Synthesis, Fungitoxic Activity against Botrytis cinerea and Phytotoxicity of Alkoxyclovanols and Alkoxyisocaryolanols
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental Procedure
2.2. General Procedure for the Alcoholysis of Caryophyllene Oxide Catalyzed by TCNE
2.2.1. Spectroscopic Data of Compounds 2b,2d,2f,2g
2.2.2. Synthesis of (2S,9R)-2-(2′-(p-Nitrophenyl)Ethoxy)Clovan-9-ol (2h) and (2S,9R)-2-(2′-(p-Nitrophenoxy)Ethoxy)Clovan-9-ol (2i)
2.3. General Procedure for the Alcoholysis of (1R,5R,9S)-Caryophylla-4(12),8(13)-Diene-5-ol Catalyzed by Tin(II) Triflate
Spectroscopic Data of Compounds 4c–4e
2.4. Microorganism and Antifungal Assays
2.5. Bioassay for the Germination and Growth of Lettuce Seeds
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elad, Y.; Pertot, I.; Cotes Prado, A.M.; Stewart, A. Plant Hosts of Botrytis Spp. In Botrytis—The Fungus, the Pathogen and Its Management in Agricultural Systems; Fillinger, S., Elad, Y., Eds.; Springer International Publishing: Dordrecht, The Netherlands, 2016; pp. 413–486. [Google Scholar]
- Carisse, O. Epidemiology and Aerobiology of Botrytis Spp. In Botrytis—The Fungus, the Pathogen and Its Management in Agricultural Systems; Fillinger, S., Elad, Y., Eds.; Springer International Publishing: Dordrecht, The Netherlands, 2016; pp. 127–148. [Google Scholar]
- McGrath, M.T. What Are Fungicides? Available online: http://www.apsnet.org/edcenter/intropp/topics/Pages/Fungicides.aspx (accessed on 11 November 2021).
- Fenner, K.; Canonica, S.; Wackett, L.P.; Elsner, M. Evaluating Pesticide Degradation in the Environment: Blind Spots and Emerging Opportunities. Science 2013, 341, 752–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, A.M.; Gilbertson, L.M. Rational Ligand Design To Improve Agrochemical Delivery Efficiency and Advance Agriculture Sustainability. ACS Sustain. Chem. Eng. 2018, 6, 13599–13610. [Google Scholar] [CrossRef]
- Fungicide Resistance Action Committee. Available online: https://www.frac.info/home (accessed on 14 November 2021).
- Brzozowski, L.; Mazourek, M.A. A Sustainable Agricultural Future Relies on the Transition to Organic Agroecological Pest Management. Sustainability 2018, 10, 2023. [Google Scholar] [CrossRef] [Green Version]
- Stenberg, J.A. A Conceptual Framework for Integrated Pest Management. Trends Plant Sci. 2017, 22, 759–769. [Google Scholar] [CrossRef]
- Nicot, P.C.; Bardin, M.; Alabouvette, C.; Köhl, J.; Ruocco, M. Potential of Biological Control Based on Published Research. Protection against Plant Pathogens of Selected Crops. In Classical and Augmentative Biological Control Against Diseases and Pests: Critical Status Analysis and Review of Factors Influencing Their Success; IOBC/WPRS, 2011; pp. 1–11. Available online: https://hal.inrae.fr/hal-02809578/document (accessed on 14 November 2021).
- Kim, B.; Han, J.W.; Thi, N.M.; Kim, H.; Choi, G.J.; Kim, B.; Kim, J.-C.; Thi, N.M.; Kim, H.; Choi, G.J.; et al. Identification of novel compounds, oleanane- and ursane-type triterpene glycosides, from Trevesia palmata: Their biocontrol activity against phytopathogenic fungi. Sci. Rep. 2018, 8, 14522–14533. [Google Scholar] [CrossRef]
- Teshima, Y.; Ikeda, T.; Imada, K.; Sasaki, K.; El-Sayed, M.A.; Shigyo, M.; Tanaka, S.; Ito, S. Identification and Biological Activity of Antifungal Saponins from Shallot (Allium cepa L. Aggregatum Group). J. Agric. Food Chem. 2013, 61, 7440–7445. [Google Scholar] [CrossRef]
- Munafo, J.P.; Gianfagna, T.J. Antifungal activity and fungal metabolism of steroidal glycosides of Easter Lily (Lilium longiflorum Thunb.) by the plant pathogenic fungus, Botrytis cinerea. J. Agric. Food Chem. 2011, 59, 5945–5954. [Google Scholar] [CrossRef]
- Fatema, U.; Jensen, D.F.; Karlsson, M.; Dubey, M.; Fatema, U.; Broberg, A. Functional analysis of polyketide synthase genes in the biocontrol fungus Clonostachys rosea. Sci. Rep. 2018, 8, 15009–15026. [Google Scholar] [CrossRef]
- Tanaka, K.; Ishihara, A.; Nakajima, H. Isolation of anteiso-C17, iso-C17, iso-C16, and iso-C15 Bacillomycin D from Bacillus amyloliquefaciens SD-32 and Their Antifungal Activities against Plant Pathogens. J. Agric. Food Chem. 2014, 62, 1469–1476. [Google Scholar] [CrossRef]
- Liermann, J.C.; Kolshorn, H.; Opatz, T.; Thines, E.; Anke, H. Xanthepinone, an Antimicrobial Polyketide from a Soil Fungus Closely Related to Phoma medicaginis. J. Nat. Prod. 2009, 72, 1905–1907. [Google Scholar] [CrossRef]
- Altomare, C.; Perrone, G.; Zonno, M.C.; Evidente, A.; Pengue, R.; Fanti, F.; Polonelli, L. Biological characterization of fusapyrone and deoxyfusapyrone, two bioactive secondary metabolites of Fusarium semitectum. J. Nat. Prod. 2000, 63, 1131–1135. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, B.-Y.; Yang, X.-L. Antifungal Monoterpene Derivatives from the Plant Endophytic Fungus Pestalotiopsis foedan. Chem. Biodivers. 2016, 13, 1422–1425. [Google Scholar] [CrossRef]
- Hussain, H.; Krohn, K.; Ahmed, I.; Draeger, S.; Schulz, B.; Di Pietro, S.; Pescitelli, G. Phomopsinones A-D: Four New Pyrenocines from Endophytic Fungus Phomopsis sp. Eur. J. Org. Chem. 2012, 1783–1789. [Google Scholar] [CrossRef]
- Li, X.-J.; Zhang, Q.; Zhang, A.-L.; Gao, J.-M. Metabolites from Aspergillus fumigatus, an Endophytic Fungus Associated with Melia azedarach, and Their Antifungal, Antifeedant, and Toxic Activities. J. Agric. Food Chem. 2012, 60, 3424–3431. [Google Scholar] [CrossRef]
- Narayan, O.P.; Verma, N.; Singh, A.K.; Oelmuller, R.; Kumar, M.; Prasad, D.; Kapoor, R.; Dua, M.; Johri, A.K. Antioxidant enzymes in chickpea colonized by Piriformospora indica participate in defense against the pathogen Botrytis cinerea. Sci. Rep. 2017, 7, 13553. [Google Scholar] [CrossRef]
- Bolivar-Anillo, H.J.; Garrido, C.; Collado, I.G. Endophytic microorganisms for biocontrol of the phytopathogenic fungus Botrytis cinerea. Phytochem. Rev. 2020, 19, 721–740. [Google Scholar] [CrossRef]
- Dias, M.C. Phytotoxicity: An overview of the physiological responses of plants exposed to fungicides. J. Bot. 2012, 2012, 135479. [Google Scholar] [CrossRef] [Green Version]
- Saladin, G.; Magné, C.; Clément, C. Effects of fludioxonil and pyrimethanil, two fungicides used against Botrytis cinerea, on carbohydrate physiology in Vitis vinifera L. Pest Manag. Sci. 2003, 59, 1083–1092. [Google Scholar] [CrossRef]
- Petit, A.-N.; Fontaine, F.; Clément, C.; Vaillant-Gaveau, N. Photosynthesis Limitations of Grapevine after Treatment with the Fungicide Fludioxonil. J. Agric. Food Chem. 2008, 56, 6761–6767. [Google Scholar] [CrossRef]
- Dias, M.C.; Figueiredo, P.; Duarte, I.F.; Gil, A.M.; Santos, C. Different responses of young and expanded lettuce leaves to fungicide Mancozeb: Chlorophyll fluorescence, lipid peroxidation, pigments and proline content. Photosynthetica 2014, 52, 148–151. [Google Scholar] [CrossRef]
- Collado, I.G.; Sánchez, A.J.M.; Hanson, J.R. Fungal terpene metabolites: Biosynthetic relationships and the control of the phytopathogenic fungus Botrytis cinerea. Nat. Prod. Rep. 2007, 24, 674–686. [Google Scholar] [CrossRef]
- Collado, I.G.; Hanson, J.R.; Sánchez, A.J.M. The botryane sesquiterpenoid metabolism of the fungus Botrytis cinerea. J. Chem. Res. 2017, 41, 435–440. [Google Scholar] [CrossRef]
- Bradshaw, A.P.W.; Hanson, J.R.; Nyfeler, R.; Sadler, I.H. Studies in terpenoid biosynthesis. Part 25. The fate of the mevalonoid hydrogen atoms in the biosynthesis of the sesquiterpenoid, dihydrobotrydial. J. Chem. Soc. Perkin Trans. 1 1982, 2187–2192. [Google Scholar] [CrossRef]
- Bradshaw, A.P.W.; Hanson, J.R.; Nyfeler, R. Studies in terpenoid biosynthesis. Part 24. The formation of the carbon skeleton of the sesquiterpenoid, dihydrobotrydial. J. Chem. Soc. Perkin Trans. 1981, 1, 1469–1472. [Google Scholar] [CrossRef]
- Hanson, J.R. The biosynthesis of some sesquiterpenoids. Pure Appl. Chem. 1981, 53, 1155–1162. [Google Scholar] [CrossRef]
- Pinedo, C.; Wang, C.M.; Pradier, J.M.; Dalmais, B.; Choquer, M.; Le Pêcheur, P.; Morgant, G.; Collado, I.G.; Cane, D.E.; Viaud, M. Sesquiterpene Synthase from the Botrydial Biosynthetic Gene Cluster of the Phytopathogen Botrytis cinerea. ACS Chem. Biol. 2008, 3, 791–801. [Google Scholar] [CrossRef]
- Moraga, J.; Dalmais, B.; Izquierdo-Bueno, I.; Aleu, J.; Hanson, J.R.; Hernández-Galán, R.; Viaud, M.; Collado, I.G. Genetic and molecular basis of botrydial biosynthesis: Connecting cytochrome P450-encoding genes to biosynthetic intermediates. ACS Chem. Biol. 2016, 11, 2838–2846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, F.R.; Garriz, A.; Marina, M.; Romero, F.M.; González, M.E.; Collado, I.G.; Pieckenstain, F.L. The sesquiterpene botrydial produced by Botrytis cinerea induces the hypersensitive response on plant tissues and its action is modulated by salicylic acid and jasmonic acid signaling. Mol. Plant-Microbe Interact. 2011, 24, 888–896. [Google Scholar] [CrossRef] [Green Version]
- Siewers, V.; Viaud, M.; Jiménez-Teja, D.; Collado, I.G.; Schulze Gronover, C.; Pradier, J.M.; Tudzynsk, B.; Tudzynski, P. Functional analysis of the cytochrome P450 monooxygenase gene bcbot1 of Botrytis cinerea indicates that botrydial is a strain-specific virulence factor. Mol. Plant-Microbe Interact. 2005, 18, 602–612. [Google Scholar] [CrossRef] [Green Version]
- Collado, I.G.; Hanson, J.R.; Macías-Sánchez, A.J. Recent advances in the chemistry of caryophyllene. Nat. Prod. Rep. 1998, 15, 187–204. [Google Scholar] [CrossRef]
- Racero, J.C.; Macías-Sánchez, A.J.; Hernández-Galán, R.; Hitchcock, P.B.; Hanson, J.R.; Collado, I.G. Novel Rearrangement of an Isocaryolane Sesquiterpenoid under Mitsunobu Conditions. J. Org. Chem. 2000, 65, 7786–7791. [Google Scholar] [CrossRef]
- Collado, I.G.; Hanson, J.R.; Macías-Sánchez, A.J. The cleavage of caryophyllene oxide catalyzed by tetracyanoethylene. Tetrahedron 1996, 52, 7961–7972. [Google Scholar] [CrossRef]
- Saiz-Urra, L.; Racero, J.C.; Macías-Sánchez, A.J.; Hernández-Galán, R.; Hanson, J.R.; Pérez- González, M.; Collado, I.G. Synthesis and Quantitative Structure-Antifungal Activity Relationships of Clovane Derivatives against Botrytis cinerea. J. Agric. Food Chem. 2009, 57, 2420–2428. [Google Scholar] [CrossRef]
- Collado, I.G.; Hanson, J.R.; Macías-Sánchez, A.J.; Mobbs, D. The Biotransformation of Some Clovanes by Botrytis cinerea. J. Nat. Prod. 1998, 61, 1348–1351. [Google Scholar] [CrossRef]
- Deligeorgopoulou, A.; Macías-Sánchez, A.J.; Mobbs, D.J.; Hitchcock, P.B.; Hanson, J.R.; Collado, I.G. Structure-Activity Relationships in the Fungistatic Activity against Botrytis cinerea of Clovanes Modified on Ring C. J. Nat. Prod. 2004, 67, 793–798. [Google Scholar] [CrossRef]
- Ascari, J.; Boaventura, M.A.D.; Takahashi, J.A.; Durán-Patrón, R.; Hernández-Galán, R.; Macías-Sánchez, A.J.; Collado, I.G. Biotransformation of bioactive isocaryolanes by Botrytis cinerea. J. Nat. Prod. 2011, 74, 1707–1712. [Google Scholar] [CrossRef]
- Durán-Patrón, R.; Cantoral, J.M.; Hernández-Galán, R.; Hanson, J.R.; Collado, I.G. The biodegradation of the phytotoxic metabolite botrydial by its parent organism, Botrytis cinerea. J. Chem. Res. 2004, 6, 441–443. [Google Scholar] [CrossRef]
- Ascari, J.; Boaventura, M.A.D.; Takahashi, J.A.; Durán-Patrón, R.; Hernández-Galán, R.; Macías-Sánchez, A.J.; Collado, I.G. Phytotoxic activity and metabolism of Botrytis cinerea and structure-activity relationships of isocaryolane derivatives. J. Nat. Prod. 2013, 76, 1016–1024. [Google Scholar] [CrossRef]
- Macías, F.A.; Simonet, A.M.; Esteban, M.D. Potential allelopathic lupane triterpenes from bioactive fractions of Melilotus messanensis. Phytochemistry 1994, 36, 1369–1379. [Google Scholar] [CrossRef]
- Macías, F.A.; Castellano, D. Search for a Standard Phytotoxic Bioassay for Allelochemicals. Selection of Standard Target Species. J. Agric. Food Chem. 2000, 48, 2512–2521. [Google Scholar] [CrossRef]
- Boaventura, M.A.D.; Pereira, R.G.; Freitas, L.B.O.; Reis, L.A.; Vieira, H.S. Preparation and phytotoxicity of novel kaurane diterpene amides with potential use as herbicides. J. Agric. Food Chem. 2008, 56, 2985–2988. [Google Scholar] [CrossRef] [PubMed]
- Rocha, A.D.; dos Santos, G.C.; Fernandes, N.G.; Pfenning, L.H.; Takahashi, J.A.; Boaventura, M.A.D. Hydroxylation at carbon-2 of ent-16-oxo-17-norkauran-19-oic acid by Fusarium proliferatum. J. Nat. Prod. 2010, 73, 1431–1433. [Google Scholar] [CrossRef] [PubMed]
- De Souza, G.G.; Oliveira, T.S.; Takahashi, J.A.; Collado, I.G.; Macías-Sánchez, A.J.; Hernández-Galán, R. Biotransformation of clovane derivatives. Whole cell fungi mediated domino synthesis of rumphellclovane A. Org. Biomol. Chem. 2012, 10, 3315–3319. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.-M.; Wang, W.-H.; Hwang, T.-L.; Chen, J.-J.; Fang, L.-S.; Wen, Z.-H.; Wang, Y.-B.; Wu, Y.-C.; Sung, P.-J. Rumphellols A and B, new caryophyllene sesquiterpenoids from a Formosan gorgonian coral, Rumphella antipathies. Int. J. Mol. Sci. 2014, 15, 15679–15688. [Google Scholar] [CrossRef] [Green Version]
- Patil, I.S.; Kulkarni, S.; Hedge, R.K. Bioassay of fungicides against Drechslera sorokiniana (Sacc). Pesticides 1986, 20, 30–31. [Google Scholar]
- Molinspiration Cheminformatics. Available online: http://www.molinspiration.com/ (accessed on 14 November 2021).
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Chinchilla, N.; Santana, A.; Varela, R.M.; Fronczek, F.R.; Molinillo, J.M.G.; Macías, F.A. Preparation and Phytotoxicity Evaluation of 11,13-Dehydro seco-Guaianolides. J. Nat. Prod. 2019, 82, 2501–2508. [Google Scholar] [CrossRef]
- Ríos, M.Y.; Córdova-Albores, L.C.; Ramírez-Cisneros, M.Á.; King-Díaz, B.; Lotina-Hennsen, B.; León Rivera, I.; Miranda-Sánchez, D. Phytotoxic Potential of Zanthoxylum affine and Its Major Compound Linarin as a Possible Natural Herbicide. ACS Omega 2018, 3, 14779–14787. [Google Scholar] [CrossRef] [Green Version]
- Ren, X.; He, X.; Zhang, Z.; Yan, Z.; Jin, H.; Li, X.; Qin, B. Isolation, Identification, and Autotoxicity Effect of Allelochemicals from Rhizosphere Soils of Flue-Cured Tobacco. J. Agric. Food Chem. 2015, 63, 8975–8980. [Google Scholar] [CrossRef]
Epoxide (mg) | Alcohol (mL) | TCNE (mg) | Time (hr) | Product (Yield) |
---|---|---|---|---|
1019 | CH3CH2OH (20) | 63 | 36 | 2b (15%) |
1013 | CH3(CH2)3OH (20) | 61 | 36 | 2d (11%) |
500 | PhCH2CH2OH (3) | 58 | 103 | 2f (10%) |
500 | PhO(CH2)2OH (0.5) | 60 | 114 | 2g (9%) |
2b | 2d | 2f | 2g | 2h | |
---|---|---|---|---|---|
Position | δH, Mult (J in Hz) | δH, Mult (J in Hz) | δH, Mult (J in Hz) | δH, Mult (J in Hz) | δH, Mult (J in Hz) |
2α | 3.40, dd (10.6, 5.6) | 3.36, dd (10.3, 5.6) | 3.32, dd (10.2, 5.7) | 3.44, dd (10.3, 5.6) | 3.34, dd (9.8, 5.6) |
3α | 1.66, dd (11.8, 5.6) | 1.65, dd (11.9, 5.5) | 1.58, dd (11.9, 5.7) | 1.64, dd (12.0, 5.6) | 1.61, dd (11.8, 5.6) |
3β | 1.48, dd (11.8, 10.6) | 1.48, m | 1.40, dd (11.9, 10.3) | 1.47, dd (12.0, 10.3) | 1.41, dd (11.8, 9.8) |
5β | 1.38, m | 1.38, m | 1.31, m | 1.34, m | 1.38, m |
6a | 1.38, m | 1.40, m | 1.35–1.27, m | 1.33, m | 1.40–1.20, m |
6b | 1.31, m | 1.30, m | 1.35–1.27, m | 1.23, m | 1.40–1.20, m |
7a | 1.38, m | 1.36, m | 1.29, m | 1.30, m | 1.35, m |
7b | 1.09, m | 1.10, m | 1.02, m | 1.03, m | 1.08, m |
9β | 3.30, brs | 3.29, brs | 3.21, brs | 3.23, brs | 3.29, brs |
10α | 1.58, m | 1.59, m | 1.50, m | 1.51, m | 1.56, m |
10β | 1.96, tdd (14.2, 4.8, 3.3) | 1.96, tdd (14.2, 5.0, 3.2) | 1.89, tdd (14.2, 5.9, 3.5) | 1.90, tdd (14.3, 5.0, 3.3) | 1.93, tdd (14.1, 6.8, 4.5) |
11a | 1.69, dd (13.7, 4.8) | 1.69, m | 1.56, m | 1.63, m | 1.59, m |
11b | 1.09, m | 1.11, m | 1.00, m | 1.06, m | 1.09, m |
12a | 1.59, d (12.7) | 1.57, d (12.7) | 1.43, d (12.9) | 1.53, d (12.8) | 1.49, d (12.7) |
12b | 0.97, m | 0.96, m | 0.86, m | 0.91, brd (12.8) | 0.91, m |
13α | 0.83, a s | 0.83, b s | 0.75, c s | 0.79, d s | 0.80, f s |
14β | 1.00, a s | 1.00, b s | 0.93, c s | 0.95, d s | 0.96, f s |
15 | 0.94, s | 0.94, s | 0.86, s | 0.87, s | 0.92, s |
1′a,b | 3.56–3.43 | 3.44-3.39 | 3.63-3.53 | 3.79–3.70 | 3.70-3.62 |
2′ | 1.16, t (7.0) | 1.51, m | 2.79, t (7.2) | 4.03, t (5.1) | 2.93, t (6.4) |
3′ | 1.36, m | ||||
4′, 8′ | 0.89, t (7.3) | 7.23–7.10 | 6.89-6.83 e | 7.38, d (8.7) | |
5′, 7′ | 7.23–7.10 | 7.23–7.17 e | 8.12, d (8.7) | ||
6′ | 7.23–7.10 | 6.87, m |
2b | 2d | 2f | 2g | 2h | |
---|---|---|---|---|---|
Position | δC, Type | δC, Type | δC, Type | δC, Type | δC, Type |
1 | 44.1, C | 44.3, C | 44.3, C | 44.3, C | 44.3, C |
2 | 88.1, CH | 88.3, CH | 88.6, CH | 89.1, CH | 88.9, CH |
3 | 44.9, CH2 | 44.7, CH2 | 44.5, CH2 | 44.6, CH2 | 44.5, CH2 |
4 | 36.9, C | 37.0, C | 37.1, C | 37.0, C | 37.2, C |
5 | 50.6, CH | 50.5, CH | 50.5, CH | 50.5, CH | 50.4, CH |
6 | 20.5, CH2 | 20.6, CH2 | 20.6, CH2 | 20.6, CH2 | 20.6, CH2 |
7 | 33.1, CH2 | 33.2, CH2 | 33.1, CH2 | 33.1, CH2 | 33.1, CH2 |
8 | 34.7, C | 34.7, C | 34.7, C | 34.7, C | 34.6, C |
9 | 75.3, CH | 75.3, CH | 75.2, CH | 75.2, CH | 75.1, CH |
10 | 26.0, CH2 | 26.1, CH2 | 26.0, CH2 | 26.0, CH2 | 26.1, CH2 |
11 | 26.7, CH2 | 26.7, CH2 | 26.7, CH2 | 26.7, CH2 | 26.8, CH2 |
12 | 36.6, CH2 | 36.5, CH2 | 36.4, CH2 | 36.4, CH2 | 36.4, CH2 |
13 | 25.3, a CH3 | 25.4, b CH3 | 25.4, c CH3 | 25.4, d CH3 | 25.4, f CH3 |
14 | 31.2, a CH3 | 31.3, b CH3 | 31.3, c CH3 | 31.3, d CH3 | 31.3, f CH3 |
15 | 28.4, CH3 | 28.4, CH3 | 28.4, CH3 | 28.4, CH3 | 28.3, CH2 |
1′ | 65.8, CH2 | 70.3, CH2 | 71.6, CH2 | 68.9, CH2 | 70.2, CH2 |
2′ | 15.7, CH3 | 32.3, CH2 | 36.9, CH2 | 67.6, CH2 | 36.7, CH2 |
3′ | 19.4, CH2 | 139.4, C | 158.9, C | 147.8, C | |
4′, 8′ | 14.0, CH3 | 129.0, 2CH | 114.7, e 2CH | 129.9, 2CH | |
5′, 7′ | 128.2, 2CH | 129.3, e 2CH | 123.3, 2CH | ||
6′ | 126.0, CH | 120.7, CH | 146.5, C |
Alcohol | Products (Yield) |
---|---|
CH3OH | 4a (42%), 5 (13%), 6 (27%) |
CH3CH2OH | 4b (39%), 5 (14%), 6 (29%) |
CH3(CH2)2OH | 4c (35%), 5 (16%), 6 (31%) |
CH3(CH2)3OH | 4d (34%), 5 (19%), 6 (42%) |
CH3(CH2)4OH | 4e (35%), 5 (20%), 6 (37%) |
4c | 4d | 4e | ||||
---|---|---|---|---|---|---|
Position | δH (400 MHz) | δC (100 MHz), Type | δH (400 MHz) | δC (100 MHz), Type | δH (400 MHz) | δC (100 MHz), Type |
1 | 32.83, C | 32.83, a C | 32.88, C | |||
2α | 2.08, ddd (11.9, 10.3, 8.0) | 36.57, CH | 2.07, ddd (12.4, 11.8, 7.9) | 36.55, CH | 2.07, ddd (12.0, 10.5, 7.9) | 36.55, CH |
3α | 1.44, m | 35.52, CH2 | 1.45, m | 35.52, CH2 | 1.44, dd (9.8, 7.9) | 35.51, CH2 |
3β | 1.27, t (10.3) | 1.27, t (10.2) | 1.26, m | |||
4 | 34.88, C | 34.88, C | 34.87, C | |||
5β | 1.72, m | 43.96, CH | 1.71, m | 43.95, CH | 1.70, m | 43.94, CH |
6a | 1.50, m | 21.70, CH2 | 1.48, m | 21.71, CH2 | 1.49, m | 21.72, CH2 |
6b | 1.61, m | 1.61, m | 1.61, m | |||
7a | 1.53, m | 29.29, CH2 | 1.52, m | 29.29, CH2 | 1.53, m | 29.28, CH2 |
7b | 1.87, m | 1.86, m | 1.86, m | |||
8 | 79.96, C | 79.95, C | 79.96, C | |||
9β | 3.56, dd (10.8, 6.3) | 76.86, CH | 3.55, dd (11.4, 5.8) | 76.85, CH | 3.55, dd (11,3, 5.8) | 76.82, CH |
10a | 1.84–1.70, m | 27.09, CH2 | 1.83–1.70, m | 27.08, CH2 | 1.82–1.70, m | 27.10, CH2 |
10b | 1.84–1.70, m | 1.83–1.70, m | 1.82–1.70, m | |||
11α | 1.21, td (13.2, 5.3) | 36.65, CH2 | 1.21, td (12.8, 4.9) | 36.64, CH2 | 1.20, td (13.6, 5.1) | 36.63, CH2 |
11β | 1.37, m | 1.37, m | 1.36, m | |||
12a | 1.87, brd (13.0) | 42.70, CH2 | 1.86, brd (12.5) | 42.67, CH2 | 1.87, m | 42.67, CH2 |
12b | 0.89, d (13.0) | 0.91, d (12.5) | 0.90, m | |||
13 | 0.97, s | 26.24, CH3 | 0.97, s | 26.24, CH3 | 0.96, s | 26.23, CH3 |
14α | 0.96, s | 20.84, CH3 | 0.96, s | 20.84, CH3 | 0.95, s | 20.83, CH3 |
15β | 0.79 s | 30.67, CH3 | 0.79, s | 30.67, CH3 | 0.78, s | 30.66, CH3 |
1′a,b | 3.40–3.28 | 62.68, CH2 | 3.44–3.31 | 60.68, CH2 | 3.43–3.30 | 61.03, CH2 |
2′ | 1.49, m | 23.93, CH2 | 1.44, m | 32.85, a CH2 | 1.46, m | 30.45, CH2 |
3′ | 0.88, t (7.4) | 10.78, CH3 | 1.33, m | 19.47, CH2 | 1.27, m | 28.50, CH2 |
4′ | 0.89, t (7.4) | 13.96, CH3 | 1.29, m | 22.56, CH2 | ||
5′ | 0.89, t (7.0) | 14.07, CH3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Almeida Pinto Bracarense, A.; Ascari, J.; de Souza, G.G.; Oliveira, T.S.; Ruano-González, A.; Pinto, A.A.; Boaventura, M.A.D.; Takahashi, J.A.; Collado, I.G.; Durán-Patrón, R.; et al. Synthesis, Fungitoxic Activity against Botrytis cinerea and Phytotoxicity of Alkoxyclovanols and Alkoxyisocaryolanols. J. Fungi 2021, 7, 1079. https://doi.org/10.3390/jof7121079
de Almeida Pinto Bracarense A, Ascari J, de Souza GG, Oliveira TS, Ruano-González A, Pinto AA, Boaventura MAD, Takahashi JA, Collado IG, Durán-Patrón R, et al. Synthesis, Fungitoxic Activity against Botrytis cinerea and Phytotoxicity of Alkoxyclovanols and Alkoxyisocaryolanols. Journal of Fungi. 2021; 7(12):1079. https://doi.org/10.3390/jof7121079
Chicago/Turabian Stylede Almeida Pinto Bracarense, Adriana, Jociani Ascari, Giovanni Gontijo de Souza, Thays Silva Oliveira, Antonio Ruano-González, Ana A. Pinto, Maria Amélia Diamantino Boaventura, Jacqueline Aparecida Takahashi, Isidro G. Collado, Rosa Durán-Patrón, and et al. 2021. "Synthesis, Fungitoxic Activity against Botrytis cinerea and Phytotoxicity of Alkoxyclovanols and Alkoxyisocaryolanols" Journal of Fungi 7, no. 12: 1079. https://doi.org/10.3390/jof7121079
APA Stylede Almeida Pinto Bracarense, A., Ascari, J., de Souza, G. G., Oliveira, T. S., Ruano-González, A., Pinto, A. A., Boaventura, M. A. D., Takahashi, J. A., Collado, I. G., Durán-Patrón, R., & Macías-Sánchez, A. J. (2021). Synthesis, Fungitoxic Activity against Botrytis cinerea and Phytotoxicity of Alkoxyclovanols and Alkoxyisocaryolanols. Journal of Fungi, 7(12), 1079. https://doi.org/10.3390/jof7121079