Rapid Antifungal Susceptibility Testing of Yeasts and Molds by MALDI-TOF MS: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Search Strategy
2.3. Inclusion and Exclusion Criteria
2.4. Data Extraction
2.5. Breakpoints
2.6. Data Analysis
3. Results
3.1. Sub-Analysis by Approach
3.2. Sub-Analysis by Antifungal Substance
3.3. Sub-Analysis by Species
3.4. Sub-Analysis by Time to Result
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Brown, G.D.; Denning, D.W.; Gow, N.A.; Levitz, S.M.; Moorlag, S.J.; White, T.C. Hidden Killers: Human Fungal Infections. Sci. Transl. Med. 2012, 4, 165rv13. [Google Scholar] [CrossRef] [Green Version]
- Bongomin, F.; Gago, S.; Oladele, R.; Denning, D.W. Global and Multi-National Prevalence of Fungal Diseases—Estimate Precision. J. Fungi 2017, 3, 57. [Google Scholar] [CrossRef]
- Gintjee, T.J.; Donnelley, M.A.; Iii, G.R.T. Aspiring Antifungals: Review of Current Antifungal Pipeline Developments. J. Fungi 2020, 6, 28. [Google Scholar] [CrossRef] [Green Version]
- EUCAST. EUCAST Antifungal MIC Method for Yeasts. Method for the Determination of Broth Dilution Minimum Inhibitory Concentrations of Antifungal Agents for Yeasts; (E.DEF 7.3.2); EUCAST Development Laboratory for Fungi: Copenhagen, Denmark, 2020; Available online: https://www.eucast.org/astoffungi/methodsinantifungalsusceptibilitytesting/susceptibility_testing_of_yeasts/ (accessed on 27 August 2020).
- EUCAST. EUCAST Antifungal MIC Method for Conidia Forming Moulds. Method for the Determination of broth Dilution Minimum Inhibitory Concentrations of Antifungal Agents for Conidia Forming Moulds; (E.DEF9.3.2); EUCAST Development Laboratory for fungi: Copenhagen, Denmark, 2020; Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/AFST/Files/EUCAST_E_Def_9.3.2_Mould_testing_definitive_revised_2020.pdf (accessed on 27 August 2020).
- Clinical and Laboratory Standards Institute. Performance Standards for Antifungal Susceptibility Testing of Yeasts, 2nd ed.; CLSI Supplement M60; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020; ISBN 978-1-68440-082-9. [Google Scholar]
- Sanguinetti, M.; Posteraro, B. Susceptibility Testing of Fungi to Antifungal Drugs. J. Fungi 2018, 4, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berkow, E.L.; Lockhart, S.R.; Ostrosky-Zeichner, L. Antifungal Susceptibility Testing: Current Approaches. Clin. Microbiol. Rev. 2020, 33, e00069-19. [Google Scholar] [CrossRef] [PubMed]
- Knabl, L.; Lass-Flörl, C. Antifungal susceptibility testing in Candida species: Current methods and promising new tools for shortening the turnaround time. Expert Rev. Anti Infect. Ther. 2020, 18, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Florio, W.; Tavanti, A.; Ghelardi, E.; Lupetti, A. MALDI-TOF MS Applications to the Detection of Antifungal Resistance: State of the Art and Future Perspectives. Front. Microbiol. 2018, 9, 2577. [Google Scholar] [CrossRef] [PubMed]
- Oviaño, M.; Bou, G. Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for the Rapid Detection of Antimicrobial Resistance Mechanisms and Beyond. Clin. Microbiol. Rev. 2018, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lange, C.; Schubert, S.; Jung, J.; Kostrzewa, M.; Sparbier, K. Quantitative Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Rapid Resistance Detection. J. Clin. Microbiol. 2014, 52, 4155–4162. [Google Scholar] [CrossRef] [Green Version]
- Garey, K.W.; Rege, M.; Pai, M.P.; Mingo, D.E.; Suda, K.J.; Turpin, R.S.; Bearden, D.T. Time to Initiation of Fluconazole Therapy Impacts Mortality in Patients with Candidemia: A Multi-Institutional Study. Clin. Infect. Dis. 2006, 43, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Freeman, M.F.; Tukey, J.W. Transformations Related to the Angular and the Square Root. Ann. Math. Stat. 1950, 21, 607–611. [Google Scholar] [CrossRef]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef]
- Saracli, M.A.; Fothergill, A.W.; Sutton, D.A.; Wiederhold, N.P. Detection of triazole resistance amongCandidaspecies by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Med. Mycol. 2015, 53, 736–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marinach, C.; Alanio, A.; Palous, M.; Fekkar, A.; Brossas, J.-Y.; Brun, S.; Snounou, G.; Hennequin, C.; Sanglard, D.; Datry, A.; et al. MALDI-TOF MS-based drug susceptibility testing of pathogens: The example ofCandida albicansand fluconazole. Proteomics 2009, 9, 4627–4631. [Google Scholar] [CrossRef] [PubMed]
- NCCLS. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. Approved Standard, 2nd ed.; NCCLS: Wayne, PA, USA, 2002; ISBN 1-56238-469-4. [Google Scholar]
- Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 3rd ed.; Approved Standard; CLSI Document M27-A3; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008; Volume 28, pp. 1–25. [Google Scholar]
- Paul, S.; Singh, P.; AS, S.; Rudramurthy, S.M.; Chakrabarti, A.; Ghosh, A. Rapid detection of fluconazole resistance in Candida tropicalis by MALDI-TOF MS. Med. Mycol. 2017, 56, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Gitman, M.R.; McTaggart, L.; Spinato, J.; Poopalarajah, R.; Lister, E.; Husain, S.; Kus, J.V. Antifungal Susceptibility Testing of Aspergillus spp. by Using a Composite Correlation Index (CCI)-Based Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry Method Appears to Not Offer Benefit over Traditional Broth Microdilution Testing. J. Clin. Microbiol. 2017, 55, 2030–2034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfaller, M.; Diekema, D.J.; Ghannoum, M.A.; Rex, J.H.; Alexander, B.D.; Andes, D.; Brown, S.D.; Chaturvedi, V.; Espinel-Ingroff, A.; Fowler, C.L.; et al. Wild-Type MIC Distribution and Epidemiological Cutoff Values for Aspergillus fumigatus and Three Triazoles as Determined by the Clinical and Laboratory Standards Institute Broth Microdilution Methods. J. Clin. Microbiol. 2009, 47, 3142–3146. [Google Scholar] [CrossRef] [Green Version]
- Vella, A.; De Carolis, E.; Mello, E.; Perlin, D.S.; Sanglard, D.; Sanguinetti, M.; Posteraro, B. Potential Use of MALDI-ToF Mass Spectrometry for Rapid Detection of Antifungal Resistance in the Human Pathogen Candida glabrata. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. Fourth Informational Supplement; CLSI Document M27-S4; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012; ISBN 1-56238-864-9. [Google Scholar]
- Delavy, M.; Cerutti, L.; Croxatto, A.; Prod’Hom, G.; Sanglard, D.; Greub, G.; Coste, A.T. Machine Learning Approach for Candida albicans Fluconazole Resistance Detection Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Front. Microbiol. 2020, 10, 3000. [Google Scholar] [CrossRef] [Green Version]
- EUCAST. European Committee on Antimicrobial Susceptibility Testing Antifungal Agents Breakpoint Tables for Interpretation of MICs. Version 9.0, Valid from 2018-02-12. 2018. Available online: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/AFST/Clinical_breakpoints/Antifungal_breakpoints_v_9.0_180212.pdf (accessed on 1 September 2020).
- De Carolis, E.; Vella, A.; Florio, A.R.; Posteraro, P.; Perlin, D.S.; Sanguinetti, M. Use of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Caspofungin Susceptibility Testing of Candida and Aspergillus Species. J. Clin. Microbiol. 2012, 50, 2479–2483. [Google Scholar] [CrossRef] [Green Version]
- Pfaller, M.; Diekema, D.; Andes, D.; Arendrup, M.; Brown, S.; Lockhart, S.; Motyl, M.; Perlin, D. Clinical breakpoints for the echinocandins and Candida revisited: Integration of molecular, clinical, and microbiological data to arrive at species-specific interpretive criteria. Drug Resist. Updat. 2011, 14, 164–176. [Google Scholar] [CrossRef] [PubMed]
- Espinel-Ingroff, A.; Fothergill, A.; Fuller, J.; Johnson, E.; Pelaez, T.; Turnidge, J. Wild-Type MIC Distributions and Epidemiological Cutoff Values for Caspofungin and Aspergillus spp. for the CLSI Broth Microdilution Method (M38-A2 Document). Antimicrob. Agents Chemother. 2011, 55, 2855–2859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vella, A.; De Carolis, E.; Vaccaro, L.; Posteraro, P.; Perlin, D.S.; Kostrzewa, M.; Posteraro, B.; Sanguinetti, M. Rapid Antifungal Susceptibility Testing by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Analysis. J. Clin. Microbiol. 2013, 51, 2964–2969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberto, A.E.M.; Xavier, D.E.; Vidal, E.E.; Vidal, C.F.D.L.; Neves, R.P.; De Lima-Neto, R.G. Rapid Detection of Echinocandins Resistance by MALDI-TOF MS in Candida parapsilosis Complex. Microorganisms 2020, 8, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vatanshenassan, M.; Boekhout, T.; Lass-Flörl, C.; Lackner, M.; Schubert, S.; Kostrzewa, M.; Sparbier, K. Proof of Concept for MBT ASTRA, a Rapid Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry (MALDI-TOF MS)-Based Method to Detect Caspofungin Resistance in Candida albicans and Candida glabrata. J. Clin. Microbiol. 2018, 56, e00420-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinical and Laboratory Standards Institute. Performance Standards for Antifungal Susceptibility Testing of Yeast, 1st ed.; CLSI Supplement M60; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017; ISBN 1-56238-829-0. [Google Scholar]
- Vatanshenassan, M.; Arastehfar, A.; Boekhout, T.; Berman, J.; Lass-Flörl, C.; Sparbier, K.; Kostrzewa, M. Anidulafungin Susceptibility Testing of Candida glabrata Isolates from Blood Cultures by the MALDI Biotyper Antibiotic (Antifungal) Susceptibility Test Rapid Assay. Antimicrob. Agents Chemother. 2019, 63, e00554-19. [Google Scholar] [CrossRef] [Green Version]
- Vatanshenassan, M.; Boekhout, T.; Meis, J.F.; Berman, J.; Chowdhary, A.; Ben-Ami, R.; Sparbier, K.; Kostrzewa, M. Candida auris Identification and Rapid Antifungal Susceptibility Testing Against Echinocandins by MALDI-TOF MS. Front. Cell. Infect. Microbiol. 2019, 9, 20. [Google Scholar] [CrossRef] [Green Version]
- Ben-Ami, R.; Berman, J.; Novikov, A.; Bash, E.; Shachor-Meyouhas, Y.; Zakin, S.; Maor, Y.; Tarabia, J.; Schechner, V.; Adler, A.; et al. Multidrug-ResistantCandida haemuloniiandC. auris, Tel Aviv, Israel. Emerg. Infect. Dis. 2017, 23, 195–203. [Google Scholar] [CrossRef]
- Spivak, E.S.; Hanson, K.E. Candida auris: An Emerging Fungal Pathogen. J. Clin. Microbiol. 2017, 56, e01588-17. [Google Scholar] [CrossRef] [Green Version]
- Tsay, S.; Kallen, A.; Jackson, B.R.; Chiller, T.M.; Vallabhaneni, S. Approach to the Investigation and Management of Patients with Candida auris, an Emerging Multidrug-Resistant Yeast. Clin. Infect. Dis. 2018, 66, 306–311. [Google Scholar] [CrossRef] [Green Version]
- Morrell, M.; Fraser, V.J.; Kollef, M.H. Delaying the Empiric Treatment of Candida Bloodstream Infection until Positive Blood Culture Results Are Obtained: A Potential Risk Factor for Hospital Mortality. Antimicrob. Agents Chemother. 2005, 49, 3640–3645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tumbarello, M.; Posteraro, B.; Trecarichi, E.M.; Fiori, B.; Rossi, M.; Porta, R.; Donati, K.D.G.; La Sorda, M.; Spanu, T.; Fadda, G.; et al. Biofilm Production by Candida Species and Inadequate Antifungal Therapy as Predictors of Mortality for Patients with Candidemia. J. Clin. Microbiol. 2007, 45, 1843–1850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savage, R.D.; Fowler, R.A.; Rishu, A.H.; Bagshaw, S.M.; Cook, D.; Dodek, P.; Hall, R.; Kumar, A.; Lamontagne, F.; Lauzier, F.; et al. The Effect of Inadequate Initial Empiric Antimicrobial Treatment on Mortality in Critically Ill Patients with Bloodstream Infections: A Multi-Centre Retrospective Cohort Study. PLoS ONE 2016, 11, e0154944. [Google Scholar] [CrossRef]
- Castanheira, M.; Messer, S.A.; Rhomberg, P.R.; Pfaller, M.A. Antifungal susceptibility patterns of a global collection of fungal isolates: Results of the SENTRY Antifungal Surveillance Program (2013). Diagn. Microbiol. Infect. Dis. 2016, 85, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Alexander, B.D.; Johnson, M.D.; Pfeiffer, C.D.; Jiménez-Ortigosa, C.; Catania, J.; Booker, R.; Castanheira, M.; Messer, S.A.; Perlin, D.S.; Pfaller, M.A. Increasing Echinocandin Resistance in Candida glabrata: Clinical Failure Correlates with Presence of FKS Mutations and Elevated Minimum Inhibitory Concentrations. Clin. Infect. Dis. 2013, 56, 1724–1732. [Google Scholar] [CrossRef] [Green Version]
- Farmakiotis, D.; Tarrand, J.J.; Kontoyiannis, D.P. Drug-ResistantCandida glabrataInfection in Cancer Patients. Emerg. Infect. Dis. 2014, 20, 1833–1840. [Google Scholar] [CrossRef] [Green Version]
- Guinea, J.; Zaragoza, Ó.; Escribano, P.; Martín-Mazuelos, E.; Pemán, J.; Sánchez-Reus, F.; Cuenca-Estrella, M. Molecular Identification and Antifungal Susceptibility of Yeast Isolates Causing Fungemia Collected in a Population-Based Study in Spain in 2010 and 2011. Antimicrob. Agents Chemother. 2013, 58, 1529–1537. [Google Scholar] [CrossRef] [Green Version]
- Van Der Linden, J.; Arendrup, M.; Warris, A.; Lagrou, K.; Pelloux, H.; Hauser, P.; Chryssanthou, E.; Mellado, E.; Kidd, S.; Tortorano, A.; et al. Prospective Multicenter International Surveillance of Azole Resistance inAspergillus fumigatus. Emerg. Infect. Dis. 2015, 21, 1041–1044. [Google Scholar] [CrossRef]
- Vallabhaneni, S.; Cleveland, A.A.; Farley, M.M.; Harrison, L.H.; Schaffner, W.; Beldavs, Z.G.; Derado, G.; Pham, C.D.; Lockhart, S.R.; Smith, R.M. Epidemiology and Risk Factors for Echinocandin Nonsusceptible Candida glabrata Bloodstream Infections: Data from a Large Multisite Population-Based Candidemia Surveillance Program, 2008–2014. Open Forum Infect. Dis. 2015, 2, ofv163. [Google Scholar] [CrossRef]
- Alanio, A.; Denis, B.; Hamane, S.; Raffoux, E.; De Latour, R.P.; Menotti, J.; Amorim, S.; Touratier, S.; Bergeron, A.; Bretagne, S. Azole Resistance ofAspergillus fumigatusin Immunocompromised Patients with Invasive Aspergillosis. Emerg. Infect. Dis. 2016, 22, 157–158. [Google Scholar] [CrossRef] [Green Version]
- Dudiuk, C.; Gamarra, S.; Jiménez-Ortigosa, C.; Leonardelli, F.; Macedo, D.; Perlin, D.S.; Garcia-Effron, G. Quick Detection ofFKS1Mutations Responsible for Clinical Echinocandin Resistance in Candida albicans. J. Clin. Microbiol. 2015, 53, 2037–2041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Nagasaki, Y.; Kordalewska, M.; Press, E.G.; Shields, R.K.; Nguyen, M.H.; Clancy, C.J.; Perlin, D.S. Rapid Detection ofFKS-Associated Echinocandin Resistance in Candida glabrata. Antimicrob. Agents Chemother. 2016, 60, 6573–6577. [Google Scholar] [CrossRef] [Green Version]
- Chaturvedi, V.; Ramani, R.; Pfaller, M.A. Collaborative Study of the NCCLS and Flow Cytometry Methods for Antifungal Susceptibility Testing of Candida albicans. J. Clin. Microbiol. 2004, 42, 2249–2251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ingham, C.; Boonstra, S.; Levels, S.; De Lange, M.; Meis, J.F.; Schneeberger, P.M. Rapid Susceptibility Testing and Microcolony Analysis of Candida spp. Cultured and Imaged on Porous Aluminum Oxide. PLoS ONE 2012, 7, e33818. [Google Scholar] [CrossRef] [PubMed]
- Ingham, C.; Schneeberger, P.M. Microcolony Imaging of Aspergillus fumigatus Treated with Echinocandins Reveals Both Fungistatic and Fungicidal Activities. PLoS ONE 2012, 7, e35478. [Google Scholar] [CrossRef] [Green Version]
- Oz, Y.; Gokbolat, E. Evaluation of direct antifungal susceptibility testing methods of Candida spp. from positive blood culture bottles. J. Clin. Lab. Anal. 2017, 32, e22297. [Google Scholar] [CrossRef]
- Cuenca-Estrella, M.; Gomez-Lopez, A.; Alastruey-Izquierdo, A.; Bernal-Martinez, L.; Cuesta, I.; Buitrago, M.J.; Rodriguez-Tudela, J.L. Comparison of the Vitek 2 Antifungal Susceptibility System with the Clinical and Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) Broth Microdilution Reference Methods and with the Sensititre YeastOne and Etest Techniques for In Vitro Detection of Antifungal Resistance in Yeast Isolates. J. Clin. Microbiol. 2010, 48, 1782–1786. [Google Scholar] [CrossRef] [Green Version]
- Astvad, K.M.; Perlin, D.S.; Johansen, H.K.; Jensen, R.H.; Arendrup, M.C. Evaluation of Caspofungin Susceptibility Testing by the New Vitek 2 AST-YS06 Yeast Card Using a Unique Collection ofFKSWild-Type and Hot Spot Mutant Isolates, Including the Five Most Common Candida Species. Antimicrob. Agents Chemother. 2012, 57, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Pfaller, M.A.; Diekema, D.J.; Procop, G.W.; Wiederhold, N.P. Multicenter Evaluation of the New Vitek 2 Yeast Susceptibility Test Using New CLSI Clinical Breakpoints for Fluconazole. J. Clin. Microbiol. 2014, 52, 2126–2130. [Google Scholar] [CrossRef] [Green Version]
Antifungal | Species | Incubation Time | Essential Agreement | Categorical Agreement | Sensitivity | 95% CI | Specificity | 95% CI | True Resistant | False Resistant | True Susceptible | False Susceptible | Reference Method/Breakpoints | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CCI Approach | ||||||||||||||
Azoles | ||||||||||||||
Marinach 2009 [17] | Fluconazole | C. albicans | 15 h | 100% | 88% | 80% | 28% to 99% | 100% | 63% to 100% | 4 | 0 | 8 | 1 | CLSI M27-A2 [18] |
Saracli 2015 [16] | Fluconazole | C. albicans | 16 h | n.a. | 80% | 86% * | 68% to 97% | 88% * | 47% to 100% | 21 | 1 | 7 | 3 | CLSI M27-A3 [19] |
C. glabrata | 16 h | n.a. | 86% | 0% | 0% to 98% | 88% * | 73% to 97% | 0 | 4 | 30 | 1 | CLSI M27-A3 [19] | ||
C. tropicalis | 16 h | n.a. | 65% | 86% | 42% to 100% | 57% * | 37% to 76% | 6 | 12 | 16 | 1 | CLSI M27-A3 [19] | ||
Voriconazole | C. albicans | 16 h | n.a. | 91% | 93% * | 68% to 100% | 87% * | 60% to 98% | 14 | 2 | 13 | 1 | CLSI M27-A3 [19] | |
C. glabrata | 16 h | n.a. | 66% | 100% | 40% to 100% | 61% * | 42% to 78% | 4 | 12 | 19 | 0 | CLSI M27-A3 [19] | ||
C. tropicalis | 16 h | n.a. | 84% | 80% * | 28% to 99% | 82% * | 63% to 94% | 4 | 5 | 23 | 1 | CLSI M27-A3 [19] | ||
Posaconazole | C. albicans | 16 h | n.a. | 69% | 55% * | 32% to 76% | 92% * | 64% to 100% | 12 | 1 | 12 | 10 | CLSI M27-A3 [19] | |
C. glabrata | 16 h | n.a. | 100% | n.a. | n.a. | 100% * | 90% to 100% | 0 | 0 | 35 | 0 | CLSI M27-A3 [19] | ||
C. tropicalis | 16 h | n.a. | 84% | 75% * | 19% to 99% | 85% * | 68% to 95% | 3 | 5 | 28 | 1 | CLSI M27-A3 [19] | ||
Paul 2017 [20] | Fluconazole | C. tropicalis | 4 h | 100% | 94% | 100% | 75% to 100% | 100% | 82% to 100% | 13 | 0 | 19 | 0 | CLSI M27-A3 [19] |
Gitman 2017 [21] | Voriconazole | Aspergillus spp. | 30 h | 100% | 100% | 100% | 59% to 100% | 100% | 75% to 100% | 7 | 0 | 13 | 0 | Pfaller 2009 [22] |
Vella 2017 [23] | Fluconazole | C. glabrata | 3 h | n.a. | 79% | 95% | 83% to 99% | 96% | 81% to 100% | 37 | 1 | 26 | 2 | CLSI M27-S4 [24] |
Delavy 2020 [25] | Fluconazole ** | C. albicans | 3 h | 86% | n.a. | 83% | 52% to 98% | 89% | 52% to 100% | 10 | 1 | 8 | 2 | EUCAST v.9 [26] |
Echinocandins | ||||||||||||||
De Carolis 2012 [27] | Caspofungin | C. albicans | 15 h | 100% | 100% | 100% | 69% to 100% | 100% | 40% to 100% | 10 | 0 | 4 | 0 | Pfaller 2011 [28] |
C. glabrata | 15 h | 100% | 100% | 100% | 63% to 100% | 100% | 40% to 100% | 8 | 0 | 4 | 0 | Pfaller 2011 [28] | ||
C. parapsilosis | 15 h | 100% | 100% | n.a. | n.a. | 100% | 40% to 100% | 0 | 0 | 4 | 0 | Pfaller 2011 [28] | ||
C. krusei | 15 h | 100% | 50% | 100% | 16% to 100% | 0% | 0% to 84% | 2 | 2 | 0 | 0 | Pfaller 2011 [28] | ||
A. fumigatus | 15 h | 100% | 100% | 100% | 3% to 100% | 100% | 48% to 100% | 1 | 0 | 5 | 0 | Espinel-Ingroff 2011 [29] | ||
A. flavus | 15 h | 100% | 100% | n.a. | n.a. | 100% | 40% to 100% | 0 | 0 | 4 | 0 | Espinel-Ingroff 2011 [29] | ||
Vella 2013 [30] | Caspofungin | C. albicans | 3 h | n.a. | 98% | 91% | 59% to 100% | 100% | 93% to 100% | 10 | 0 | 50 | 1 | Pfaller 2011 [28] |
Vella 2017 [23] | Anidulafungin | C. glabrata | 3 h | n.a. | 88% | 67% | 41% to 87% | 100% | 94% to 100% | 12 | 0 | 58 | 6 | CLSI M27-S4 [24] |
Roberto 2020 [31] | Anidulafungin | C. parapsilosis complex | 3 h | 90% | 95% | 0% | 0% to 98% | 100% | 82% to 100% | 0 | 0 | 19 | 1 | CLSI M27-A3 & -S4 [19,24] |
Caspofungin | C. parapsilosis complex | 3 h | 95% | 95% | n.a. | n.a. | 95% | 75% to 100% | 0 | 1 | 19 | 0 | CLSI M27-A3 & -S4 [19,24] | |
Micafungin | C. parapsilosis complex | 3 h | 95% | 100% | n.a. | n.a. | 100% | 83% to 100% | 0 | 0 | 20 | 0 | CLSI M27-A3 & -S4 [19,24] | |
MBT ASTRA | ||||||||||||||
Echinocandins | ||||||||||||||
Vatanshenassan 2018 [32] | Caspofungin | C. albicans | 6 h | 91% | 100% | 100% | 85% to 100% | 100% | 87% to 100% | 22 | 0 | 25 | 0 | CLSI M60 [33] |
C. glabrata | 6 h | 93% | 61% | 94% | 80% to 99% | 80% | 28% to 99% | 31 | 1 | 4 | 2 | CLSI M60 [33] | ||
Vatanshenassan 2019 [34] | Anidulafungin | C. glabrata | 6 h | 90% | 89% | 96% | 80% to 100% | 98% | 91% to 100% | 25 | 1 | 62 | 1 | CLSI M60 [33] |
Vatanshenassan 2019 [35] | Anidulafungin | C. auris | 6 h | 80% | 98% | 100% | 54% to 100% | 98% | 88% to 100% | 6 | 1 | 43 | 0 | Tentative BPs [36,37,38] |
Micafungin | C. auris | 6 h | 86% | 96% | 100% | 54% to 100% | 96% | 85% to 99% | 6 | 2 | 42 | 0 | Tentative BPs [36,37,38] | |
Caspofungin | C. auris | 6 h | 68% | 82% | 100% | 80% to 100% | 73% | 54% to 87% | 17 | 9 | 24 | 0 | Tentative BPs [36,37,38] |
Antifungal | Number of Resistant Isolates | Sensitivity (%) | Number of Susceptible Isolates | Specificity (%) |
---|---|---|---|---|
Fluconazole | 101 | 89.3 | 133 | 91.4 |
Posaconazole | 26 | 57.7 * | 81 | 92.6 * |
Voriconazole | 31 | 92.0 | 87 | 88.0 |
Caspofungin | 104 | 96.4 | 157 | 92.1 |
Anidulafungin | 51 | 79.6 | 184 | 98.4 |
Micafungin | 6 | 100 * | 64 | 96.2 |
Species | Number of Resistant Isolates | Sensitivity (%) | Number of Susceptible Isolates | Specificity (%) |
---|---|---|---|---|
C. albicans | 121 | 86.6 | 133 | 94.7 |
C. glabrata | 129 | 88.8 | 257 | 92.5 |
C. tropicalis | 29 | 86.7 | 108 | 82.7 |
C. parapsilosis | 1 | 0 * | 63 | 97.2 |
C. krusei | 2 | 100 * | 2 | 0 * |
C. auris | 29 | 97.7 * | 121 | 90 * |
Aspergillus fumigatus | 5 | 100 | 18 | 100 |
Other Aspergillus species | 3 | 100 * | 4 | 100 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knoll, M.A.; Ulmer, H.; Lass-Flörl, C. Rapid Antifungal Susceptibility Testing of Yeasts and Molds by MALDI-TOF MS: A Systematic Review and Meta-Analysis. J. Fungi 2021, 7, 63. https://doi.org/10.3390/jof7010063
Knoll MA, Ulmer H, Lass-Flörl C. Rapid Antifungal Susceptibility Testing of Yeasts and Molds by MALDI-TOF MS: A Systematic Review and Meta-Analysis. Journal of Fungi. 2021; 7(1):63. https://doi.org/10.3390/jof7010063
Chicago/Turabian StyleKnoll, Miriam Alisa, Hanno Ulmer, and Cornelia Lass-Flörl. 2021. "Rapid Antifungal Susceptibility Testing of Yeasts and Molds by MALDI-TOF MS: A Systematic Review and Meta-Analysis" Journal of Fungi 7, no. 1: 63. https://doi.org/10.3390/jof7010063
APA StyleKnoll, M. A., Ulmer, H., & Lass-Flörl, C. (2021). Rapid Antifungal Susceptibility Testing of Yeasts and Molds by MALDI-TOF MS: A Systematic Review and Meta-Analysis. Journal of Fungi, 7(1), 63. https://doi.org/10.3390/jof7010063