri, A.A.; Malik, M.A.; Patel, R. Green synthesis of silver nanoparticles from Delonix regia leaf extracts: In-vitro cytotoxicity and interaction studies with bovine serum albumin. Mater. Chem. Phys. 2020, 242, 122493. [Google Scholar] [CrossRef]
- Phillips, A.J.; Sudbery, I.; Ramsdale, M. Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. Proc. Ntal. Acad. Sci. USA 2003, 100, 14327–14332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, C.; Zhang, J.; Yu, L.; Wang, C.; Yang, Y.; Rong, X.; Xu, K.; Chu, M. Antifungal activity of coumarin against Candida albicans is related to apoptosis. Front. Cell. Infect. Microbiol. 2019, 8, 445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lone, S.A.; Wani, M.Y.; Fru, P.; Ahmad, A. Cellular apoptosis and necrosis as therapeutic targets for novel Eugenol tosylate congeners against Candida albicans. Sci. Rep. 2020, 10, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Yun, D.G.; Lee, D.G. Silibinin triggers yeast apoptosis related to mitochondrial Ca2+ influx in Candida albicans. Int. J. Biochem. Cell Biol. 2016, 80, 1–9. [Google Scholar] [CrossRef]
- Chung, C.H.; Jung, W.; Keum, H.; Kim, T.W.; Jon, S. Nanoparticles derived from the natural antioxidant, rosmarinic acid, ameliorate acute inflammatory bowel disease. ACS Nano 2020, 14, 6887–6896. [Google Scholar] [CrossRef]
- Marslin, G.; Siram, K.; Maqbool, Q.; Selvakesavan, R.K.; Kruszka, D.; Kachlicki, P.; Franklin, G. Secondary metabolites in the green synthesis of metallic nanoparticles. Materials 2018, 11, 940. [Google Scholar] [CrossRef] [Green Version]
- Durán, N.; Marcato, P.D.; Durán, M.; Yadav, A.; Gade, A.; Rai, M. Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Appl. Microbiol. Biotechnol. 2011, 90, 1609–1624. [Google Scholar] [CrossRef]
- Kordalewska, M.; Lee, A.; Park, S.; Berrio, I.; Chowdhary, A.; Zhao, Y.; Perlin, D.S. Understanding echinocandin resistance in the emerging pathogen Candida Auris. Antimicrob. Agents Chemother. 2018, 62, e00238-18. [Google Scholar] [CrossRef] [Green Version]
- Alzahrani, K.E.; Niazy, A.A.; Alswieleh, A.M.; Wahab, R.; El-Toni, A.M.; Alghamdi, H.S. Antibacterial activity of trimetal (CuZnFe) oxide nanoparticles. Int. J. Nanomed. 2018, 13, 77. [Google Scholar] [CrossRef] [Green Version]
- Nishanthi, R.; Malathi, S.; Palani, P. Green synthesis and characterization of bioinspired silver, gold and platinum nanoparticles and evaluation of their synergistic antibacterial activity after combining with different classes of antibiotics. Mater. Sci. Eng. C 2019, 96, 693–707. [Google Scholar]
- Wani, I.A.; Ahmad, T. Size and shape dependant antifungal activity of gold nanoparticles: A case study of Candida. Colloids Surf. B Biointerfaces 2013, 101, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Lemar, K.M.; Passa, O.; Aon, M.A.; Cortassa, S.; Müller, C.T.; Plummer, S.; O’Rourke, B.; Lloyd, D. Allyl alcohol and garlic (Allium sativum) extract produce oxidative stress in Candida albicans. Microbiology 2005, 151, 3257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemar, K.M.; Aon, M.A.; Cortassa, S.; O’Rourke, B.; Müller, C.T.; Lloyd, D. Diallyl disulphide depletes glutathione in Candida albicans: Oxidative stress-mediated cell death studied by two-photon microscopy. Yeast 2007, 24, 695–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hüttemann, M.; Pecina, P.; Rainbolt, M.; Sanderson, T.H.; Kagan, V.E.; Samavati, L.; Doan, J.W.; Lee, I. The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: From respiration to apoptosis. Mitochondrion 2011, 11, 369–381. [Google Scholar] [CrossRef] [Green Version]
- Adrain, C.; Martin, S.J. The mitochondrial apoptosome: A killer unleashed by the cytochrome seas. Trends Biochem. Sci. 2001, 26, 390–397. [Google Scholar] [CrossRef]
- Hwang, J.; Choi, H.; Kim, A.; Yun, J.; Yu, R.; Woo, E.R.; Lee, D. Corrigendum: Hibicuslide C-induced cell death in Candida albicans involves apoptosis mechanism. J. Appl. Microbiol. 2016, 121, 1789. [Google Scholar] [CrossRef] [Green Version]
- Neto, J.B.; da Silva, C.R.; Neta, M.A.; Campos, R.S.; Siebra, J.T.; Silva, R.A.; Gaspar, D.M.; Magalhães, H.I.; de Moraes, M.O.; Lobo, M.D. Antifungal activity of naphthoquinoidal compounds in vitro against fluconazole-resistant strains of different Candida species: A special emphasis on mechanisms of action on Candida tropicalis. PLoS ONE 2014, 9, e93698. [Google Scholar] [CrossRef]
- Niu, C.; Wang, C.; Yang, Y.; Chen, R.; Zhang, J.; Chen, H.; Zhuge, Y.; Li, J.; Cheng, J.; Xu, K. Carvacrol induces Candida albicans apoptosis associated with Ca2+/calcineurin pathway. Front. Cell. Infect. Microbiol. 2020, 10, 192. [Google Scholar] [CrossRef]
- Seyedjavadi, S.S.; Khani, S.; Eslamifar, A.; Ajdary, S.; Goudarzi, M.; Halabian, R.; Akbari, R.; Zare-Zardini, H.; Imani Fooladi, A.A.; Amani, J. The antifungal peptide MCh-AMP1 derived from Matricaria chamomilla inhibits Candida albicans growth via inducing ROS generation and altering fungal cell membrane permeability. Front. Microbiol. 2020, 10, 3150. [Google Scholar] [CrossRef] [Green Version]
- Yan, C.; Wang, S.; Wang, J.; Li, H.; Huang, Z.; Sun, J.; Peng, M.; Liu, W.; Shi, P. Clioquinol induces G2/M cell cycle arrest through the up-regulation of TDH3 in Saccharomyces cerevisiae. Microbiol. Res. 2018, 214, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Stefanini, I.; Rizzetto, L.; Rivero, D.; Carbonell, S.; Gut, M.; Heath, S.; Gut, I.G.; Trabocchi, A.; Guarna, A.; Ghazzi, N.B. Deciphering the mechanism of action of 089, a compound impairing the fungal cell cycle. Sci. Rep. 2018, 8, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Rubiolo, J.A.; Ternon, E.; López-Alonso, H.; Thomas, O.P.; Vega, F.V.; Vieytes, M.R.; Botana, L.M. Crambescidin-816 acts as a fungicidal with more potency than crambescidin-800 and-830, inducing cell cycle arrest, increased cell size and apoptosis in Saccharomyces cerevisiae. Mar. Drugs 2013, 11, 4419–4434. [Google Scholar] [CrossRef] [PubMed]
- Ficociello, G.; De Caris, M.G.; Trillò, G.; Cavallini, D.; Sarto, M.S.; Uccelletti, D.; Mancini, P. Anti-candidal activity and in vitro cytotoxicity assessment of graphene nanoplatelets decorated with zinc oxide nanorods. Nanomaterials 2018, 8, 752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harper, B.; Sinche, F.; Ho Wu, R.; Gowrishankar, M.; Marquart, G.; Mackiewicz, M.; Harper, S.L. The impact of surface ligands and synthesis method on the toxicity of glutathione-coated gold nanoparticles. Nanomaterials 2014, 4, 355–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
S. No. | 2 θ | d-Spacing (Å) | FWHM | Crystalline Size (nm) |
---|---|---|---|---|
1 | 37.7216 | 2.382837432 | 0.48178 | 17.42506189 |
2 | 45.47041 | 1.993154413 | 0.3593 | 23.97315723 |
3 | 52.86128 | 1.730567455 | 0.64428 | 13.76979501 |
4 | 63.97211 | 1.454184105 | 0.67217 | 13.93443599 |
5 | 72.52798 | 1.302267931 | 0.61254 | 16.08510181 |
6 | 75.6141 | 1.25659809 | 0.66303 | 15.16530024 |
7 | 77.90948 | 1.225214382 | 0.65923 | 15.49665248 |
8 | 81.72598 | 1.177374293 | 0.79933 | 13.14160673 |
C. auris Isolates | Ag-Cu-Co Trimetallic Nanoparticle (µg/mL) | AmB * (µg/mL) | FLZ * (µg/mL) | CAS * (µg/mL) | |
---|---|---|---|---|---|
MIC | MFC | MIC ** | MIC ** | MIC ** | |
MRL 6326 | 0.39 | 0.78 | 0.25 (S) | 125.0 (R) | 0.25 (S) |
MRL 6183 | 0.39 | 0.78 | 0.25 (S) | 250.0 (R) | 0.50 (S) |
MRL 4888 | 0.78 | 1.56 | 1.0 (S) | 500.0 (R) | 0.25 (S) |
MRL 6015 | 0.39 | 0.78 | 0.25 (S) | 62.0 (R) | 0.50 (S) |
MRL 6333 | 0.39 | 0.78 | 0.5 (S) | 125.0 (R) | 0.25 (S) |
MRL 4587 | 0.39 | 0.78 | 0.5 (S) | 32.0 (R) | 0.25 (S) |
MRL 6334 | 0.39 | 0.78 | 0.5 (S) | 250.0 (R) | 0.25 (S) |
MRL 3785 | 0.39 | 0.78 | 0.125 (S) | 16.0 (S) | 0.25 (S) |
MRL 6059 | 0.39 | 0.78 | 0.5 (S) | 125.0 (R) | 0.50 (S) |
MRL 4000 | 0.78 | 1.56 | 2.0 (R) | 250.0 (R) | 0.50 (S) |
MRL 6065 | 0.78 | 1.56 | 1.0 (S) | 125.0 (R) | 0.25 (S) |
MRL 2921 | 0.78 | 1.56 | 2.0 (R) | 250.0 (R) | 0.25 (S) |
MRL 6125 | 0.39 | 0.78 | 0.25 (S) | 62.0 (R) | 0.125 (S) |
MRL 6338 | 0.39 | 0.78 | 0.25 (S) | 125.0 (R) | 0.50 (S) |
MRL 3499 | 0.39 | 0.78 | 0.5 (S) | 16.0 (S) | 0.25 (S) |
MRL 6194 | 0.39 | 0.78 | 0.25 (S) | 125.0 (R) | 0.50 (S) |
MRL 6005 | 0.78 | 1.56 | 1.0 (S) | 500.0 (R) | 0.25 (S) |
MRL 6057 | 0.78 | 1.56 | 4.0 (R) | 125.0 (R) | 2.0 (R) |
MRL 5762 | 0.78 | 1.56 | 2.0 (R) | 500.0 (R) | 0.25 (S) |
MRL 6173 | 0.39 | 0.78 | 0.25 (S) | 32.0 (R) | 0.25 (S) |
MRL 5765 | 0.78 | 1.56 | 2.0 (R) | 500.0 (R) | 0.25 (S) |
MRL 2397 | 0.78 | 1.56 | 1.0 (S) | 16.0 (S) | 0.25 (S) |
MRL 5418 | 0.39 | 0.78 | 0.5 (S) | 500.0 (R) | 0.25 (S) |
MRL 6277 | 0.39 | 0.78 | 0.5 (S) | 125.0 (R) | 0.25 (S) |
MRL 6339 | 0.39 | 0.78 | 0.5 (S) | 250.0 (R) | 0.50 (S) |
Condition | Quadrants | ½ MIC (% Cells) | MIC (% Cells) | MFC (% Cells) |
---|---|---|---|---|
Ag-Cu-Co Trimetallic nanoparticles | Q1 | 1.47 | 14.9 | 40.2 |
Q2 | 11.3 | 54.2 | 52.1 | |
Q3 | 37.0 | 6.36 | 1.31 | |
Q4 | 50.2 | 24.5 | 6.38 | |
Positive control | Q1 | 30.7 | ||
Q2 | 57.2 | |||
Q3 | 2.21 | |||
Q4 | 9.89 | |||
Negative control | Q1 | 0.17 | ||
Q2 | 0.6 | |||
Q3 | 0.39 | |||
Q4 | 98.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamli, M.R.; Srivastava, V.; Hajrah, N.H.; Sabir, J.S.M.; Hakeem, K.R.; Ahmad, A.; Malik, M.A. Facile Bio-Fabrication of Ag-Cu-Co Trimetallic Nanoparticles and Its Fungicidal Activity against Candida auris. J. Fungi 2021, 7, 62. https://doi.org/10.3390/jof7010062
Kamli MR, Srivastava V, Hajrah NH, Sabir JSM, Hakeem KR, Ahmad A, Malik MA. Facile Bio-Fabrication of Ag-Cu-Co Trimetallic Nanoparticles and Its Fungicidal Activity against Candida auris. Journal of Fungi. 2021; 7(1):62. https://doi.org/10.3390/jof7010062
Chicago/Turabian StyleKamli, Majid Rasool, Vartika Srivastava, Nahid H. Hajrah, Jamal S. M. Sabir, Khalid Rehman Hakeem, Aijaz Ahmad, and Maqsood Ahmad Malik. 2021. "Facile Bio-Fabrication of Ag-Cu-Co Trimetallic Nanoparticles and Its Fungicidal Activity against Candida auris" Journal of Fungi 7, no. 1: 62. https://doi.org/10.3390/jof7010062
APA StyleKamli, M. R., Srivastava, V., Hajrah, N. H., Sabir, J. S. M., Hakeem, K. R., Ahmad, A., & Malik, M. A. (2021). Facile Bio-Fabrication of Ag-Cu-Co Trimetallic Nanoparticles and Its Fungicidal Activity against Candida auris. Journal of Fungi, 7(1), 62. https://doi.org/10.3390/jof7010062