Funneliformis mosseae Improves Growth and Nutrient Accumulation in Wheat by Facilitating Soil Nutrient Uptake under Elevated CO2 at Daytime, Not Nighttime
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Design and Treatments
2.2. Experimental Facility
2.3. Mycorrhizal Inoculum, Growth Soil and Plant Growth Conditions
2.4. Harvest, Sampling and Analyses
2.5. Determination of AMF Colonization
2.6. Determination of C, N, P and K in Plants and Soils
2.7. Determination of Soil Enzyme Activity
2.8. Statistical Analysis
3. Results
3.1. Mycorrhizal Colonization
3.2. Effects of AMF and CO2 on Plant C, N, P and K Concentration
3.3. Effects of AMF and CO2 on Plant Biomass Production
3.4. Effects of AMF and CO2 on Plant C, N and P Accumulations
3.5. Effects of AMF and CO2 on Soil Nutrients
3.6. Effects of AMF and CO2 on Soil Enzymes Activity
3.7. Correlations
4. Discussion
4.1. Effects of AMF Symbiosis on Plant Biomass and C Accumulation Depend on eCO2 at Daytime or Nighttime
4.2. Nitrogen Demands are Increased under eCO2, but AMF Symbiosis Lessens N Limitation under eCO2 at Daytime, Not at Nighttime
4.3. P and K Demands were Increased under eCO2 at Daytime, Not at Nighttime
4.4. AMF Colonization Increased Soil N, P and K availability, Especially under eCO2 at Daytime
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Kuzyakov, Y.; Horwath, W.R.; Dorodnikov, M.; Blagodatskaya, E. Review and synthesis of the effects of elevated atmospheric CO2 on soil processes: No changes in pools, but increased fluxes and accelerated cycles. Soil Biol. Biochem. 2019, 128, 66–78. [Google Scholar] [CrossRef]
- Singh, A.K.; Rai, A.; Kushwaha, M.; Chauhan, P.S.; Pandey, V.; Singh, N. Tree growth rate regulate the influence of elevated CO2 on soil biochemical responses under tropical condition. J. Environ. Manag. 2019, 231, 1211–1221. [Google Scholar] [CrossRef]
- Shi, S.; Luo, X.; Dong, X.; Qiu, Y.; Xu, C.; He, X. Arbuscular mycorrhization enhances nitrogen, phosphorus and potassium accumulation in Vicia faba by modulating soil nutrient balance under elevated CO2. J. Fungi 2021, 7, 361. [Google Scholar] [CrossRef]
- Halpern, M.; Bar-Tal, A.; Lugassi, N.; Egbaria, A.; Granot, D.; Yermiyahu, U. The role of nitrogen in photosynthetic acclimation to elevated [CO2] in tomatoes. Plant Soil 2019, 434, 397–411. [Google Scholar] [CrossRef]
- Dusenge, M.E.; Duarte, A.G.; Way, D.A. Plant carbon metabolism and climate change: Elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytol. 2019, 221, 32–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singer, S.D.; Soolanayakanahally, R.Y.; Foroud, N.A.; Kroebel, R. Biotechnological strategies for improved photosynthesis in a future of elevated atmospheric CO2. Planta 2020, 251, 24. [Google Scholar] [CrossRef] [Green Version]
- Aljazairi, S.; Arias, C.; Nogués, S.; Loreto, F. Carbon and nitrogen allocation and partitioning in traditional and modern wheat genotypes under pre-industrial and future CO2 conditions. Plant Biol. 2015, 17, 647–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakobsen, I.; Smith, S.E.; Smith, F.A.; Watts-Williams, S.J.; Clausen, S.S.; Gronlund, M. Plant growth responses to elevated atmospheric CO2 are increased by phosphorus sufficiency but not by arbuscular mycorrhizas. J. Exp. Bot. 2016, 67, 6173–6186. [Google Scholar] [CrossRef] [Green Version]
- Terrer, C.; Jackson, R.B.; Prentice, I.C.; Keenan, T.F.; Kaiser, C.; Vicca, S.; Fisher, J.B.; Reich, P.B.; Stocker, B.D.; Hungate, B.A. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Chang. 2019, 9, 684–689. [Google Scholar] [CrossRef] [Green Version]
- Bloom, A.J.; Burger, M.; Kimball, B.A.; Pinter, P.J., Jr. Nitrate assimilation is inhibited by elevated CO2 in field-grown wheat. Nat. Clim. Chang. 2014, 4, 477–480. [Google Scholar] [CrossRef]
- Tausz, M.; Norton, R.M.; Tausz-Posch, S.; Löw, M.; Seneweera, S.; O’Leary, G.; Armstrong, R.; Fitzgerald, G.J. Can additional N fertiliser ameliorate the elevated CO2-induced depression in grain and tissue N concentrations of wheat on a high soil N background? J. Agron. Crop Sci. 2017, 203, 574–583. [Google Scholar] [CrossRef] [Green Version]
- Reich, P.B.; Hobbie, S.E.; Lee, T.; Ellsworth, D.S.; West, J.B.; Tilman, D.; Knops, J.M.H.; Naeem, S.; Trost, J. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 2006, 440, 922–925. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Ju, W.; Chen, J.M.; Ciais, P.; Cescatti, A.; Peñuelas, J. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 2020, 370, 1295–1300. [Google Scholar] [CrossRef]
- Du, C.; Wang, X.; Zhang, M.; Jing, J.; Gao, Y. Effects of elevated CO2 on plant C-N-P stoichiometry in terrestrial ecosystems: A meta-analysis. Sci. Total Environ. 2019, 650, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yu, Z.; Yang, S.; Wang, G.; Liu, X.; Wang, C.; Xie, Z.; Jin, J. Impact of elevated CO2 on C:N:P ratio among soybean cultivars. Sci. Total Environ. 2019, 694, 133784. [Google Scholar] [CrossRef]
- Treseder, K.K. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol. 2004, 164, 347–355. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.W.; Kobayashi, K.; Loladze, I.; Zhu, J.G.; Jiang, Q.; Xu, X.; Liu, G.; Seneweera, S.; Ebi, K.L.; Drewnowski, A.; et al. Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. Sci. Adv. 2018, 4, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, L.; Booker, F.L.; Tu, C.; Burkey, K.O.; Zhou, L.; Shew, H.D.; Rufty, T.W.; Hu, S. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science 2012, 337, 1084–1087. [Google Scholar] [CrossRef]
- Usyskin-Tonne, A.; Hadar, Y.; Yermiyahu, U.; Minz, D. Elevated CO2 has a significant impact on denitrifying bacterial community in wheat roots. Soil Biol. Biochem. 2020, 142, 1–10. [Google Scholar] [CrossRef]
- Panneerselvam, P.; Kumar, U.; Senapati, A.; Parameswaran, C.; Anandan, A.; Kumar, A.; Jahan, A.; Padhy, S.R.; Nayak, A.K. Influence of elevated CO2 on arbuscular mycorrhizal fungal community elucidated using Illumina MiSeq platform in sub-humid tropical paddy soil. Appl. Soil Ecol. 2020, 145, 103344. [Google Scholar] [CrossRef]
- Aon, M.A.; Cabello, M.N.; Sarena, D.E.; Colaneri, A.C.; Franco, M.G.; Burgos, J.L.; Cortassa, S. Spatio-temporal patterns of soil microbial and enzymatic activities in an agricultural soil. Appl. Soil Ecol. 2001, 18, 239–254. [Google Scholar] [CrossRef]
- Gill, R.A.; Anderson, L.J.; Polley, H.W.; Johnson, H.B.; Jackson, R.B. Potential nitrogen constraints on soil carbon sequestration under low and elevated atmospheric CO2. Ecology 2006, 87, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.E.; Read, D.J. The symbionts forming arbuscular mycorrhizas. In Mycorrhizal Symbiosis, 3rd ed.; Academic Press: London, UK, 2008; pp. 13–41. [Google Scholar]
- Thirkell, T.J.; Pastok, D.; Field, K.J. Carbon for nutrient exchange between arbuscular mycorrhizal fungi and wheat varies according to cultivar and changes in atmospheric carbon dioxide concentration. Glob. Chang. Biol. 2019, 26, 1725–1738. [Google Scholar] [CrossRef] [Green Version]
- Saleh, A.M.; Abdelmawgoud, M.; Hassan, A.R.; Habeeb, T.H.; Yehia, R.S.; Abdelgawad, H. Global metabolic changes induced by arbuscular mycorrhizal fungi in oregano plants grown under ambient and elevated levels of atmospheric CO2. Plant Physiolo. Biochem. 2020, 151, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Wang, Z.; Sun, H.; Yang, W.; Xu, H. The response patterns of arbuscular mycorrhizal and ectomycorrhizal symbionts under elevated CO2: A meta-analysis. Front. Microbiol. 2018, 9, 1248. [Google Scholar] [CrossRef]
- Terrer, C.; Vicca, S.; Hungate, B.A.; Phillips, R.P.; Prentice, I.C. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 2016, 353, 72–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baslam, M.; Erice, G.; Goicoechea, N. Impact of arbuscular mycorrhizal fungi (AMF) and atmospheric CO2 concentration on the biomass production and partitioning in the forage legume alfalfa. Symbiosis 2012, 58, 171–181. [Google Scholar] [CrossRef]
- Baslam, M.; Antolín, M.C.; Gogorcena, Y.; Muñoz, F.; Goicoechea, N. Changes in alfalfa forage quality and stem carbohydrates induced by arbuscular mycorrhizal fungi and elevated atmospheric CO2. Ann. Appl. Biol. 2014, 164, 190–199. [Google Scholar] [CrossRef] [Green Version]
- Becklin, K.M.; Mullinix, G.W.; Ward, J.K. Host plant physiology and mycorrhizal functioning shift across a glacial through future [CO2] gradient. Plant Physiol. 2016, 172, 789–801. [Google Scholar] [CrossRef] [Green Version]
- Butterly, C.R.; Armstrong, R.; Chen, D.; Tang, C. Carbon and nitrogen partitioning of wheat and field pea grown with two nitrogen levels under elevated CO2. Plant Soil 2015, 391, 367–382. [Google Scholar] [CrossRef]
- Goicoechea, N.; Bettoni, M.M.; Fuertes-Mendizabal, T.; González-Murua, C.; Aranjuelo, I. Durum wheat quality traits affected by mycorrhizal inoculation, water availability and atmospheric CO2 concentration. Crop Pasture Sci. 2016, 67, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Garmendia, I.; Gogorcena, Y.; Aranjuelo, I.; Goicoechea, N. Responsiveness of durum wheat to mycorrhizal inoculation under different environmental scenarios. J. Plant Growth Regul. 2017, 36, 855–867. [Google Scholar] [CrossRef] [Green Version]
- Cavagnaro, T.; Gleadow, R.; Miller, R. Plant nutrient acquisition and utilisation in a high carbon dioxide world. Funct. Plant Biol. 2011, 38, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Goicoechea, N.; Baslam, M.; Erice, G.; Irigoyen, J.J. Increased photosynthetic acclimation in alfalfa associated with arbuscular mycorrhizal fungi (AMF) and cultivated in greenhouse under elevated CO2. J. Plant Physiol. 2014, 171, 1774–1781. [Google Scholar] [CrossRef] [PubMed]
- Jifon, J.L.; Graham, J.H.; Drouillard, D.L.; Syvertsen, J.P. Growth depression of mycorrhizal citrus seedlings grown at high phosphorus supply is mitigated by elevated CO2. New Phytol. 2002, 153, 133–142. [Google Scholar] [CrossRef]
- Ziska, L.H.; Ghannoum, O.; Baker, J.; Conroy, J.; Bunce, J.A.; Kobayashi, K.; Okada, M. A global perspective of ground level,‘ambient’carbon dioxide for assessing the response of plants to atmospheric CO2. Glob. Chang. Biol. 2001, 7, 789–796. [Google Scholar]
- Shi, S.; Qiu, Y.; Wen, M.; Xu, X.; Dong, X.; Xu, C.; He, X. Daytime, not nighttime, elevated atmospheric carbon dioxide exposure improves plant growth and leaf quality of mulberry (Morus alba L.) seedlings. Front Plant Sci 2021, 11, 609031. [Google Scholar] [CrossRef] [PubMed]
- Bunce, J. Seed yield of soybeans with daytime or continuous elevation of carbon dioxide under field conditions. Photosynthetica 2005, 43, 435–438. [Google Scholar] [CrossRef]
- Bunce, J. Carbon dioxide concentration at night affects translocation from soybean leaves. Ann. Bot. 2002, 90, 399–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bunce, J. Responses of seedling growth to daytime or continuous elevation of carbon dioxide. Int. J. Plant Sci. 2003, 164, 377–382. [Google Scholar] [CrossRef]
- Bunce, J. The response of soybean seedling growth to carbon dioxide concentration at night in different thermal regimes. Biotronics 2001, 30, 15–26. [Google Scholar]
- Reuveni, J.; Gale, J.; Zeroni, M. Differentiating day from night effects of high ambient [CO2] on the gas exchange and growth of Xanthium strumarium L. exposed to salinity stress. Ann. Bot. 1997, 79, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Ziska, L.H.; Bunce, J.A. Effect of elevated carbon dioxide concentration at night on the growth and gas exchange of selected C4 species. Aust.J. Plant Physiol. 1999, 26, 71–77. [Google Scholar] [CrossRef]
- Bunce, J. CO2 enrichment at night affects the growth and yield of common beans. Crop Sci. 2014, 54, 1744–1747. [Google Scholar] [CrossRef]
- Bunce, J. Effects of elevated carbon dioxide concentration in the dark on the growth of soybean seedlings. Ann. Bot. 1995, 75, 365–368. [Google Scholar] [CrossRef]
- Griffin, K.; Sims, D.; Seemann, J. Altered night-time CO2 concentration affects the growth, physiology and biochemistry of soybean. Plant Cell Environ. 1999, 22, 91–99. [Google Scholar] [CrossRef]
- Amthor, J.S.; Koch, G.W.; Bloom, A.J. CO2 inhibits respiration in leaves of Rumex crispus L. Plant Physiol. 1992, 98, 757–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poorter, H.; Gifford, R.M.; Kriedemann, P.E.; Wong, S.C. A quantitative-analysis of dark respiration and carbon content as factors in the growth-response of plants to elevated CO2. Aust. J. Bot. 1992, 40, 501–513. [Google Scholar] [CrossRef] [Green Version]
- Brundrett, M.; Bougher, N.; Dell, B.; Grove, T.; Malajczuk, N. Working with Mycorrhizas in Forestry and Agriculture; RePEc: Canberra, Australian, 1996; pp. 173–212. [Google Scholar]
- Yang, J.; Wang, C.; Dai, H. Soil Agrochemical Analysis and Environmental Monitoring Techniques; Chinese Dadi Press: Beijing, China, 2008; pp. 18–64. [Google Scholar]
- Ren, C.; Kang, D.; Wu, J.P.; Zhao, F.; Yang, G.; Han, X.; Feng, Y.; Ren, G. Temporal variation in soil enzyme activities after afforestation in the Loess Plateau, China. Geoderma 2016, 282, 103–111. [Google Scholar] [CrossRef]
- Wu, Q.S.; Li, Y.; Zou, Y.N.; He, X.H. Arbuscular mycorrhiza mediates glomalin-related soil protein production and soil enzyme activities in the rhizosphere of trifoliate orange grown under different P levels. Mycorrhiza 2015, 25, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Panneerselvam, P.; Sahoo, S.; Senapati, A.; Kumar, U.; Mitra, D.; Parameswaran, C.; Anandan, A.; Kumar, A.; Jahan, A.; Nayak, A.K. Understanding interaction effect of arbuscular mycorrhizal fungi in rice under elevated carbon dioxide conditions. J. Basic Microb. 2019, 59, 1217–1228. [Google Scholar] [CrossRef]
- Thomey, M.L.; Slattery, R.A.; Kohler, I.H.; Bernacchi, C.J.; Ort, D.R. Yield response of field-grown soybean exposed to heat waves under current and elevated [CO2]. Glob Chang Biol. 2019, 25, 4352–4368. [Google Scholar] [CrossRef]
- Ahammed, G.J.; Li, X.; Liu, A.; Chen, S. Physiological and defense responses of tea plants to elevated CO2: A review. Front. Plant Sci. 2020, 11, 305. [Google Scholar] [CrossRef] [PubMed]
- Eisenhut, M.; Roell, M.S.; Weber, A.P.M. Mechanistic understanding of photorespiration paves the way to a new green revolution. New Phytol. 2019, 233, 1762–1769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, Q.; Tang, L.; Ji, W.; Rennenberg, H.; Hu, B.; Ma, M. Elevated CO2 and soil mercury stress affect photosynthetic characteristics and mercury accumulation of rice. Ecotoxicol. Environ. Saf 2021, 208, 111605. [Google Scholar] [CrossRef]
- Reuveni, J.; Gale, J. The effect of high levels of carbon dioxide on dark respiration and growth of plants. Plant Cell Environ. 1985, 8, 623–628. [Google Scholar] [CrossRef]
- Gale, J. Evidence for essential maintenance respiration of leaves of Xanthium strumarium at high temperature. J. Exp. Bot. 1982, 33, 471–476. [Google Scholar] [CrossRef]
- Cavagnaro, T.R.; Sokolow, S.K.; Jackson, L.E. Mycorrhizal effects on growth and nutrition of tomato under elevated atmospheric carbon dioxide. Funct. Plant Biol. 2007, 34, 730–736. [Google Scholar] [CrossRef]
- Jakobsen, I.; Rosendahl, L. Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol. 1990, 115, 77–83. [Google Scholar] [CrossRef]
- Kaschuk, G.; Kuyper, T.W.; Leffelaar, P.A.; Hungria, M.; Giller, K.E. Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol. Biochem. 2009, 41, 1233–1244. [Google Scholar] [CrossRef]
- Zhu, X.C.; Song, F.B.; Liu, S.Q.; Liu, F.L. Arbuscular mycorrhiza improve growth, nitrogen uptake, and nitrogen use efficiency in wheat grown under elevated CO2. Mycorrhiza 2016, 26, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Jauregui, I.; Aroca, R.; Garnica, M.; Zamarreno, A.M.; Garcia-Mina, J.M.; Serret, M.D.; Parry, M.; Irigoyen, J.J.; Aranjuelo, I. Nitrogen assimilation and transpiration: Key processes conditioning responsiveness of wheat to elevated [CO2] and temperature. Physiol. Plantarum 2015, 155, 338–354. [Google Scholar] [CrossRef]
- Liao, J.; Hou, Z.; Wang, G. Effects of elevated CO2 and drought on chemical composition and decomposition of spring wheat (Triticum aestivum). Funct Plant Biol. 2002, 29, 891–897. [Google Scholar] [CrossRef]
- Taub, D.R.; Wang, X. Why are nitrogen concentrations in plant tissues lower under elevated CO2? A critical examination of the hypotheses. J. Integr. Plant Biol. 2008, 50, 1365–1374. [Google Scholar] [CrossRef]
- McGrath, J.M.; Lobell, D.B. Reduction of transpiration and altered nutrient allocation contribute to nutrient decline of crops grown in elevated CO2 concentrations. Plant Cell Environ. 2013, 36, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Del Pozo, A.; Pérez, P.; Gutiérrez, D.; Alonso, A.; Morcuende, R.; Martínez-Carrasco, R. Gas exchange acclimation to elevated CO2 in upper-sunlit and lower-shaded canopy leaves in relation to nitrogen acquisition and partitioning in wheat grown in field chambers. Environ. Exp. Bot. 2007, 59, 371–380. [Google Scholar] [CrossRef]
- Drake, B.G.; Gonzàlez-Meler, M.A.; Long, S.P. More efficient plants a consequence of rising atmospheric CO2? Ann. Rev. Plant Physiol. Plant Mol. Biol. 1997, 48, 609–639. [Google Scholar] [CrossRef] [Green Version]
- Bloom, A.J.; Burger, M.; Asensio, J.S.R.; Cousins, A.B. Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis. Science 2010, 328, 899–903. [Google Scholar] [CrossRef] [Green Version]
- Asensio, J.S.; Rachmilevitch, S.; Bloom, A.J. Responses of Arabidopsis and wheat to rising CO2 depend on nitrogen source and nighttime CO2 levels. Plant Physiol. 2015, 168, 156–163. [Google Scholar] [CrossRef] [Green Version]
- Staddon, P.L.; Jakobsen, I.; Blum, H. Nitrogen input mediates the effect of free-air CO2 enrichment on mycorrhizal fungal abundance. Glob. Chang. Biol. 2004, 10, 1678–1688. [Google Scholar] [CrossRef]
- Jin, J.; Tang, C.; Armstrong, R.; Butterly, C.; Sale, P. Elevated CO2 temporally enhances phosphorus immobilization in the rhizosphere of wheat and chickpea. Plant Soil 2013, 368, 315–328. [Google Scholar] [CrossRef]
- Swarup, A.; Patra, A.; Chandrakala, J.; Manjaiah, K. Effect of elevated CO2 and temperature on phosphorus efficiency of wheat grown in an Inceptisol of subtropical India. Plant Soil Environ. 2012, 58, 230–235. [Google Scholar]
- Jongen, M.; Fay, P.; Jones, M.B. Effects of elevated carbon dioxide and arbuscular mycorrhizal infection on Trifolium Repens. New Phytol. 1996, 132, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Tang, C.; Sale, P. The impact of elevated carbon dioxide on the phosphorus nutrition of plants: A review. Ann. Appl. Biol. 2015, 116, 987–999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, L.K.; George, T.S.; Barrett, G.E.; Hubbard, S.F.; White, P.J. Interactions between root hair length and arbuscular mycorrhizal colonisation in phosphorus deficient barley (Hordeum vulgare). Plant Soil 2013, 372, 195–205. [Google Scholar] [CrossRef]
- Haling, R.E.; Brown, L.K.; Bengough, A.G.; Young, I.M.; Hallett, P.D.; White, P.J.; George, T.S. Root hairs improve root penetration, root–soil contact, and phosphorus acquisition in soils of different strength. J. Exp. Bot. 2013, 64, 3711–3721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberton, O.; Kuyper, T.W.; Gorissen, A. Taking mycocentrism seriously: Mycorrhizal fungal and plant responses to elevated CO2. New Phytol. 2005, 167, 859–868. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Bhattacharyya, P.; Adhya, T. Interaction effects of elevated CO2 and temperature on microbial biomass and enzyme activities in tropical rice soils. Environ. Monit. Assess 2011, 182, 555–569. [Google Scholar] [CrossRef]
- Kelley, A.M.; Fay, P.A.; Polley, H.W.; Gill, R.A.; Jackson, R.B. Atmospheric CO2 and soil extracellular enzyme activity: A meta-analysis and CO2 gradient experiment. Ecosphere 2011, 2, art96. [Google Scholar] [CrossRef]
Treatment | Carbon (mg g−1) | Nitrogen (mg g−1) | Phosphorus (mg g−1) | Potassium (mg g−1) | |||||
---|---|---|---|---|---|---|---|---|---|
Inoculation | CO2 | Shoot | Root | Shoot | Root | Shoot | Root | Shoot | Root |
Non-AMF | ACO2 | 413 ± 8 b,x | 385 ± 9 b,x | 37.4 ± 1.9 a,x | 12.4 ± 1.1 a,y | 8.39 ± 0.20 a,x | 1.51 ± 0.07 a,x | 31.49 ± 0.66 a,x | 13.05 ± 0.96 a,y |
DeCO2 | 445 ± 10 a,x | 403 ± 12 b,x | 26.0 ± 2.3 b,y | 9.5 ± 0.5 b,y | 8.80 ± 1.05 a,x | 0.96 ± 0.14 b,y | 29.66 ± 0.81b,x | 8.72 ± 1.21 b,x | |
NeCO2 | 430 ± 9 a,x | 393 ± 14 b,x | 27.6 ± 0.8 b,x | 12.6 ± 0.3 a,x | 5.15 ± 0.84 b,x | 1.17 ± 0.11 b,x | 23.60 ± 1.82 d,y | 8.56 ± 1.17 b,x | |
(D + N)eCO2 | 449 ± 13 a,x | 432 ± 16 a, x | 28.3 ± 0.8 b,x | 14.0 ± 1.0 a,x | 6.46 ± 1.34 b,x | 1.38 ± 0.06 a,y | 27.76 ± 0.70c,y | 11.43 ± 1.04 a,x | |
AMF | ACO2 | 432 ± 7 b,x | 405 ± 15 b,x | 35.2 ± 0.7 a,x | 16.8 ± 0.9 a,x | 6.67 ± 0.55 b,y | 1.47 ± 0.13 b,x | 31.84 ± 0.61 a,x | 15.89 ±0.63 a,x |
DeCO2 | 434 ± 8 b,x | 419 ± 7 b,x | 32.5 ± 1.2 b,x | 14.3 ± 0.9 b,x | 8.42 ± 0.63 a,x | 1.17 ± 0.16 c,x | 28.08 ± 1.06 b,x | 9.03 ± 1.15 b,x | |
NeCO2 | 410 ± 11 c,x | 400 ± 18 b,x | 25.3 ± 1.0 c,x | 11.5 ± 1.5 b,x | 4.73 ± 0.47 c,x | 1.09 ± 0.15 c,x | 26.20 ± 1.64 b,x | 9.45 ± 0.98 b,x | |
(D + N)eCO2 | 454 ± 12 a,x | 438 ± 10 a,x | 29.5 ± 1.4 b,x | 14.9 ± 0.8 b,x | 7.03 ± 0.49 b,x | 1.84 ± 0.19 a,x | 29.67 ± 0.82 b,x | 9.79 ± 0.72 b,x | |
ANOVA | |||||||||
CO2 | * | * | *** | * | ** | * | ** | * | |
AMF | ns | ns | ns | * | ns | ns | ns | ns | |
eCO2×AMF | ns | ns | * | * | ns | ns | ns | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, S.; Luo, X.; Wen, M.; Dong, X.; Sharifi, S.; Xie, D.; He, X. Funneliformis mosseae Improves Growth and Nutrient Accumulation in Wheat by Facilitating Soil Nutrient Uptake under Elevated CO2 at Daytime, Not Nighttime. J. Fungi 2021, 7, 458. https://doi.org/10.3390/jof7060458
Shi S, Luo X, Wen M, Dong X, Sharifi S, Xie D, He X. Funneliformis mosseae Improves Growth and Nutrient Accumulation in Wheat by Facilitating Soil Nutrient Uptake under Elevated CO2 at Daytime, Not Nighttime. Journal of Fungi. 2021; 7(6):458. https://doi.org/10.3390/jof7060458
Chicago/Turabian StyleShi, Songmei, Xie Luo, Miao Wen, Xingshui Dong, Sharifullah Sharifi, Deti Xie, and Xinhua He. 2021. "Funneliformis mosseae Improves Growth and Nutrient Accumulation in Wheat by Facilitating Soil Nutrient Uptake under Elevated CO2 at Daytime, Not Nighttime" Journal of Fungi 7, no. 6: 458. https://doi.org/10.3390/jof7060458
APA StyleShi, S., Luo, X., Wen, M., Dong, X., Sharifi, S., Xie, D., & He, X. (2021). Funneliformis mosseae Improves Growth and Nutrient Accumulation in Wheat by Facilitating Soil Nutrient Uptake under Elevated CO2 at Daytime, Not Nighttime. Journal of Fungi, 7(6), 458. https://doi.org/10.3390/jof7060458