In Vitro Antifungal Drug Resistance Profiles of Clinically Relevant Members of the Mucorales (Mucoromycota) Especially with the Newer Triazoles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Isolates for MIC Distribution Analyses
2.2. Antifungal Agents and Drug Concentration Ranges
2.3. CLSI Broth Microdilution Determination of Mould Minimum Inhibitory Concentrations (MICs)
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petrikkos, G.; Skiada, A.; Lortholary, O.; Roilides, E.; Walsh, T.J.; Kontoyiannis, D.P. Epidemiology and Clinical Manifestations of Mucormycosis. Clin. Infect. Dis. 2012, 54, S23–S34. [Google Scholar] [CrossRef] [PubMed]
- Skiada, A.; Pagano, L.; Groll, A.; Zimmerli, S.; Dupont, B.; Lagrou, K.; Lass-Florl, C.; Bouza, E.; Klimko, N.; Gaustad, P.; et al. Zygomycosis in Europe: Analysis of 230 cases accrued by the registry of the European Confederation of Medical Mycology (ECMM) Working Group on Zygomycosis between 2005 and 2007. Clin. Microbiol. Infect. 2011, 17, 1859–1867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prakash, H.; Ghosh, A.K.; Rudramurthy, S.M.; Singh, P.; Xess, I.; Savio, J.; Pamidimukkala, U.; Jillwin, J.; Varma, S.; Das, A.; et al. A prospective multicenter study on mucormycosis in India: Epidemiology, diagnosis, and treatment. Med. Mycol. 2019, 57, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Hospenthal, D.R.; Chung, K.K.; Lairet, K.; Thompson, E.H.; Guarro, J.; Renz, E.M.; Sutton, D.A. Saksenaea erythrospora Infection following Combat Trauma. J. Clin. Microbiol. 2011, 49, 3707–3709. [Google Scholar] [CrossRef] [Green Version]
- Spatafora, J.W.; Aime, M.C.; Grigoriev, I.V.; Martin, F.; Stajich, J.E.; Blackwell, M. The Fungal Tree of Life: From Molecular Systematics to Genome-Scale Phylogenies. Fungal Kingd. 2017, 5, 3–34. [Google Scholar] [CrossRef] [Green Version]
- Cornely, O.A.; Alastruey-Izquierdo, A.; Arenz, D.; Chen, S.C.A.; Dannaoui, E.; Hochhegger, B.; Hoenigl, M.; Jensen, H.E.; Lagrou, K.; Lewis, R.E.; et al. Global guideline for the diagnosis and management of mucormycosis: An initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. Lancet Infect. Dis. 2019, 19, e405–e421. [Google Scholar] [CrossRef]
- Roden, M.M.; Zaoutis, T.E.; Buchanan, W.L.; Knudsen, T.A.; Sarkisova, T.A.; Schaufele, R.L.; Sein, M.; Sein, T.; Chiou, C.C.; Chu, J.H.; et al. Epidemiology and outcome of zygomycosis: A review of 929 reported cases. Clin. Infect. Dis. 2005, 41, 634–653. [Google Scholar] [CrossRef] [Green Version]
- Alastruey-Izquierdo, A.; Castelli, M.; Cuesta, I.; Zaragoza, O.; Monzón, A.; Mellado, E.; Rodríguez-Tudela, J. In vitro activity of antifungals against Zygomycetes. Clin. Microbiol. Infect. 2009, 15, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Alastruey-Izquierdo, A.; Cuesta, I.; Walther, G.; Cuenca-Estrella, M.; Rodriguez-Tudela, J.L. Antifungal Susceptibility Profile of Human-Pathogenic Species of Lichtheimia. Antimicrob. Agents Chemother. 2010, 54, 3058–3060. [Google Scholar] [CrossRef] [Green Version]
- Borman, A.M.; Fraser, M.; Palmer, M.D.; Szekely, A.; Houldsworth, M.; Patterson, Z.; Johnson, E.M. MIC Distributions and Evaluation of Fungicidal Activity for Amphotericin B, Itraconazole, Voriconazole, Posaconazole and Caspofungin and 20 Species of Pathogenic Filamentous Fungi Determined Using the CLSI Broth Microdilution Method. J. Fungi 2017, 3, 27. [Google Scholar] [CrossRef] [Green Version]
- Arendrup, M.C.; Jensen, R.H.; Meletiadis, J. In Vitro Activity of Isavuconazole and Comparators against Clinical Isolates of the Mucorales Order. Antimicrob. Agents Chemother. 2015, 59, 7735–7742. [Google Scholar] [CrossRef] [Green Version]
- Jørgensen, K.M.; Astvad, K.M.T.; Hare, R.K.; Arendrup, M.C. EUCAST Susceptibility Testing of Isavuconazole: MIC Data for Contemporary Clinical Mold and Yeast Isolates. Antimicrob. Agents Chemother. 2019, 63, e00073-19. [Google Scholar] [CrossRef] [Green Version]
- Perkhofer, S.; Lechner, V.; Lass-Flörl, C.; European Committee on Antimicrobial Susceptibility Testing. In vitro activity of isavuconazole against Aspergillus species and zygomycetes according to the methodology of the European Committee on An-timicrobial Susceptibility Testing. Antimicrob. Agents Chemother. 2009, 53, 1645–1647. [Google Scholar] [CrossRef] [Green Version]
- Pfaller, M.A.; Rhomberg, P.R.; Wiederhold, N.P.; Gibas, C.; Sanders, C.; Fan, H.; Mele, J.; Kovanda, L.L.; Castanheira, M. In Vitro Activity of Isavuconazole against Opportunistic Fungal Pathogens from Two Mycology Reference Laboratories. Antimicrob. Agents Chemother. 2018, 62, e01230-18. [Google Scholar] [CrossRef] [Green Version]
- Guinea, J.; Peláez, T.; Recio, S.; Torres-Narbona, M.; Bouza, E. In Vitro Antifungal Activities of Isavuconazole (BAL4815), Voriconazole, and Fluconazole against 1007 Isolates of Zygomycete, Candida, Aspergillus, Fusarium, and Scedosporium Species. Antimicrob. Agents Chemother. 2008, 52, 1396–1400. [Google Scholar] [CrossRef] [Green Version]
- Bernardo, V.; Miles, A.; Fernandez, A.J.; Liverman, R.; Tippett, A.; Yildirim, I. Initial posaconazole dosing to achieve thera-peutic serum posaconazole concentrations among children, adolescents, and young adults receiving delayed-release tablet and intravenous posaconazole. Pediatr. Transplant. 2020, 24, e13777. [Google Scholar] [CrossRef]
- Durani, U.; Tosh, P.K.; Barreto, J.N.; Estes, L.L.; Jannetto, P.J.; Tande, A.J. Retrospective Comparison of Posaconazole Levels in Patients Taking the Delayed-Release Tablet versus the Oral Suspension. Antimicrob. Agents Chemother. 2015, 59, 4914–4918. [Google Scholar] [CrossRef] [Green Version]
- Borman, A.; Hughes, J.M.; Oliver, D.; Fraser, M.; Sunderland, J.; Noel, A.R.; Johnson, E.M. Lessons from isavuconazole therapeutic drug monitoring at a United Kingdom Reference Center. Med. Mycol. 2020, 58, 996–999. [Google Scholar] [CrossRef]
- Desai, A.; Kovanda, L.; Kowalski, D.; Lu, Q.; Townsend, R.; Bonate, P.L. Population Pharmacokinetics of Isavuconazole from Phase 1 and Phase 3 (SECURE) Trials in Adults and Target Attainment in Patients with Invasive Infections Due to Aspergillus and Other Filamentous Fungi. Antimicrob. Agents Chemother. 2016, 60, 5483–5491. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard, 2nd ed.; CLSI document M38-A2; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
- EUCAST 2008. EUCAST technical note on the method for the determination of broth dilution minimum inhibitory concen-trations of antifungal agents for conidia-forming moulds. Clin. Microbiol. Infect. 2008, 14. [Google Scholar] [CrossRef]
- Espinel-Ingroff, A.; Chakrabarti, A.; Chowdhary, A.; Cordoba, S.; Dannaoui, E.; Dufresne, P.; Fothergill, A.; Ghannoum, M.; Gonzalez, G.M.; Guarro, J.; et al. Multicenter Evaluation of MIC Distributions for Epidemiologic Cutoff Value Definition to Detect Amphotericin B, Posaconazole, and Itraconazole Resistance among the Most Clinically Relevant Species of Mucorales. Antimicrob. Agents Chemother. 2015, 59, 1745–1750. [Google Scholar] [CrossRef] [Green Version]
- Borman, A.M.; Fraser, M.; Szekely, A.; Larcombe, D.E.; Johnson, E.M. Rapid identification of clinically relevant members of the genus Exophiala by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry and description of two novel species, Exophiala campbellii and Exophiala lavatrina. J. Clin. Microbiol. 2017, 55, 1162–1176. [Google Scholar] [CrossRef] [Green Version]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs for Antifungal Agents, Version 10.0, 2020. 2021. Available online: http://www.eucast.org/astoffungi/clinicalbreakpointsforantifungals/ (accessed on 1 April 2021).
- Espinel-Ingroff, A.; Turnidge, J.; Alastruey-Izquierdo, A.; Dannaouim, E.; Garcia-Effron, G.; Guinea, J.; Kidd, S.; Pelaez, T.; Sanguinetti, M.; Meletiadis, J.; et al. MIC distributions for Aspergillus fumigatus species complex by four methods: Impact of cyp51a mutations on estimation of epidemiological cutoff values. Antimicrob. Agents Chemother. 2018, 62, e01916-17. [Google Scholar] [CrossRef] [Green Version]
- Chowdhary, A.; Singh, P.K.; Kathuria, S.; Hagen, F.; Meis, J.F. Comparison of the EUCAST and CLSI Broth Microdilution Methods for Testing Isavuconazole, Posaconazole, and Amphotericin B against Molecularly Identified Mucorales Species. Antimicrob. Agents Chemother. 2015, 59, 7882–7887. [Google Scholar] [CrossRef] [Green Version]
- Wagner, L.; de Hoog, S.; Alastruey-Izquierdo, A.; Voigt, K.; Kurzai, O.; Walther, G. A revised species concept for opportunis-tic Mucor species reveals species-specific antifungal susceptibility profiles. Antimicrob. Agents Chemother. 2019, 63, e00653-19. [Google Scholar] [CrossRef] [Green Version]
- Heeres, J.; Meerpoel, L.; Lewi, P. Conazoles. Molecules 2010, 15, 4129–4188. [Google Scholar] [CrossRef]
- Lestrade, P.P.; Meis, J.F.; Melchers, W.J.; Verweij, P.E. Triazole resistance in Aspergillus fumigatus: Recent insights and challenges for patient management. Clin. Microbiol. Infect. 2019, 25, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Verweij, P.E.; González, G.M.; Wiedrhold, N.P.; Lass-Flörl, C.; Warn, P.; Heep, M.; Ghannoum, M.A.; Guinea, J. In vitro an-tifungal activity of isavuconazole against 345 Mucorales isolates collected at study centers in eight countries. J. Chemother. 2009, 21, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Thompson, G.R., III; Wiederhold, N.P. Isavuconazole: A comprehensive review of spectrum of activity of a new tria-zole. Mycopathologia 2010, 170, 291–313. [Google Scholar] [CrossRef] [PubMed]
- Maurer, E.; Binder, U.; Sparber, M.; Lackner, M.; Caramalho, R.; Lass-Flörl, C. Susceptibility profiles of amphotericin b and posaconazole against clinically relevant Mucorales species under hypoxic conditions. Antimicrob. Agents Chemother. 2015, 59, 1344–1346. [Google Scholar] [CrossRef] [Green Version]
- Lewis, J.S.; Graybill, J.R. Fungicidal versus fungistatic: What’s in a word? Expert Opin. Pharmacother. 2008, 9, 927–935. [Google Scholar] [CrossRef]
- Skiada, A.; Lanternier, F.; Groll, A.H.; Pagano, L.; Zimmerli, S.; Herbrecht, R.; Lortholary, O.; Petrikkos, G.L. Leukemia, Diagnosis and treatment of mucormycosis in patients with hematological malignancies: Guidelines from the 3rd European Conference on Infections in Leukemia (ECIL 3). Haematologica 2012, 98, 492–504. [Google Scholar] [CrossRef] [Green Version]
- Cornely, O.A.; Arikan-Akdagli, S.; Dannaoui, E.; Groll, A.H.; Lagrou, K.; Chakrabarti, A.; Lanternier, F.; Pagano, L.; Skiada, A.; Akova, M.; et al. European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group; European Confederation of Medical Mycology. ESCMID and ECMM joint clinical guidelines for the diagnosis and management of mucormycosis. Clin. Microbiol. Infect. 2014, 20, 5–26. [Google Scholar] [CrossRef] [Green Version]
- Hope, W.W. Population pharmacokinetic analysis of voriconazole in adults. Antimicrob. Agents Chemother. 2012, 58, 526–531. [Google Scholar] [CrossRef] [Green Version]
- Cornely, O.A.; Robertson, M.N.; Haider, S.; Grigg, A.; Geddes, M.; Aoun, M.; Heinz, W.J.; Raad, I.; Schanz, U.; Meyer, R.G.; et al. Pharmacokinetics and safety results from the Phase 3 randomized, open-label, study of intra-venous posaconazole in patients at risk of invasive fungal disease. J. Antimicrob. Chemother. 2017, 72, 3406–3413. [Google Scholar] [CrossRef] [Green Version]
- Cornely, O.A.; Duarte, R.F.; Haider, S.; Chandrasekar, P.H.; Helfgott, D.; Jiménez, J.L.; Candoni, A.; Raad, I.; Laverdiere, M.; Langston, A.; et al. Phase 3 pharmacokinetics and safety study of a posaconazole tablet formulation in patients at risk for invasive fungal disease. J. Antimicrob. Chemother. 2015, 71, 718–726. [Google Scholar] [CrossRef] [Green Version]
- Cross, L.J.; Bagg, J.; Oliver, D.; Warnock, D. Serum itraconazole concentrations and clinical responses in Candida-associated denture stomatitis patients treated with itraconazole solution and itraconazole capsules. J. Antimicrob. Chemother. 2000, 45, 95–99. [Google Scholar] [CrossRef]
- Marty, F.M.; Ostrosky-Zeichner, L.; Cornely, O.A.; Mullane, K.M.; Perfect, J.R.; Thompson, G.R., 3rd; Alangaden, G.J.; Brown, J.M.; Fredricks, D.N.; Heinz, W.J.; et al. VITAL and FungiScope Mucormycosis Investigators. Isavuconazole treatment for mucormycosis: A single-arm open-label trial and case-control analysis. Lancet Infect. Dis. 2016, 16, 828–837. [Google Scholar] [CrossRef]
- Greenberg, R.N.; Mullane, K.; Van Burik, J.-A.H.; Raad, I.; Abzug, M.J.; Anstead, G.; Herbrecht, R.; Langston, A.; Marr, K.A.; Schiller, G.; et al. Posaconazole as Salvage Therapy for Zygomycosis. Antimicrob. Agents Chemother. 2006, 50, 126–133. [Google Scholar] [CrossRef] [Green Version]
- Van Burik, J.-A.H.; Hare, R.S.; Solomon, H.F.; Corrado, M.L.; Kontoyiannis, D.P. Posaconazole Is Effective as Salvage Therapy in Zygomycosis: A Retrospective Summary of 91 Cases. Clin. Infect. Dis. 2006, 42, e61–e65. [Google Scholar] [CrossRef] [Green Version]
- Lanternier, F.; Dannaoui, E.; Morizot, G.; Elie, C.; Garcia-Hermoso, D.; Huerre, M.; Bitar, D.; Dromer, F.; Lortholary, O.; The French Mycosis Study Group. A Global Analysis of Mucormycosis in France: The RetroZygo Study (2005–2007). Clin. Infect. Dis. 2012, 54, S35–S43. [Google Scholar] [CrossRef] [Green Version]
- Gebremariam, T.; Alkhazraji, S.; Baldin, C.; Kovanda, L.; Wiederhold, N.P.; Ibrahim, A.S. Prophylaxis with Isavuconazole or Posaconazole Protects Immunosuppressed Mice from Pulmonary Mucormycosis. Antimicrob. Agents Chemother. 2017, 61, e02589-16. [Google Scholar] [CrossRef] [Green Version]
- Fontana, L.; Perlin, D.S.; Zhao, Y.; Noble, B.N.; Lewis, J.S.; Strasfeld, L.; Hakki, M. Isavuconazole Prophylaxis in Patients With Hematologic Malignancies and Hematopoietic Cell Transplant Recipients. Clin. Infect. Dis. 2020, 70, 723–730. [Google Scholar] [CrossRef]
- Rausch, C.R.; DiPippo, A.J.; Bose, P.; Kontoyiannis, D.P. Breakthrough Fungal Infections in Patients with Leukemia Receiving Isavuconazole. Clin. Infect. Dis. 2018, 67, 1610–1613. [Google Scholar] [CrossRef]
- Fung, M.; Schwartz, B.S.; Doernberg, S.B.; Langelier, C.; Lo, M.; Graff, L.; Tan, M.; Logan, A.C.; Chin-Hong, P.; Babik, J.M. Breakthrough Invasive Fungal Infections on Isavuconazole Prophylaxis and Treatment: What Is Happening in the Real-World Setting? Clin. Infect. Dis. 2018, 67, 1142–1143. [Google Scholar] [CrossRef]
- Kang, S.H.; Kim, H.S.; Bae, M.N.; Kim, J.; Yoo, J.Y.; Lee, K.Y.; Lee, D.-G.; Kim, H.-J. Fatal Breakthrough Mucormycosis in an Acute Myelogenous Leukemia Patient while on Posaconazole Prophylaxis. Infect. Chemother. 2015, 47, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Schlemmer, F.; Lagrange-Xélot, M.; Lacroix, C.; De La Tour, R.; Socié, G.; Molina, J.-M. Breakthrough Rhizopus infection on posaconazole prophylaxis following allogeneic stem cell transplantation. Bone Marrow Transplant. 2008, 42, 551–552. [Google Scholar] [CrossRef] [Green Version]
- Auberger, J.; Lass-Flörl, C.; Aigner, M.; Clausen, J.; Gastl, G.; Nachbaur, D. Invasive fungal breakthrough infections, fungal colonization and emergence of resistant strains in high-risk patients receiving antifungal prophylaxis with posaconazole: Re-al-life data from a single-centre institutional retrospective observational study. J. Antimicrob. Chemother. 2012, 67, 2268–2273. [Google Scholar] [CrossRef] [Green Version]
MIC (mg/L) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Amphotericin B | 0.03 | 0.06 | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | ≥16 | %R ** |
Aspergillus fumigatus (201) * | – | – | 22 | 99 | 63 | 17 | – | – | – | – | 0 |
Lichtheimia corymbifera (113) | 1 | 5 | 13 | 42 | 44 | 8 | – | – | – | – | 0 |
Mucor sp. (99) | 5 | 9 | 28 | 29 | 23 | 4 | – | – | 1 | – | 1.0 |
Rhizopus spp. (124) | – | 3 | 18 | 41 | 48 | 14 | 1 | – | – | – | 0.8 |
Rhizopus arrhizus (28) | – | 2 | 5 | 10 | 10 | 2 | – | – | – | – | 0.0 |
Rhizopus microsporus (96) | – | 1 | 13 | 31 | 38 | 12 | 1 | – | – | – | 1.0 |
Rhizomucor pusillus (37) | 1 | 1 | 7 | 21 | 7 | – | – | – | – | – | 0.0 |
MIC (mg/L) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Itraconazole | 0.03 | 0.06 | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | ≥16 | %R ** | |
2006–2016 * | Aspergillus fumigatus (2268) | 22 | 453 | 629 | 632 | 370 | 53 | 24 | 21 | 9 | 55 | 4.8 |
2019–2020 * | Aspergillus fumigatus (135) | – | 4 | 27 | 39 | 34 | 4 | 7 | 8 | 7 | 5 | 20 |
Lichtheimia corymbifera (84) | 2 | 2 | 14 | 26 | 19 | 18 | 3 | – | – | – | –– | |
Mucor sp. (88) | 2 | 2 | 1 | 4 | 13 | 15 | 8 | 1 | 1 | 41 | 58 | |
Rhizopus sp. (88) | – | – | – | 5 | 22 | 64 | 4 | 1 | 2 | 28 | 39.8 | |
Rhizopus arrhizus (25) | – | – | – | 1 | 5 | 6 | 4 | 1 | 1 | 7 | 52 | |
Rhizopus microsporus (63) | – | – | – | 4 | 17 | 20 | 0 | – | 1 | 21 | 34.9 | |
Rhizomucor pusillus (32) | 2 | 4 | – | 9 | 8 | 3 | 3 | – | – | 3 | 18.8 |
MIC (mg/L) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Posaconazole | 0.03 | 0.06 | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | ≥16 | %R ** | |
2006–2016 * | Aspergillus fumigatus (396) | 111 | 150 | 65 | 37 | 21 | 8 | 2 | – | 1 | 1 | 8.3 |
2019–2020 * | Aspergillus fumigatus (187) | 2 | 65 | 33 | 18 | 37 | 24 | 7 | 1 | – | – | 36.9 |
Lichtheimia corymbifera (99) | - | 3 | 18 | 33 | 32 | 12 | 1 | - | - | - | 45.5 | |
Mucor sp. (98) | 3 | 3 | 4 | 9 | 18 | 24 | 13 | 8 | 2 | 14 | 80.6 | |
Rhizopus sp. (110) | - | 1 | 3 | 18 | 44 | 21 | 9 | 3 | 1 | 10 | 80 | |
Rhizopus arrhizus (28) | - | - | 2 | 4 | 8 | 8 | 2 | - | - | 4 | 78.6 | |
Rhizopus microsporus (83) | - | 1 | 1 | 14 | 36 | 13 | 7 | 3 | 1 | 6 | 80.5 | |
Rhizomucor pusillus (35) | - | 7 | 2 | 8 | 12 | 4 | 1 | 1 | - | - | 51.4 |
MIC (mg/L) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Voriconazole | 0.03 | 0.06 | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | ≥16 | %R | |
2006–2016 * | Aspergillus fumigatus (2384) | 1 | 13 | 309 | 1631 | 299 | 66 | 45 | 13 | - | 7 | 2.7 |
2019–2020 * | Aspergillus fumigatus (209) | 1 | 2 | 4 | 31 | 96 | 20 | 29 | 17 | 4 | 5 | 26.3 |
Lichtheimia corymbifera (84) | - | - | - | - | - | - | 7 | 12 | 17 | 48 | 100 | |
Mucor sp. (86) | - | - | 2 | - | - | - | 1 | 3 | 5 | 75 | 97.7 | |
Rhizopus sp. (83) | - | - | - | - | - | - | 3 | 18 | 32 | 30 | 100 | |
Rhizopus arrhizus (23) | - | - | - | - | - | - | 2 | 3 | 8 | 10 | 100 | |
Rhizopus microsporus (60) | - | - | - | - | - | - | 1 | 15 | 24 | 20 | 100 | |
Rhizomucor pusillus (32) | - | - | 1 | - | - | 3 | 1 | 3 | 5 | 19 | 87.5 |
MIC (mg/L) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Isavuconazole | ≤0.03 | 0.06 | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | ≥16 | %R * | |
2019–2020 * | Aspergillus fumigatus (339) | - | 2 | 2 | 70 | 92 | 76 | 41 | 33 | 11 | 12 | 28.6 |
Lichtheimia corymbifera (28) | - | - | 1 | - | 2 | 3 | 4 | 8 | 3 | 7 | 78.6 | |
Mucor sp. (21) | - | - | - | - | - | - | - | 4 | 2 | 15 | 100 | |
Rhizopus sp. (35) | - | - | - | - | - | 9 | 10 | 8 | 3 | 5 | 74.3 | |
Rhizopus arrhizus (12) | - | - | - | - | - | 3 | 3 | 1 | 1 | 4 | 75 | |
Rhizopus microsporus (23) | - | - | - | - | - | 6 | 7 | 7 | 2 | 1 | 73.9 | |
Rhizomucor pusillus (5) | - | - | - | - | - | - | - | 4 | 1 | - | 100 |
MIC (mg/mL) | ||||
---|---|---|---|---|
Species | Antifungal Agent | Range | MIC50 | MIC90 |
L. corymbifera | Amphotericin B | 0.03–1 | 0.25 | 0.5 |
Itraconazole | 0.03–2 | 0.25 | 1 | |
Posaconazole | 0.06–2 | 0.25 | 1 | |
Voriconazole | 2–>16 | >16 | >16 | |
Isavuconazole | 0.125–>16 | 4 | >16 | |
Mucor sp. | Amphotericin B | 0.03–8 | 0.25 | 0.5 |
Itraconazole | 0.03–>16 | 2 | >16 | |
Posaconazole | 0.03–>16 | 1 | >16 | |
Voriconazole | 0.125–>16 | >16 | >16 | |
Isavuconazole | 4–>16 | >16 | >16 | |
Rhizopus arrhizus | Amphotericin B | 0.06–2 | 0.25 | 0.5 |
Itraconazole | 0.25–>16 | 2 | >16 | |
Posaconazole | 0.125–>16 | 0.5 | 8 | |
Voriconazole | 2–>16 | 8 | >16 | |
Isavuconazole | 1–>16 | 2 | >16 | |
R. microsporus | Amphotericin B | 0.06–2 | 0.5 | 1 |
Itraconazole | 0.25–>16 | 1 | >16 | |
Posaconazole | 0.06–>16 | 0.5 | 4 | |
Voriconazole | 2–>16 | 8 | >16 | |
Isavuconazole | 1–>16 | 2 | 8 | |
Rhizomucor pusillus | Amphotericin B | 0.03–0.5 | 0.25 | 0.5 |
Itraconazole | 0.03–>16 | 0.5 | 2 | |
Posaconazole | 0.06–4 | 0.5 | 1 | |
Voriconazole | 0.125–>16 | >16 | >16 | |
Isavuconazole | 4–8 | NA | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borman, A.M.; Fraser, M.; Patterson, Z.; Palmer, M.D.; Johnson, E.M. In Vitro Antifungal Drug Resistance Profiles of Clinically Relevant Members of the Mucorales (Mucoromycota) Especially with the Newer Triazoles. J. Fungi 2021, 7, 271. https://doi.org/10.3390/jof7040271
Borman AM, Fraser M, Patterson Z, Palmer MD, Johnson EM. In Vitro Antifungal Drug Resistance Profiles of Clinically Relevant Members of the Mucorales (Mucoromycota) Especially with the Newer Triazoles. Journal of Fungi. 2021; 7(4):271. https://doi.org/10.3390/jof7040271
Chicago/Turabian StyleBorman, Andrew M., Mark Fraser, Zoe Patterson, Michael D. Palmer, and Elizabeth M. Johnson. 2021. "In Vitro Antifungal Drug Resistance Profiles of Clinically Relevant Members of the Mucorales (Mucoromycota) Especially with the Newer Triazoles" Journal of Fungi 7, no. 4: 271. https://doi.org/10.3390/jof7040271
APA StyleBorman, A. M., Fraser, M., Patterson, Z., Palmer, M. D., & Johnson, E. M. (2021). In Vitro Antifungal Drug Resistance Profiles of Clinically Relevant Members of the Mucorales (Mucoromycota) Especially with the Newer Triazoles. Journal of Fungi, 7(4), 271. https://doi.org/10.3390/jof7040271