Pharmacological Potential of Fungal Endophytes Associated with Medicinal Plants: A Review
Abstract
:1. Introduction
2. Bioactive Compounds from Medicinal Plants
3. Pharmacological Effects of Bioactive Compounds of Fungal Metabolites
3.1. Antifungal
3.2. Anticancer
3.3. Antimicrobial Compounds
Antitubercular
3.4. Antioxidant
3.5. Antidiabetic
3.6. Antiparasitic and Antimalarial
3.7. Antiviral
3.8. Immunosuppressive
4. Conclusions and Future Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kraupner, N.; Ebmeyer, S.; Bengtsson-Palme, J.; Fick, J.; Kristiansson, E.; Flach, C.-F.; Larsson, D.J. Selective concentration for ciprofloxacin resistance in Escherichia coli grown in complex aquatic bacterial biofilms. Environ. Int. 2018, 116, 255–268. [Google Scholar] [CrossRef]
- Bengtsson-Palme, J.; Kristiansson, E.; Larsson, D.J. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol. Rev. 2018, 42, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Adeleke, B.S.; Babalola, O.O. The endosphere microbial communities, a great promise in agriculture. Int. Microbiol. 2020. [Google Scholar] [CrossRef]
- Stekel, D. First report of antimicrobial resistance pre-dates penicillin. Nature 2018, 562, 192. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Chaturvedi, P.; Kulkarni, M.G.; Van Staden, J. A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnol. Adv. 2020, 39, 107462. [Google Scholar] [CrossRef]
- Akinola, S.A.; Babalola, O.O. The fungal and archaeal community within plant rhizosphere: A review on their contribution to crop safety. J. Plant. Nutr. 2021, 44, 600–618. [Google Scholar] [CrossRef]
- Fadiji, A.E.; Babalola, O.O. Elucidating mechanisms of endophytes used in plant protection and other bioactivities with multifunctional prospects. Front. Bioeng. Biotechnol. 2020, 8, 467. [Google Scholar] [CrossRef]
- Fadiji, A.E.; Ayangbenro, A.S.; Babalola, O.O. Organic farming enhances the diversity and community structure of endophytic archaea and fungi in maize plant: A shotgun approach. J. Soil Sci. Plant. Nutr. 2020, 20, 2587–2599. [Google Scholar] [CrossRef]
- Omomowo, O.I.; Babalola, O.O. Bacterial and fungal endophytes: Tiny giants with immense beneficial potential for plant growth and sustainable agricultural productivity. Microorganisms 2019, 7, 481. [Google Scholar] [CrossRef] [Green Version]
- Hiruma, K.; Kobae, Y.; Toju, H. Beneficial associations between Brassicaceae plants and fungal endophytes under nutrient-limiting conditions: Evolutionary origins and host–symbiont molecular mechanisms. Curr. Opin. Plant Biol. 2018, 44, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Igiehon, N.O.; Babalola, O.O.; Cheseto, X.; Torto, B. Effects of rhizobia and arbuscular mycorrhizal fungi on yield, size distribution and fatty acid of soybean seeds grown under drought stress. Microbiol. Res. 2021, 242, 126640. [Google Scholar] [CrossRef]
- Emmanuel, O.C.; Babalola, O.O. Productivity and quality of horticultural crops through co-inoculation of arbuscular mycorrhizal fungi and plant growth promoting bacteria. Microbiol. Res. 2020, 239, 126569. [Google Scholar] [CrossRef]
- Odelade, K.A.; Babalola, O.O. Bacteria, fungi and archaea domains in rhizospheric soil and their effects in enhancing agricultural productivity. Int. J. Environ. Res. Public Health 2019, 16, 3873. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Hussain, M.; Zhang, W.; Stadler, M.; Liu, X.; Xiang, M. Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology 2019, 10, 127–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawksworth, D.L.; Lücking, R. Fungal diversity revisited: 2.2 to 3.8 million species. Fungal Kingd. 2017, 5, 79–95. [Google Scholar]
- Palanichamy, P.; Krishnamoorthy, G.; Kannan, S.; Marudhamuthu, M. Bioactive potential of secondary metabolites derived from medicinal plant endophytes. Egypt. J. Basic Appl. Sci. 2018, 5, 303–312. [Google Scholar] [CrossRef] [Green Version]
- Manganyi, M.; Regnier, T.; Kumar, A.; Bezuidenhout, C.; Ateba, C. Biodiversity and antibacterial screening of endophytic fungi isolated from Pelargonium sidoides. South Afr. J. Bot. 2018, 116, 192–199. [Google Scholar] [CrossRef]
- Manganyi, M.C.; Tchatchouang, C.-D.K.; Regnier, T.; Bezuidenhout, C.C.; Ateba, C.N. Bioactive compound produced by endophytic fungi isolated from Pelargonium sidoides against selected bacteria of clinical importance. Mycobiology 2019, 47, 335–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.; Kumar, V.; Kanwar, M.; Thukral, A.; Bhardwaj, R. Phytochemical profiling of the leaves of Brassica juncea L. using GC-MS. Int. Food Res. J. 2017, 24, 547. [Google Scholar]
- Michel, J.; Abd Rani, N.Z.; Husain, K. A review on the potential use of medicinal plants from Asteraceae and Lamiaceae plant family in cardiovascular diseases. Front. Pharmacol. 2020, 11, 852. [Google Scholar] [CrossRef]
- Nisa, H.; Kamili, A.N.; Nawchoo, I.A.; Shafi, S.; Shameem, N.; Bandh, S.A. Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: A review. Microb. Pathog. 2015, 82, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Qiu, Y.; Ni, D.; He, X.; Pu, J.; Zhang, J. Emergence of allosteric drug-resistance mutations: New challenges for allosteric drug discovery. Drug Discov. Today 2020, 25, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Sandargo, B.; Chepkirui, C.; Cheng, T.; Chaverra-Muñoz, L.; Thongbai, B.; Stadler, M.; Hüttel, S. Biological and chemical diversity go hand in hand: Basidiomycota as source of new pharmaceuticals and agrochemicals. Biotechnol. Adv. 2019, 37, 107344. [Google Scholar] [CrossRef] [PubMed]
- Chowdhary, K.; Kaushik, N. Fungal endophyte diversity and bioactivity in the Indian medicinal plant Ocimum sanctum Linn. PLoS ONE 2015, 10, e0141444. [Google Scholar] [CrossRef]
- Prakash, V.; Rana, S.; Sagar, A. Taxomyces andreanae: A source of anticancer drug. Int. J. Bot. Stud. 2016, 1, 43–46. [Google Scholar]
- Naik, B.S. Developments in taxol production through endophytic fungal biotechnology: A review. Orient. Pharm. Exp. Med. 2019, 19, 1–13. [Google Scholar] [CrossRef]
- Gómez, O.C.; Luiz, J.H.H. Endophytic fungi isolated from medicinal plants: Future prospects of bioactive natural products from Tabebuia/Handroanthus endophytes. Appl. Microbiol. Biotechnol. 2018, 102, 9105–9119. [Google Scholar] [CrossRef]
- Caruso, G.; Abdelhamid, M.T.; Kalisz, A.; Sekara, A. Linking endophytic fungi to medicinal plants therapeutic activity. A case study on asteraceae. Agriculture 2020, 10, 286. [Google Scholar] [CrossRef]
- Chathurdevi, G.; Gowrie, S. Endophytic fungi isolated from medical plant—A promising source of potential bioactive metabolites. Int. J. Curr. Pharm. Res. 2016, 8, 50–56. [Google Scholar]
- Jia, M.; Chen, L.; Xin, H.-L.; Zheng, C.-J.; Rahman, K.; Han, T.; Qin, L.-P. A friendly relationship between endophytic fungi and medicinal plants: A systematic review. Front. Microbiol. 2016, 7, 906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ejaz, M.; Javed, S.; Hamza, M.; Tabassum, S.; Abubakar, M.; Ullah, I. Fungal endophytes are effective alternatives and novel sources of anticancer drugs. Punjab Univ. J. Zool. 2020, 35, 13–24. [Google Scholar]
- Baker, S.; Satish, S. Endophytes: Natural warehouse of bioactive compounds. Drug Invent. Today 2012, 4, 548–553. [Google Scholar]
- Costa, J.H.; Wassano, C.I.; Angolini, C.F.F.; Scherlach, K.; Hertweck, C.; Fill, T.P. Antifungal potential of secondary metabolites involved in the interaction between citrus pathogens. Sci. Rep. 2019, 9, 18647. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.-Y.; Cai, Y.-Z.; Xing, J.; Corke, H.; Sun, M. A potential antioxidant resource: Endophytic fungi from medicinal plants. Econ. Bot. 2007, 61, 14–30. [Google Scholar] [CrossRef]
- Hussain, H.; John, M.; Al-Harrasi, A.; Shah, A.; Hassan, Z.; Abbas, G.; Rana, U.A.; Green, I.R.; Schulz, B.; Krohn, K. Phytochemical investigation and antimicrobial activity of an endophytic fungus Phoma spp. J. King Saud. Univ. Sci. 2015, 27, 92–95. [Google Scholar] [CrossRef] [Green Version]
- Parthasarathy, R.; Sathiyabama, M. Lovastatin-producing endophytic fungus isolated from a medicinal plant Solanum xanthocarpum. Nat. Prod. Res. 2015, 29, 2282–2286. [Google Scholar] [CrossRef]
- Nuraini, F.R.; Setyaningsih, R.; Susilowati, A. Antioxidant activity of bioactive compound produced by endophytic fungi isolated from endemic plant of South Kalimantan Mangifera casturi Kosterm. In Proceedings of the AIP Conference Proceedings, Malang, Indonesia, 13–14 March 2019; p. 080013. [Google Scholar]
- Cui, J.-L.; Guo, T.-T.; Ren, Z.-X.; Zhang, N.-S.; Wang, M.-L. Diversity and antioxidant activity of culturable endophytic fungi from alpine plants of Rhodiola crenulata, R. angusta, and R. sachalinensis. PLoS ONE 2015, 10, e0118204. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.L.; Gilani, S.A.; Waqas, M.; Al-Hosni, K.; Al-Khiziri, S.; Kim, Y.-H.; Ali, L.; Kang, S.-M.; Asaf, S.; Shahzad, R. Endophytes from medicinal plants and their potential for producing indole acetic acid, improving seed germination and mitigating oxidative stress. J. Zhejiang Univ. Sci. B 2017, 18, 125–137. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Diao, X.; Wang, T.; Chen, G.; Lin, Q.; Yang, X.; Xu, J. Phylogenetic diversity and antioxidant activities of culturable fungal endophytes associated with the mangrove species Rhizophora stylosa and R. mucronata in the South China Sea. PLoS ONE 2018, 13, e0197359. [Google Scholar] [CrossRef] [Green Version]
- Gill, E.E.; Franco, O.L.; Hancock, R.E. Antibiotic adjuvants: Diverse strategies for controlling drug-resistant pathogens. Chem. Biol. Aand Drug Des. 2015, 85, 56–78. [Google Scholar] [CrossRef]
- Ateba, J.E.; Toghueo, R.M.; Awantu, A.F.; Mba’ning, B.M.; Gohlke, S.; Sahal, D.; Rodrigues-Filho, E.; Tsamo, E.; Boyom, F.F.; Sewald, N. Antiplasmodial properties and cytotoxicity of endophytic fungi from Symphonia globulifera (Clusiaceae). J. Fungi 2018, 4, 70. [Google Scholar] [CrossRef] [Green Version]
- Gouda, S.; Das, G.; Sen, S.K.; Shin, H.-S.; Patra, J.K. Endophytes: A treasure house of bioactive compounds of medicinal importance. Front. Microbiol. 2016, 7, 1538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, M.; Kumar, A.; Singh, R.; Pandey, K.D. Endophytic bacteria: A new source of bioactive compounds. Biotechnology 2017, 7, 315. [Google Scholar] [CrossRef] [PubMed]
- Rustamova, N.; Bozorov, K.; Efferth, T.; Yili, A. Novel secondary metabolites from endophytic fungi: Synthesis and biological properties. Phytochem. Rev. 2020, 16, 425–448. [Google Scholar] [CrossRef]
- Wu, F.; Yang, D.; Zhang, L.; Chen, Y.; Hu, X.; Li, L.; Liang, J. Diversity estimation and antimicrobial activity of culturable endophytic fungi from Litsea cubeba (Lour.) Pers. in China. Forests 2019, 10, 33. [Google Scholar] [CrossRef] [Green Version]
- Mogana, R.; Adhikari, A.; Tzar, M.; Ramliza, R.; Wiart, C. Antibacterial activities of the extracts, fractions and isolated compounds from Canarium patentinervium Miq. against bacterial clinical isolates. BMC Complementary Med. Ther. 2020, 20, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghorbanpour, M.; Omidvari, M.; Abbaszadeh-Dahaji, P.; Omidvar, R.; Kariman, K. Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biol. Control. 2018, 117, 147–157. [Google Scholar] [CrossRef]
- Alborés, S.; Sanguinedo, P.; Held, B.H.; Cerdeiras, M.P.; Blanchette, R.A. Biodiversity and antimicrobial activity of Antarctic fungi from the Fildes Peninsula, King George Island. Sydowia 2018, 70, 185–191. [Google Scholar]
- Pisoschi, A.M.; Pop, A.; Georgescu, C.; Turcuş, V.; Olah, N.K.; Mathe, E. An overview of natural antimicrobials role in food. Eur. J. Med. Chem. 2018, 143, 922–935. [Google Scholar] [CrossRef]
- Kumar, G.; Chandra, P.; Choudhary, M. Endophytic fungi: A potential source of bioactive compounds. Chem. Sci. Rev. Lett. 2017, 6, 2373–2381. [Google Scholar]
- Yazgan, H.; Ozogul, Y.; Kuley, E. Antimicrobial influence of nanoemulsified lemon essential oil and pure lemon essential oil on food-borne pathogens and fish spoilage bacteria. Int. J. Food Microbiol. 2019, 306, 108266. [Google Scholar] [CrossRef]
- Macías-Rubalcava, M.L.; Sánchez-Fernández, R.E. Secondary metabolites of endophytic Xylaria species with potential applications in medicine and agriculture. World J. Microbiol. Biotechnol. 2017, 33, 15. [Google Scholar] [CrossRef] [PubMed]
- Reshma, J.; Vinaya, C.; Linu, M. Agricultural applications of endophytic microflora. In Seed Endophytes; Springer: Berlin/Heidelberg, Germany, 2019; pp. 385–403. [Google Scholar]
- Pan, D.; Mionetto, A.; Tiscornia, S.; Bettucci, L. Endophytic bacteria from wheat grain as biocontrol agents of Fusarium graminearum and deoxynivalenol production in wheat. Mycotoxin Res. 2015, 31, 137–143. [Google Scholar] [CrossRef]
- Huang, S.; Xu, J.; Li, F.; Zhou, D.; Xu, L.; Li, C. Identification and antifungal activity of metabolites from the mangrove fungus Phoma sp. L28. Chem. Nat. Compd. 2017, 53, 237–240. [Google Scholar] [CrossRef]
- Kumar, V.; Soni, R.; Jain, L.; Dash, B.; Goel, R. Endophytic fungi: Recent advances in identification and explorations. In Advances in Endophytic Fungal Research; Springer: Berlin/Heidelberg, Germany, 2019; pp. 267–281. [Google Scholar]
- Puri, S.K.; Habbu, P.V.; Kulkarni, P.V.; Kulkarni, V.H. Nitrogen containing secondary metabolites from endophytes of medicinal plants and their biological/pharmacological activities—A review. Syst. Rev. Pharm. 2018, 9, 22–30. [Google Scholar] [CrossRef]
- Kamana, S.; Hemalatha, K.; Chandanavineela, K.; Kalyani, P.; Hemalatha, V. Endophytic fungi: As source of bioactive compound. World J. Pharmacol. Pharm. Sci. 2016, 5, 1026–1040. [Google Scholar]
- Kouipou Toghueo, R.M.; Boyom, F.F. Endophytic fungi from Terminalia species: A comprehensive review. J. Fungi 2019, 5, 43. [Google Scholar] [CrossRef] [PubMed]
- Fill, T.P.; Silva, B.F.D.; Rodrigues-Fo, E. Biosynthesis of phenylpropanoid amides by an endophytic Penicillium brasilianum found in root bark of Melia azedarach. J. Microbiol. Biotechnol. 2010, 20, 622–629. [Google Scholar]
- Ardalani, H.; Avan, A.; Ghayour-Mobarhan, M. Podophyllotoxin: A novel potential natural anticancer agent. Avicenna J. Phytomed. 2017, 7, 285. [Google Scholar]
- Chen, L.; Zhang, Q.-Y.; Jia, M.; Ming, Q.-L.; Yue, W.; Rahman, K.; Qin, L.-P.; Han, T. Endophytic fungi with antitumor activities: Their occurrence and anticancer compounds. Crit. Rev. Microbiol. 2016, 42, 454–473. [Google Scholar] [CrossRef]
- Li, S.-J.; Zhang, X.; Wang, X.-H.; Zhao, C.-Q. Novel natural compounds from endophytic fungi with anticancer activity. Eur. J. Med. Chem. 2018, 156, 316–343. [Google Scholar] [CrossRef]
- Kharwar, R.N.; Mishra, A.; Gond, S.K.; Stierle, A.; Stierle, D. Anticancer compounds derived from fungal endophytes: Their importance and future challenges. Nat. Prod. Rep. 2011, 28, 1208–1228. [Google Scholar] [CrossRef]
- Siroka, A.; Ponce, N.A.; Lönnroth, K. Association between spending on social protection and tuberculosis burden: A global analysis. Lancet Infect. Dis. 2016, 16, 473–479. [Google Scholar] [CrossRef] [Green Version]
- Egbuta, M.A.; Mwanza, M.; Babalola, O.O. A review of the ubiquity of ascomycete’s filamentous fungi in relation to their economic and medical importance. Adv. Microbiol. 2016, 6, 1140–1158. [Google Scholar] [CrossRef] [Green Version]
- Uzma, F.; Mohan, C.D.; Hashem, A.; Konappa, N.M.; Rangappa, S.; Kamath, P.V.; Singh, B.P.; Mudili, V.; Gupta, V.K.; Siddaiah, C.N. Endophytic fungi—Alternative sources of cytotoxic compounds: A review. Front. Pharmacol. 2018, 9, 309. [Google Scholar] [CrossRef] [PubMed]
- Mane, R.; Shinde, M.; Wagh, P.; Malkar, H. Isolation of endophytic microorganisms as a source of novel secondary metabolite producers against tuberculosis. Int. J. Sci. Res. Technol. 2017, 3, 1267–1269. [Google Scholar]
- Deshmukh, S.K.; Verekar, S.A.; Bhave, S.V. Endophytic fungi: A reservoir of antibacterials. Front. Microbiol. 2015, 5, 715. [Google Scholar] [CrossRef] [Green Version]
- Chepkirui, C.; Stadler, M. The genus Diaporthe: A rich source of diverse and bioactive metabolites. Mycol. Prog. 2017, 16, 477–494. [Google Scholar] [CrossRef]
- Silva, E.M.S.; Silva, I.R.d.; Ogusku, M.M.; Carvalho, C.M.; Maki, C.S.; Procópio, R.E.D.L. Metabolites from endophytic Aspergillus fumigatus and their in vitro effect against the causal agent of tuberculosis. Acta Amaz. 2018, 48, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Khiralla, A.; Mohamed, I.; Thomas, J.; Mignard, B.; Spina, R.; Yagi, S.; Laurain-Mattar, D. A pilot study of antioxidant potential of endophytic fungi from some Sudanese medicinal plants. Asian Pac. J. Trop. Med. 2015, 8, 701–704. [Google Scholar] [CrossRef]
- Ambele, C.F.; Bisseleua, H.D.; Akutse, K.S.; Babalola, O.O.; Humbert, P.; Patel, A.; Vidal, S.; Djuideu, C.T.; Ekesi, S. Testing a co-formulation of CO2-releasing material with an entomopathogenic fungus for the management of subterranean termite pests. Mycol. Prog. 2019, 18, 1201–1211. [Google Scholar] [CrossRef]
- Ma, J.-S.; Liu, H.; Han, C.-R.; Zeng, S.-J.; Xu, X.-J.; Lu, D.-J.; He, H.-J. Extraction, characterization and antioxidant activity of polysaccharide from Pouteria campechiana seed. Carbohydr. Polym. 2020, 229, 115409. [Google Scholar] [CrossRef]
- Sujatha, J.; Asokan, S. Antidermatophytic and antioxidant activity of hexane extracts of Cassia alata leaves and its phytochemical screening. Int. Res. J. Pharm. Biosci. 2017, 4, 25–35. [Google Scholar]
- Toghueo, R.M.K. Bioprospecting endophytic fungi from Fusarium genus as sources of bioactive metabolites. Mycology 2020, 11, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Toghueo, R.M.K.; Boyom, F.F. Endophytes from ethno-pharmacological plants: Sources of novel antioxidants—A systematic review. Biocatal. Agric. Biotechnol. 2019, 22, 101430. [Google Scholar] [CrossRef]
- Khiralla, A.; Spina, R.; Saliba, S.; Laurain-Mattar, D. Diversity of natural products of the genera Curvularia and Bipolaris. Fungal Biol. Rev. 2019, 33, 101–122. [Google Scholar] [CrossRef]
- Gunasekaran, S.; Sundaramoorthy, S.; Anitha, U.; Sathiavelu, M.; Arunachalam, S. Endophytic fungi with antioxidant activity—A review. Res. J. Pharm. Technol. 2015, 8, 731–737. [Google Scholar] [CrossRef]
- Ushasri, R.; Anusha, R. In vitro anti-diabetic activity of ethanolic and acetone extracts of endophytic fungi Syncephalastrum racemosum isolated from the seaweed Gracilaria corticata by alpha-amylase inhibition assay method. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 254–259. [Google Scholar]
- Rathnayake, G.N.; Kumar, N.S.; Jayasinghe, L.; Araya, H.; Fujimoto, Y. Secondary metabolites produced by an endophytic fungus Pestalotiopsis microspora. Nat. Prod. Bioprospecting 2019, 9, 411–417. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Kaur, A. Antidiabetic potential of a peptide isolated from an endophytic Aspergillus awamori. J. Appl. Microbiol. 2016, 120, 301–311. [Google Scholar] [CrossRef] [Green Version]
- Govindappa, M. A review on role of plant(s) extracts and its phytochemicals for the management of diabetes. J. Diabetes Metab. 2015, 6, 1–38. [Google Scholar]
- Uzor, P.F.; Osadebe, P.O.; Nwodo, N.J. Antidiabetic activity of extract and compounds from an endophytic fungus Nigrospora oryzae. Drug Res. 2017, 67, 308–311. [Google Scholar] [CrossRef] [PubMed]
- Indrianingsih, A.W.; Tachibana, S. α-Glucosidase inhibitor produced by an endophytic fungus, Xylariaceae sp. QGS 01 from Quercus gilva Blume. Food Sci. Hum. Wellness 2017, 6, 88–95. [Google Scholar] [CrossRef]
- Ezekwesili, C.N.; Ogbunugafor, H.A. Blood glucose lowering activity of five Nigerian medicinal plants in alloxan-induced diabetic Wistar albino rats. Anim. Res. Int. 2015, 12, 2150–2158. [Google Scholar]
- Akshatha, V.; Nalini, M.; D’souza, C.; Prakash, H. Streptomycete endophytes from anti-diabetic medicinal plants of the Western Ghats inhibit alpha-amylase and promote glucose uptake. Lett. Appl. Microbiol. 2014, 58, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Kaur, R.; Datta, R.; Kaur, S.; Kaur, A. Exploration of insecticidal potential of an alpha glucosidase enzyme inhibitor from an endophytic Exophiala spinifera. J. Appl. Microbiol. 2018, 125, 1455–1465. [Google Scholar] [CrossRef]
- Muhammed, D.; Dada, E.; Iyaji, F.; Abraham, O.; Chijioke, N. Investigation of biochemical parameters of Plasmodium berghei infected mice after administration of ethanolic leaf extract of Eucalyptus citriodora. Int. J. Pathog. Res. 2019, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Aharwal, R.P.; Kumar, S.; Sandhu, S.S. Endophytic mycoflora as a source of biotherapeutic compounds for disease treatment. J. Appl. Pharm. Sci. 2016, 6, 242–254. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.-W.; Wang, J.-L.; Chen, J.; Chen, J.-J.; Shen, J.-W.; Feng, X.-X.; Kubicek, C.P.; Lin, F.-C.; Zhang, C.-L.; Chen, F.-Y. A novel derivative of (-) mycousnine produced by the endophytic fungus Mycosphaerella nawae, exhibits high and selective immunosuppressive activity on T cells. Front. Microbiol. 2017, 8, 1251. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Huang, J.; Zhou, X.; Lin, X.; Liu, J.; Liao, S.; Wang, J.; Liu, F.-A.; Tao, H.; Liu, Y. The fungal metabolites with potential antiplasmodial activity. Curr. Med. Chem. 2018, 25, 3796–3825. [Google Scholar] [CrossRef]
- Purwantini, I.; Wahyono, M.; Susidarti, R.A.; Sholikhah, E.N.; Rani, A. Antiplasmodial activity of endophytic fungi isolated from Artemisia Annua, L. Int. J. Pharm. Clin. Res. 2016, 8, 341–344. [Google Scholar]
- Ferreira, M.C.; Cantrell, C.L.; Wedge, D.E.; Gonçalves, V.N.; Jacob, M.R.; Khan, S.; Rosa, C.A.; Rosa, L.H. Antimycobacterial and antimalarial activities of endophytic fungi associated with the ancient and narrowly endemic neotropical plant Vellozia gigantea from Brazil. Mem. Inst. Oswaldo Cruz 2017, 112, 692–697. [Google Scholar] [CrossRef]
- Kumarihamy, M.; Ferreira, D.; Croom, E.M.; Sahu, R.; Tekwani, B.L.; Duke, S.O.; Khan, S.; Techen, N.; Nanayakkara, N. Antiplasmodial and cytotoxic cytochalasins from an endophytic fungus, Nemania sp. UM10M, isolated from a diseased Torreya taxifolia leaf. Molecules 2019, 24, 777. [Google Scholar] [CrossRef] [Green Version]
- Toghueo, R.M.K.; Kemgne, E.A.M.; Eke, P.; Kanko, M.I.M.; Dize, D.; Sahal, D.; Boyom, F.F. Antiplasmodial potential and GC-MS fingerprint of endophytic fungal extracts derived from Cameroonian Annona muricata. J. Ethnopharmacol. 2019, 235, 111–121. [Google Scholar] [CrossRef]
- Farooq, T.; Hameed, A.; Rehman, K.; Ibrahim, M.; Qadir, M.I.; Akash, M.S.H. Antiretroviral agents: Looking for the best possible chemotherapeutic options to conquer HIV. Crit. Rev. Eukaryot. Gene Expr. 2016, 26, 363–381. [Google Scholar] [CrossRef]
- Raekiansyah, M.; Mori, M.; Nonaka, K.; Agoh, M.; Shiomi, K.; Matsumoto, A.; Morita, K. Identification of novel antiviral of fungus-derived brefeldin A against dengue viruses. Trop. Med. Health 2017, 45, 32. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.-S.; Jiang, J.-X.; Huang, R.; Wang, Y.-T.; Jiang, B.-G.; Zheng, K.-X.; Wu, S.-H. A new antiviral 14-nordrimane sesquiterpenoid from an endophytic fungus Phoma spp. Phytochem. Lett. 2019, 29, 75–78. [Google Scholar] [CrossRef]
- Ambele, C.F.; Ekesi, S.; Bisseleua, H.D.; Babalola, O.O.; Khamis, F.M.; Djuideu, C.T.; Akutse, K.S. Entomopathogenic fungi as endophytes for biological control of subterranean termite pests attacking cocoa seedlings. J. Fungi 2020, 6, 126. [Google Scholar] [CrossRef]
- Kim, E.Y.; Moudgil, K.D. Immunomodulation of autoimmune arthritis by pro-inflammatory cytokines. Cytokine 2017, 98, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Egbuta, M.A.; Mwanza, M.; Babalola, O.O. Health risks associated with exposure to filamentous fungi. Int. J. Environ. Res. Public Health 2017, 14, 719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hošková, L.; Málek, I.; Kopkan, L.; Kautzner, J. Pathophysiological mechanisms of calcineurin inhibitor-induced nephrotoxicity and arterial hypertension. Physiol. Res. 2017, 66, 167. [Google Scholar] [CrossRef] [PubMed]
- Leroy, C.; Rigot, J.-M.; Leroy, M.; Decanter, C.; Le Mapihan, K.; Parent, A.-S.; Le Guillou, A.-C.; Yakoub-Agha, I.; Dharancy, S.; Noel, C. Immunosuppressive drugs and fertility. Orphanet J. Rare Dis. 2015, 10, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Gowelli, H.M.; El-Mas, M.M. Central modulation of cyclosporine-induced hypertension. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2015, 388, 351–361. [Google Scholar] [CrossRef]
- Vasundhara, M.; Baranwal, M.; Kumar, A. Fusarium tricinctum, an endophytic fungus exhibits cell growth inhibition and antioxidant activity. Indian J. Microbiol. 2016, 56, 433–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nalini, M.; Prakash, H. Diversity and bioprospecting of actinomycete endophytes from the medicinal plants. Lett. Appl. Microbiol. 2017, 64, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Tu, R.; Mei, X.; Wu, S.; Lan, B.; Zhang, L.; Luo, X.; Liu, J.; Luo, M. A mycophenolic acid derivative from the fungus Penicillium sp. SCSIO sof101. Nat. Prod. Res. 2020, 34, 1206–1212. [Google Scholar] [CrossRef]
- Lin, R.; Kim, H.; Hong, J.; Li, Q.-J. Biological evaluation of subglutinol A as a novel immunosuppressive agent for inflammation intervention. ACS Med. Chem. Lett. 2014, 5, 485–490. [Google Scholar] [CrossRef]
- Strobel, G. The emergence of endophytic microbes and their biological promise. J. Fungi 2018, 4, 57. [Google Scholar] [CrossRef] [Green Version]
Medicinal Plant | Endophytic Fungi | Bioactive Compounds/Effects | References |
---|---|---|---|
Taxus brevifolia Aegle marmelos Plectranthus amboinicus, Wollemia nobilis Ginkgo biloba Taxus media Taxodium distichum Terminalia arjuna Citrus medica | Taxomyces andreanae Bartalalinia robillardoide Pestalotiopsis microspore P. guepinii P. microspore P. terminaline Cladosporium cladosporio Phyllosticta citricarpa | Anticancer/Antitumor Paclitaxel | [30,31] |
Taxodium distichum Rhizophora annamalayana Taxus baccata | Alternaria alternata, Aspergillus fumigatus Pestalotiopsis terminaliae, Wollemia nobilis, Baralinia robillardoides, Taxodium distichum, Phyllosticta spinarum, Botrydiplodia theobromae | Taxol | |
Taxus baccata Camptotheca acuminate Apodytes dimidiate | Fusarium oxysporum, Fusarium redolens, Fusarium solani, Trichoderma atroviride | Camptothecin | |
Sinopodophyllum hexandrum Diphylleia sinensis Adenophora axilliflora | Fusarium solani Penicillium implicatum Mucor fragilis, Phialocephala fortinii | Podophyllotoxin Chaetominine | |
Melia azedarach T. taxifolia D. cejpii | Penicilium brasilianum Pestalotiopsis microspore Dichotomomyces albus | Phenylpropanoids Torreyanic acid Xanthocillin X | |
Cardiospermum helicacabum Nothapodyte foetida Juniperus communis Juniperus recurva Podophyllum hexandrum Dysosma veitchii Podophyllum peltatum Sinopodophyllum hexandrum | Pestalotiopsis pauciseta Entrophospora infrequent Aspergillus fumigatus Fusarium oxysporum Trametes hirsute Penicillium implicatum Phialocephala fortinii Alternaria neesex | Camptothecin Podophyllotoxin | |
Catharanthus roseus Tripterygium wilfordii Roystonea regia Cyndon dactlon | Fusarium oxysporum Rhinocladiella spp. Pestalotiopsis photiniae Aspergillus niger IFB-E003 | Vincristine Cytochalasins Photinides Rubrofusarin B | |
Urospernum picroide Garcinia dulcis Saurauia scaberrinae Torreya taxifolia Kennedia nigriscans Crytosporiopsis cf quercina | Ampelomyces spp. Phomopsis spp. PSU-D15 Phoma spp. Pestalotiopsis microspora Streptomyces NRRL 30562 Cryptosporiopsis spp. | Antimicrobial 3-0 methylalaternin, altersolanol A Phomoenamides Phomodione Ambuic acid Mumubicin Cryptocandin | [32] |
Sabina recurve - | Fusarium oxysporum Penicillium chrysogenum | Antiviral Cyclosporine Xanthoviridicatins | [30] |
Smallanthus sonchifolius Viguiera arenaria | Curvularia spp. Phomopsis spp. | Antimalaria/antiparasite Stemphyperylenol 3,4-dimethyl-2-(40-hydroxy-30,50-dimethoxyphenyl)-5-methoxy-tetrahydrofuran | [28] |
Citrus limon | Penicillium digitatum, P. citrinum | Antifungal Tryptoquialanine A, Tryptoquialanine C, 15-dimethyl-2-epi-fumiquinazoline A, deoxytryptoquialanone, Citrinadin A, Deoxycitrinadin A, Chrysogenamide A | [33,34] |
Senecio kleinii | Phoma sp. | 8,9-dihydro-3,5,7-trihydroxy-1,8,8,9-tetramethyl-5-(2-oxopropyl)-4H-phenaleno[1,2-b]furan-4,6(5H)-dione, atrovenetinone, sclerodione | [35] |
Acacia nilotica Adhatoda beddomei, Ficus religiosa, Paeonia delavayi, Salvadora oleoides Decne Sonneratia ovata | Aspergillus awamori Syncephalastrum spp. Dendryphion nanum, Phomopsis spp. Aspergillus spp Phoma spp. Nectria spp. | Antidiabetic Peptide lectin (N-acetylgalactosamine, 64 kDa) Naphthoquinones (O-phenethylherbarin), herbarin and herbaridine, phomopoxides A-G, 2,6-di-tert-butyl-p-cresol, phenol-2,6-bis[1,1-dimethylethyl]-4-methyl Citreoisocoumarinol, citreoisocoumarin, and macrocarpon C | |
Solanum xanthocarpum | Aspergillus terreus, A. sclerotiorum, A. terreus | Antioxidants Lovastatin | [36] |
Magnifera casturi, Cestrum nocturnum, Nerium oleander, Saposhnikoviadivaricata, Acalypha indica, Azadirachta indica, Catharanthus roseus, Pediomelum cuspidatum, Artemisia capillaris, Catharanthus roseus Caralluma acutangula, Rhazya stricta, and Moringa peregrina Eugenia jambolana, Fritillaria unibracteata, Gymnema sylvestre, Kandis gajah | Aspergillusminisclerotigenes, Asper. oryzae, Asper. wentii, Rhodiola crenulata, Rhod. angusta, Rhod. sachalinensis, Chaetomium sp., Diaporthe phaseolorum, Colletotrichum kohawae, Phomopsis phylanthicolla, Xylaria acuta, Alternaria alternata, Bipolaris sorokiniana, and Cladosporium sphaerosperumum Aspergillus niger, Aspergillus peyronelii, Aspergillus sp., and Chaetomium globosum, Fusarium tricinctum, Clonostachys rosea, Gymnema sylvestre, Chrysonilia sitophila Alternaria alternata | Phenolic acids (Chlorogenic acid (5-O-caffeoylquinic acid), Di-O-caffeoylquinic acids Flavonoids (Quercetin 3-rutinoside) (rutin), Quercetin 3-rhamnoside, (quercitrin) Quinones (Anthraquione glycoside) Rehein, emodin Volatile compounds (Artemisin) Aliphatic compounds Hexadecanoic acid, methyl ester; 9-Hexadecenoic acid, methyl ester; 9,12 Octadecadienoic acid, methyl ester; 11,14,17-Eicosatrienoic acid, methyl ester DPPH (2,2-diphenyl-1-picrylhydrazyl) 3,5-dihydroxy-2,5-dimethyltrideca 2,9,11-triene- 4,8-dione Chrysin | [34,37,38,39] |
Polygonum cuspidatum | Streptomyces spp. | 3-methyl-1-butanol, 4-methyl-1-pentanol, 1-nonanal, 6-methyl-2-oxiranyl-hept-5-en-2-ol, 2,6,11,15-tetramethylhexadecane, 2,6-dimethylocta-2, 7-dien-6-ol, 2,4-di-tert-butylphenol, glacial acetic acid, linoleic acid, 4-methylvaleric acid, 4-hexenoic acid, dehydroacetic acid, heptanedioic acid, 2-methyl butyric acid, and 1-p-menthen-8-ol | [40] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adeleke, B.S.; Babalola, O.O. Pharmacological Potential of Fungal Endophytes Associated with Medicinal Plants: A Review. J. Fungi 2021, 7, 147. https://doi.org/10.3390/jof7020147
Adeleke BS, Babalola OO. Pharmacological Potential of Fungal Endophytes Associated with Medicinal Plants: A Review. Journal of Fungi. 2021; 7(2):147. https://doi.org/10.3390/jof7020147
Chicago/Turabian StyleAdeleke, Bartholomew Saanu, and Olubukola Oluranti Babalola. 2021. "Pharmacological Potential of Fungal Endophytes Associated with Medicinal Plants: A Review" Journal of Fungi 7, no. 2: 147. https://doi.org/10.3390/jof7020147
APA StyleAdeleke, B. S., & Babalola, O. O. (2021). Pharmacological Potential of Fungal Endophytes Associated with Medicinal Plants: A Review. Journal of Fungi, 7(2), 147. https://doi.org/10.3390/jof7020147