Resilience of Epiphytic Lichens to Combined Effects of Increasing Nitrogen and Solar Radiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lichen Sampling
2.2. Nitrogen Treatment
2.3. Increased Radiation Treatment
2.4. Chlorophyll a Fluorescence
2.5. Statistical Analyses
3. Results
3.1. Analyses of the Effect of N Pollution
3.2. Analyses of the Synergetic Effect of N and Solar Radiation
3.3. Analyses of the Evolution Following the Recovery Period
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allen, C.D.; Breshears, D.D.; McDowell, N.G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 2015, 6. [Google Scholar] [CrossRef]
- Brouwers, N.C.; Mercer, J.; Lyons, T.; Poot, P.; Veneklaas, E.; Hardy, G. Climate and landscape drivers of tree decline in a Mediterranean ecoregion. Ecol. Evol. 2013, 3, 67–79. [Google Scholar] [CrossRef]
- Lovett, G.M.; Weiss, M.; Liebhold, A.M.; Holmes, T.P.; Leung, B.; Lambert, K.F.; Orwig, D.A.; Campbell, F.T.; Rosenthal, J.; McCullough, D.G.; et al. Nonnative forest insects and pathogens in the United States: Impacts and policy options. Ecol. Appl. 2016, 26, 1437–1455. [Google Scholar] [CrossRef]
- Brasier, C.M.; Robredo, F.; Ferraz, J.F.P. Evidence for Phytophthora cinnamomi involvement in Iberian oak decline. Plant Pathol. 1993, 42, 140–145. [Google Scholar] [CrossRef]
- Oleksyn, J.; Przybyl, K. Oak decline in the Soviet Union—Scale and hypotheses. Eur. J. For. Pathol. 1987, 17, 321–336. [Google Scholar] [CrossRef]
- Oak decline and the status of Ophiostoma spp. on oak in Europe. EPPO Bull. 1990, 20, 405–422. [CrossRef]
- Delatour, C. Les dépérissements de chênes en Europe. Rev. For. Fr. 1983, 35, 265–292. [Google Scholar] [CrossRef] [Green Version]
- Wardle, D.A.; Peltzer, D.A. Impacts of invasive biota in forest ecosystems in an aboveground–belowground context. Biol. Invasions 2017, 19, 3301–3316. [Google Scholar] [CrossRef] [Green Version]
- Phoenix, G.K.; Hicks, W.K.; Cinderby, S.; Kuylenstierna, J.C.I.; Stock, W.D.; Dentener, F.J.; Giller, K.E.; Austin, A.T.; Lefroy, R.D.B.; Gimeno, B.S.; et al. Atmospheric nitrogen deposition in world biodiversity hotspots: The need for a greater global perspective in assessing N deposition impacts. Glob. Chang. Biol. 2006, 12, 470–476. [Google Scholar] [CrossRef]
- Chave, J. The problem of pattern and scale in ecology: What have we learned in 20 years? Ecol. Lett. 2013, 16, 4–16. [Google Scholar] [CrossRef]
- Levin, S.A. The problem of pattern and scale in ecology. Ecology 1992, 73, 1943–1967. [Google Scholar] [CrossRef]
- Allen, C.D. Interactions across spatial scales among forest dieback, fire, and erosion in northern New Mexico landscapes. Ecosystems 2007, 10, 797–808. [Google Scholar] [CrossRef] [Green Version]
- Berryman, S.; McCune, B. Estimating epiphytic macrolichen biomass from topography, stand structure and lichen community data. J. Veg. Sci. 2006, 17, 157–170. [Google Scholar] [CrossRef]
- Stanton, D.E.; Huallpa Chávez, J.; Villegas, L.; Villasante, F.; Armesto, J.; Hedin, L.O.; Horn, H. Epiphytes improve host plant water use by microenvironment modification. Funct. Ecol. 2014, 28, 1274–1283. [Google Scholar] [CrossRef]
- Matos, P.; Pinho, P.; Aragón, G.; Martínez, I.; Nunes, A.; Soares, A.M.V.M.; Branquinho, C. Lichen traits responding to aridity. J. Ecol. 2015, 103, 451–458. [Google Scholar] [CrossRef] [Green Version]
- Pinho, P.; Dias, T.; Cruz, C.; Sim Tang, Y.; Sutton, M.A.; Martins-Loução, M.-A.; Máguas, C.; Branquinho, C. Using lichen functional diversity to assess the effects of atmospheric ammonia in Mediterranean woodlands. J. Appl. Ecol. 2011, 48, 1107–1116. [Google Scholar] [CrossRef] [Green Version]
- Pinho, P.; Llop, E.; Ribeiro, M.C.; Cruz, C.; Soares, A.; Pereira, M.J.; Branquinho, C. Tools for determining critical levels of atmospheric ammonia under the influence of multiple disturbances. Environ. Pollut. 2014, 188, 88–93. [Google Scholar] [CrossRef]
- Giordani, P.; Brunialti, G.; Bacaro, G.; Nascimbene, J. Functional traits of epiphytic lichens as potential indicators of environmental conditions in forest ecosystems. Ecol. Indic. 2012, 18, 413–420. [Google Scholar] [CrossRef]
- Chiarantini, L.; Rimondi, V.; Benvenuti, M.; Costagliola, P.; Di Benedetto, F.; Bardelli, F.; Cosio, C.; Lattanzi, P.; Sarret, G. Mercury speciation in Pinus nigra barks from Monte Amiata (Italy): An X-ray absorption spectroscopy study. Environ. Pollut. 2017, 227, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Loppi, S. May the diversity of epiphytic lichens be used in environmental forensics? Diversity 2019, 11, 36. [Google Scholar] [CrossRef] [Green Version]
- Munzi, S.; Cruz, C.; Branquinho, C.; Cai, G.; Faleri, C.; Parrotta, L.; Bini, L.; Gagliardi, A.; Leith, I.D.; Sheppard, L.J. More tolerant than expected: Taking into account the ability of Cladonia portentosa to cope with increased nitrogen availability in environmental policy. Ecol. Indic. 2020, 119. [Google Scholar] [CrossRef]
- Prentice, I.C.; Cramer, W.; Harrison, S.P.; Leemans, R.; Monserud, R.A.; Solomon, A.M. A global biome model based on plant physiology and dominance, soil properties and climate. J. Biogeogr. 1992, 19, 117–134. [Google Scholar] [CrossRef]
- Geiser, L.H.; Jovan, S.E.; Glavich, D.A.; Porter, M.K. Lichen-based critical loads for atmospheric nitrogen deposition in Western Oregon and Washington Forests, USA. Environ. Pollut. 2010, 158, 2412–2421. [Google Scholar] [CrossRef]
- Lavorel, S.; Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Funct. Ecol. 2002, 16, 545–556. [Google Scholar] [CrossRef]
- LIAS LIAS—A Global Information System for Lichenized and Non-Lichenized Ascomycetes. Available online: http://www.lias.net/ (accessed on 18 January 2021).
- Nimis, P.L.; Martellos, S. ITALIC—The Information System on Italian Lichens; Version 5.0; University of Trieste, Dept. of Biology: Trieste, Italy, 1990. [Google Scholar]
- Service, U.S.F. Air Pollution Sensitivity Ratings for Macrolichens in the US Pacific NW. Available online: http://gis.nacse.org/lichenair/?page=pnw_sensitivity (accessed on 18 January 2021).
- Pinho, P.; Branquinho, C.; Cruz, C.; Tang, Y.S.; Dias, T.; Rosa, A.P.; Máguas, C.; Martins-Loução, M.-A.; Sutton, M.A. Assessment of critical levels of atmospheric ammonia for lichen diversity in cork-oak woodland, Portugal. In Atmospheric Ammonia: Detecting Emission Changes and Environmental Impacts; Springer: Dordrecht, The Netherlands, 2009; pp. 109–119. ISBN 9781402091209. [Google Scholar]
- Gadsdon, S.R.; Dagley, J.R.; Wolseley, P.A.; Power, S.A. Relationships between lichen community composition and concentrations of NO2 and NH3. Environ. Pollut. 2010, 158, 2553–2560. [Google Scholar] [CrossRef] [PubMed]
- Munzi, S.; Pisani, T.; Loppi, S. The integrity of lichen cell membrane as a suitable parameter for monitoring biological effects of acute nitrogen pollution. Ecotoxicol. Environ. Saf. 2009, 72, 2009–2012. [Google Scholar] [CrossRef] [PubMed]
- Pirintsos, S.A.; Munzi, S.; Loppi, S.; Kotzabasis, K. Do polyamines alter the sensitivity of lichens to nitrogen stress? Ecotoxicol. Environ. Saf. 2009, 72, 1331–1336. [Google Scholar] [CrossRef] [PubMed]
- Van Herk, C.M.; Mathijssen-Spiekman, E.A.M.; De Zwart, D. Long distance nitrogen air pollution effects on lichens in Europe. Lichenologist 2003, 35, 347–359. [Google Scholar] [CrossRef]
- Veres, K.; Farkas, E.; Csintalan, Z. The bright and shaded side of duneland life: The photosynthetic response of lichens to seasonal changes is species-specific. Mycol. Prog. 2020, 19, 629–641. [Google Scholar] [CrossRef]
- Raggio, J.; Green, T.G.A.; Sancho, L.G. In situ monitoring of microclimate and metabolic activity in lichens from Antarctic extremes: A comparison between South Shetland Islands and the McMurdo Dry Valleys. Polar Biol. 2016, 39, 113–122. [Google Scholar] [CrossRef]
- Barták, M.; Hájek, J.; Gloser, J. Heterogeneity of chlorophyll fluorescence over thalli of several foliose macrolichens exposed to adverse environmental factors: Interspecific differences as related to thallus hydration and high irradiance. Photosynthetica 2001, 38, 531–537. [Google Scholar] [CrossRef]
- Baruffo, L.; Tretiach, M. Seasonal variations of Fo, Fm, and F v/Fm in an epiphytic population of the lichen Punctelia subrudecta (Nyl.) Krog. Lichenologist 2007, 39, 555–565. [Google Scholar] [CrossRef]
- Strasser, R.J.; Srivastava, A.; Tsimilli-Michael, M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In Probing Photosynthesis: Mechanisms, Regulation & Adaptation; Yunus, M., Pathre, U., Mohanty, P., Eds.; Taylor & Francis: London, UK, 2000; pp. 443–480. ISBN 0748408215. [Google Scholar]
- Strasser, R.J.; Tsimilli-Michael, M.; Srivastava, A. Analysis of the fluorescence transient. In Chorophyll Fluorescence: A Signature of Photosynthesis, Advances in Photosynthesis and Respiration Series (Govindjee, Series Ed.); Papageorgiou, G.C., Govindjee, Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 321–362. [Google Scholar]
- Munzi, S.; Pisani, T.; Paoli, L.; Loppi, S. Time- and dose-dependency of the effects of nitrogen pollution on lichens. Ecotoxicol. Environ. Saf. 2010, 73, 1785–1788. [Google Scholar] [CrossRef] [PubMed]
- Sujetoviene, G.; Sliumpaite, I. Response of Evernia prunastri transplanted to an urban area in central Lithuania. Atmos. Pollut. Res. 2013, 4, 222–228. [Google Scholar] [CrossRef] [Green Version]
- Carreras, H.A.; Gudiño, G.L.; Pignata, M.L. Comparative biomonitoring of atmospheric quality in five zones of Cordoba city (Argentina) employing the transplanted lichen Usnea sp. Environ. Pollut. 1998, 103, 317–325. [Google Scholar] [CrossRef]
- Munzi, S.; Pisani, T.; Paoli, L.; Renzi, M.; Loppi, S. Effect of nitrogen supply on the C/N balance in the lichen Evernia prunastri (L.) Ach. Turkish J. Biol. 2013, 37, 165–170. [Google Scholar] [CrossRef]
- Munzi, S.; Branquinho, C.; Cruz, C.; Loppi, S. Nitrogen tolerance in the lichen Xanthoria parietina: The sensitive side of a resistant species. Funct. Plant Biol. 2013, 40, 237–243. [Google Scholar] [CrossRef]
- Gauslaa, Y.; Solhaug, K.A. Differences in the susceptibility to light stress between epiphytic lichens of ancient and young boreal forest stands. Funct. Ecol. 1996, 10, 344–354. [Google Scholar] [CrossRef]
- Fahselt, D. Secondary biochemistry of lichens. Symbiosis 1994, 16, 117–165. [Google Scholar]
- Huneck, S. The significance of lichens and their metabolites. Naturwissenschaften 1999, 86, 559–570. [Google Scholar] [CrossRef]
- Beckett, R.P.; Kranner, I.; Minibayeva, F. V Stress physiology and the symbiosis. In Lichen Biology, 2nd ed.; Cambridge University Press: Cambridge, UK, 2008; pp. 134–151. ISBN 9780521871624. [Google Scholar]
- Gauslaa, Y.; Alam, M.A.; Lucas, P.-L.; Chowdhury, D.P.; Solhaug, K.A. Fungal tissue per se is stronger as a UV-B screen than secondary fungal extrolites in Lobaria pulmonaria. Fungal Ecol. 2017, 26, 109–113. [Google Scholar] [CrossRef]
- Váczi, P.; Gauslaa, Y.; Solhaug, K.A. Efficient fungal UV-screening provides a remarkably high UV-B tolerance of photosystem II in lichen photobionts. Plant Physiol. Biochem. 2018, 132, 89–94. [Google Scholar] [CrossRef]
- Bianchi, E.; Benesperi, R.; Colzi, I.; Coppi, A.; Lazzaro, L.; Paoli, L.; Papini, A.; Pignattelli, S.; Tani, C.; Vignolini, P.; et al. The multi-purpose role of hairiness in the lichens of coastal environments: Insights from Seirophora villosa (Ach.) Frödén. Plant Physiol. Biochem. 2019, 141, 398–406. [Google Scholar] [CrossRef]
- Gasulla, F.; Casano, L.; Guéra, A. Chlororespiration induces non-photochemical quenching of chlorophyll fluorescence during darkness in lichen chlorobionts. Physiol. Plant. 2019, 166, 538–552. [Google Scholar] [CrossRef] [PubMed]
- Demmig-Adams, B.; Máguas, C.; Adams III, W.W.; Meyer, A.; Kilian, E.; Lange, O.L. Effect of high light on the efficiency of photochemical energy conversion in a variety of lichen species with green and blue-green phycobionts. Planta 1990, 180, 400–409. [Google Scholar] [CrossRef]
- Day, T.A.; Neale, P.J. Effects of UV-B radiation on terrestrial and aquatic primary producers. Annu. Rev. Ecol. Syst. 2002, 33, 371–396. [Google Scholar] [CrossRef]
- Ögren, E. The significance of photoinhibition for photosynthetic productivity. In Photoinhibition of Photosynthesis from Molecular Mechanisms to the Field; Baker, N.R., Ed.; Bios Scientific Publishers: Oxford, UK, 1994; pp. 433–447. [Google Scholar]
- Smith, R.J.; Jovan, S.; McCune, B. Climatic niche limits and community-level vulnerability of obligate symbioses. J. Biogeogr. 2020, 47, 382–395. [Google Scholar] [CrossRef]
- Gauslaa, Y.; Solhaug, K.A. Photoinhibition in lichens depends on cortical characteristics and hydration. Lichenologist 2004, 36, 133–143. [Google Scholar] [CrossRef]
- Gauslaa, Y.; Solhaug, K.A. High-light damage in air-dry thalli of the old forest lichen Lobaria pulmonaria—Interactions of irradiance, exposure duration and high temperature. J. Exp. Bot. 1999, 50, 697–705. [Google Scholar] [CrossRef]
- Ertl, L. Über die Lichtverhältnisse in Laubflechten. Planta 1951, 39, 245–270. [Google Scholar] [CrossRef]
- Gauslaa, Y.; Solhaug, K.A. Fungal melanins as a sun screen for symbiotic green algae in the lichen Lobaria pulmonaria. Oecologia 2001, 126, 462–471. [Google Scholar] [CrossRef]
- Heber, U.; Bilger, W.; Shuvalov, V.A. Thermal energy dissipation in reaction centres and in the antenna of photosystem II protects desiccated poikilohydric mosses against photo-oxidation. J. Exp. Bot. 2006, 57, 2993–3006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tretiach, M.; Pavanetto, S.; Pittao, E.; di Toppi, L.S.; Piccotto, M. Water availability modifies tolerance to photo-oxidative pollutants in transplants of the lichen Flavoparmelia caperata. Oecologia 2012, 168, 589–599. [Google Scholar] [CrossRef]
- Kranner, I.; Zorn, M.; Turk, B.; Wornik, S.; Beckett, R.P.; Batič, F. Biochemical traits of lichens differing in relative desiccation tolerance. New Phytol. 2003, 160, 167–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauck, M. Ammonium and nitrate tolerance in lichens. Environ. Pollut. 2010, 158, 1127–1133. [Google Scholar] [CrossRef]
- Munzi, S.; Cruz, C.; Maia, R.; Máguas, C.; Perestrello-Ramos, M.M.; Branquinho, C. Intra- and inter-specific variations in chitin in lichens along a N-deposition gradient. Environ. Sci. Pollut. Res. 2017, 24, 28065–28071. [Google Scholar] [CrossRef]
- Munzi, S.; Loppi, S.; Cruz, C.; Branquinho, C. Do lichens have “memory” of their native nitrogen environment? Planta 2011, 233, 333–342. [Google Scholar] [CrossRef]
- Silberstein, L.; Siegel, B.Z.; Siegel, S.M.; Mukhtar, A.; Galun, M. Comparative studies on Xanthoria parietina, a pollution-resistant lichen, and Ramalina duriaei, a sensitive species. I. Effects of air pollution on physiological processes. Lichenologist 1996, 28, 355–365. [Google Scholar] [CrossRef]
- Munzi, S.; Sheppard, L.J.; Leith, I.D.; Cruz, C.; Branquinho, C.; Bini, L.; Gagliardi, A.; Cai, G.; Parrotta, L. The cost of surviving nitrogen excess: Energy and protein demand in the lichen Cladonia portentosa as revealed by proteomic analysis. Planta 2017, 245, 819–833. [Google Scholar] [CrossRef]
- Bjerke, J.W.; Lerfall, K.; Elvebakk, A. Effects of ultraviolet radiation and PAR on the content of usnic and divaricatic acids in two arctic-alpine lichens. Photochem. Photobiol. Sci. 2002, 1, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Gauslaa, Y.; Ustvedt, E.M. Is parietin a UV-B or a blue-light screening pigment in the lichen Xanthoria parietina? Photochem. Photobiol. Sci. 2003, 2, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Solhaug, K.A.; Gauslaa, Y. Secondary Lichen Compounds as Protection Against Excess Solar Radiation and Herbivores. In Progress in Botany 73; Lüttge, U., Beyschlag, W., Büdel, B., Francis, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 283–304. ISBN 978-3-642-22746-2. [Google Scholar]
- Beckett, R.P.; Solhaug, K.A.; Gauslaa, Y.; Minibayeva, F. Improved photoprotection in melanized lichens is a of fungal solar radiation screening rather than photobiont acclimation. Lichenologist 2019, 51, 483–491. [Google Scholar] [CrossRef]
- Solhaug, K.A.; Gauslaa, Y. Parietin, a photoprotective secondary product of the lichen Xanthoria parietina. Oecologia 1996, 108, 412–418. [Google Scholar] [CrossRef] [PubMed]
Lichen Species | Solar Irradiation 1 | Eutrophication 2 |
---|---|---|
Xanthoria parietina | 3, 4, 5 | 3, 4 |
Ramalina lacera | 4, 5 | 2, 3 |
Usnea sp. | 4, 5 | 1, 2 |
Flavoparmelia caperata | 3, 4 | 1, 2, 3 |
Parmotrema hypoleucinum | 4, 5 | 1, 2 |
Evernia prunastri | 3, 4, 5 | 1, 2, 3 |
Lichen Species | Factor | df | F | p |
---|---|---|---|---|
Xanthoria parietina | N treatment | 2 | 0.198 | 0.823 |
Time | 2.870 | 1.912 | 0.148 | |
N treatment × Time | 5.740 | 0.617 | 0.709 | |
Ramalina lacera | N treatment | 2 | 23.679 | <0.0005 |
Time | 2.707 | 20.028 | <0.0005 | |
N treatment × Time | 5.413 | 3.857 | 0.006 | |
Interaction N treatment × Time | Control | 1.999 | 0.920 | 0.437 |
Interaction N treatment × Time | 25 N | 1.369 | 17.619 | 0.005 |
Interaction N treatment × Time | 50 N | 2.247 | 9.150 | 0.006 |
Usnea sp. | N treatment | 2 | 22.354 | <0.0005 |
Time | 2.418 | 19.147 | <0.0005 | |
N treatment × Time | 4.836 | 3.428 | 0.016 | |
Interaction N treatment × Time | Control | 2.102 | 3.194 | 0.091 |
Interaction N treatment × Time | 25 N | 2.752 | 15.265 | <0.0005 |
Interaction N treatment × Time | 50 N | 1.458 | 6.499 | 0.038 |
Flavoparmelia caperata | N treatment | 2 | 14.098 | 0.001 |
Time | 2.310 | 7.787 | 0.001 | |
N treatment × Time | 4.620 | 4.170 | 0.007 | |
Interaction N treatment × Time | Control | 2.612 | 1.626 | 0.243 |
Interaction N treatment × Time | 25 N | 2.133 | 3.792 | 0.064 |
Interaction N treatment × Time | 50 N | 2.060 | 5.772 | 0.027 |
Parmotrema hypoleucinum | N treatment | 2 | 14.291 | 0.001 |
Time | 3.032 | 5.077 | 0.005 | |
N treatment × Time | 6.064 | 1.531 | 0.195 | |
Evernia prunastri | N treatment | 2 | 34.371 | <0.0005 |
Time | 3.066 | 28.366 | <0.0005 | |
N treatment × Time | 6.132 | 5.988 | <0.0005 | |
Interaction N treatment × Time | Control | 1.911 | 3.591 | 0.081 |
Interaction N treatment × Time | 25 N | 2.283 | 6.503 | 0.024 |
Interaction N treatment × Time | 50 N | 1.877 | 21.993 | 0.001 |
Lichen Species | Factor | df | F | p |
---|---|---|---|---|
Xanthoria parietina | N treatment | 2 | 10.769 | 0.002 |
Time | 4.753 | 71.389 | <0.0005 | |
N treatment × Time | 9.505 | 1.230 | 0.293 | |
Ramalina lacera | N treatment | 2 | 112.702 | <0.0005 |
Time | 5.020 | 85.423 | <0.0005 | |
N treatment × Time | 10.039 | 2.083 | 0.040 | |
Interaction N treatment × Time | Control | 3.381 | 12.826 | <0.0005 |
Interaction N treatment × Time | 25 N | 2.000 | 41.841 | <0.0005 |
Interaction N treatment × Time | 50 N | 2.786 | 80.237 | <0.0005 |
Usnea sp. | N treatment | 2 | 99.448 | <0.0005 |
Time | 4.560 | 137.635 | <0.0005 | |
N treatment × Time | 9.119 | 1.527 | 0.164 | |
Flavoparmelia caperata | N treatment | 2 | 372.020 | <0.0005 |
Time | 5.163 | 36.500 | <0.0005 | |
N treatment × Time | 10.326 | 4.744 | <0.0005 | |
Interaction N treatment × Time | Control | 2.369 | 4.875 | 0.031 |
Interaction N treatment × Time | 25 N | 2.545 | 13.058 | 0.001 |
Interaction N treatment × Time | 50 N | 2.425 | 37.915 | <0.0005 |
Parmotrema hypoleucinum | N treatment | 2 | 46.314 | <0.0005 |
Time | 6.299 | 32.540 | <0.0005 | |
N treatment × Time | 12.598 | 1.629 | 0.098 | |
Evernia prunastri | N treatment | 2 | 21.052 | <0.0005 |
Time | 6.129 | 135.430 | <0.0005 | |
N treatment × Time | 12.258 | 7.621 | <0.0005 | |
Interaction N treatment × Time | Control | 2.517 | 86.264 | <0.0005 |
Interaction N treatment × Time | 25 N | 2.663 | 59.673 | <0.0005 |
Interaction N treatment × Time | 50 N | 3.231 | 25.576 | <0.0005 |
Lichen Species | df | F | p |
---|---|---|---|
Xanthoria parietina | 2 | 0.876 | 0.442 |
Ramalina lacera | 2 | 0.304 | 0.743 |
Usnea sp. | 2 | 0.280 | 0.761 |
Flavoparmelia caperata | 2 | 2.379 | 0.135 |
Parmotrema hypoleucinum | 2 | 0.445 | 0.651 |
Evernia prunastri | 2 | 0.789 | 0.477 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morillas, L.; Roales, J.; Cruz, C.; Munzi, S. Resilience of Epiphytic Lichens to Combined Effects of Increasing Nitrogen and Solar Radiation. J. Fungi 2021, 7, 333. https://doi.org/10.3390/jof7050333
Morillas L, Roales J, Cruz C, Munzi S. Resilience of Epiphytic Lichens to Combined Effects of Increasing Nitrogen and Solar Radiation. Journal of Fungi. 2021; 7(5):333. https://doi.org/10.3390/jof7050333
Chicago/Turabian StyleMorillas, Lourdes, Javier Roales, Cristina Cruz, and Silvana Munzi. 2021. "Resilience of Epiphytic Lichens to Combined Effects of Increasing Nitrogen and Solar Radiation" Journal of Fungi 7, no. 5: 333. https://doi.org/10.3390/jof7050333
APA StyleMorillas, L., Roales, J., Cruz, C., & Munzi, S. (2021). Resilience of Epiphytic Lichens to Combined Effects of Increasing Nitrogen and Solar Radiation. Journal of Fungi, 7(5), 333. https://doi.org/10.3390/jof7050333