Beyond Sea Turtles: Fusarium keratoplasticum in Eggshells of Podocnemis unifilis, a Threatened Amazonian Freshwater Turtle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Fungal Isolation and DNA Extraction
2.3. PCR Amplification and BLAST-Based Identification of Fungal Isolates
2.4. Sequence Alignment and Phylogenetic Analyses of the FSSC Isolates
2.5. Bacterial Isolation and DNA Extraction
2.6. PCR Amplification, BLAST-Based Identification of Bacterial Isolates, and 16S Phylogeny
3. Results
3.1. Fungal Isolation and Phylogenetic Analyses of the FSSC Isolates
Isolate | Geographic Origin a | Species ID b | GenBank Accession No. | ||
---|---|---|---|---|---|
ITS | LSU | EF-1α | |||
143 FUS | Guiyero | F. keratoplasticum | MW390926 | MW390975 | MW389342 |
144 FUS | Guiyero | F. keratoplasticum | MW390927 | MW390976 | MW389343 |
145 FUS | Guiyero | F. suttonianum | MW390928 | MW390977 | MW389356 |
151 FUS | Guiyero | F. keratoplasticum | MW390930 | MW390978 | MW389344 |
152 FUS | Nueva Providencia | F. suttonianum | MW390931 | MW390979 | MW389357 |
153 FUS | Sani Isla | F. cf. crassum | MW390932 | MW390980 | MW389341 |
154 FUS | Sani Isla | F. keratoplasticum | MW390933 | MW390981 | MW389345 |
156 FUS | Sani Isla | F. keratoplasticum | MW390935 | MW390982 | MW389346 |
157 FUS | Sani Isla | F. keratoplasticum | MW390936 | MW390983 | MW389347 |
158 FUS | Undetermined | F. keratoplasticum | MW390937 | MW390984 | MW389348 |
160 FUS | Undetermined | F. keratoplasticum | MW390939 | MW390985 | MW389349 |
161 FUS | Undetermined | F. keratoplasticum | MW390940 | MW390986 | MW389350 |
162 FUS | Undetermined | F. keratoplasticum | MW390941 | MW390987 | MW389351 |
163 FUS | Undetermined | F. keratoplasticum | MW390942 | MW390988 | MW389352 |
197 FUS | Guiyero | F. keratoplasticum | MW390949 | MW390989 | MW389353 |
198 FUS | Sani Isla | F. keratoplasticum | MW390950 | MW390990 | MW389354 |
200 FUS | Sani Isla | F. keratoplasticum | MW390952 | MW390991 | MW389355 |
3.2. Bacterial Isolates and Phylogenetic Analyses
Isolate | Geographic Origin | Genus ID a | Phylum | 16S GenBank Accession No. |
---|---|---|---|---|
B13 | Nueva Providencia | Bacillus | Firmicutes | MW391108 |
B14 | Nueva Providencia | Bacillus | Firmicutes | MW391109 |
B15 | Nueva Providencia | Tsukamurella | Actinobacteria | MW391110 |
B16 | Guiyero | Paracoccus | Proteobacteria | MW391111 |
B17 | Guiyero | Nocardioides | Actinobacteria | MW391112 |
B18 | Sani Isla | Nocardioides | Actinobacteria | MW391113 |
B19 | Sani Isla | Gordonia | Actinobacteria | MW391114 |
B20 | Sani Isla | Cupriavidus or Ralstonia | Proteobacteria | MW391115 |
B21 | Sani Isla | Pseudoxanthomonas | Proteobacteria | MW391116 |
B22 | Sani Isla | Pseudomonas | Proteobacteria | MW391117 |
B23 | Sani Isla | Pseudomonas | Proteobacteria | MW391118 |
B24 | Sani Isla | Delftia | Proteobacteria | MW391119 |
B25 | Undetermined | Chryseobacterium | Bacteroidetes | MW391120 |
B26 | Undetermined | Achromobacter | Proteobacteria | MW391121 |
B27 | Undetermined | Elizabethkingia | Bacteroidetes | MW391122 |
B28 | Undetermined | Stenotrophomonas | Proteobacteria | MW391123 |
B29 | Undetermined | Pseudomonas | Proteobacteria | MW391124 |
B30 | Undetermined | Stenotrophomonas | Proteobacteria | MW391125 |
B31 | Undetermined | Delftia | Proteobacteria | MW391126 |
B32 | Undetermined | Stenotrophomonas | Proteobacteria | MW391127 |
B33 | Undetermined | Stenotrophomonas | Proteobacteria | MW391128 |
B34 | Undetermined | Pseudomonas | Proteobacteria | MW391129 |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IUCN Tortoise & Freshwater Turtle Specialist Group. Podocnemis unifilis (Errata Version Published in 2016). The IUCN Red List of Threatened Species 1996: E.T17825A97397562. Available online: https://dx.doi.org/10.2305/IUCN.UK.1996.RLTS.T17825A7506933.en (accessed on 7 August 2021).
- CITES. Convention on International Trade In Endangered Species of Wild Fauna and Flora. Appendices I, II and III. Available online: https://cites.org/sites/default/files/eng/app/2020/E-Appendices-2020-08-28.pdf (accessed on 7 August 2021).
- Caputo, F.P.; Canestrelli, D.; Boitani, L. Conserving the terecay (Podocnemis unifilis, Testudines: Pelomedusidae) through a community-based sustainable harvest of its eggs. Biol. Conserv. 2005, 126, 84–92. [Google Scholar] [CrossRef]
- Wildlife Conservation Society. Programa Ecuador, Boletín 2. El Tráfico de Carne Silvestre en el Parque Nacional Yasuní: Caracterización de un Mercado Creciente en la Amazonía Norte del Ecuador. Available online: http://s3.amazonaws.com/WCSResources/file_20110823_035823_ecu_pub_ProgramaEcuadorBoletin2_2007_oAuB.pdf (accessed on 7 August 2021).
- Norris, D.; Michalski, F. Socio-economic and spatial determinants of anthropogenic predation on yellow-spotted river turtle, Podocnemis unifilis (Testudines: Pelomedusidae), nests in the Brazilian Amazon: Implications for sustainable conservation and management. Zoologia 2013, 30, 482–490. [Google Scholar] [CrossRef] [Green Version]
- Norris, D.; Peres, C.A.; Michalski, F.; Gibbs, J.P. Prospects for freshwater turtle population recovery are catalyzed by pan-Amazonian community-based management. Biol. Conserv. 2019, 233, 51–60. [Google Scholar] [CrossRef]
- Casal, A.C.; Fornelino, M.M.; Restrepo, M.F.G.; Torres, M.A.C.; Velasco, F.G. Uso histórico y actual de las tortugas charapa (Podocnemis expansa) y terecay (Podocnemis unifilis) en la Orinoquia y la Amazonia. Biota Colomb. 2013, 14, 45–64. [Google Scholar]
- Cueva, R.; Utreras, V.; Muñoz, I. Manejo Comunitario de Tortugas Charapas en la Comunidades Kichwa y Waorani del Parque Nacional Yasuní; Wildlife Conservation Society: Quito, Ecuador, 2010. [Google Scholar]
- Wildlife Conservation Society. Especies. Programas de Manejo. Available online: https://ecuador.wcs.org/Especies/Especies-semiacuaticas/Tortugas-charapa/Programa-de-manejo.aspx (accessed on 7 August 2021).
- Soini, P. Estudio, reproducción y manejo de los quelonios acuáticos del género Podocnemis (Charapa, Cupiso y Taricaya) en la Cuenca del Rio Pacaya. In Seminario Sobre Proyectos de Investigación Ecológica Para el Bosque Tropical Húmedo; Gonzales, G., Ed.; Instituto de Investigaciones de la Amazonia Peruana, Dirección General Forestal y de Fauna: Lima, Peru, 1981; pp. 124–143. [Google Scholar]
- Iverson, J.B. Patterns of survivorship in turtles (order Testudines). Can. J. Zool. 1991, 69, 385–391. [Google Scholar] [CrossRef]
- Norris, D.; Michalski, F.; Gibbs, J.P. Community based actions save yellow-spotted river turtle (Podocnemis unifilis) eggs and hatchlings flooded by rapid river level rises. PeerJ 2020, 8, e9921. [Google Scholar] [CrossRef] [PubMed]
- Fantin, C.; Machado-Andrade, P.C.; Pires-Farias, I.; Pereira, D.I. Mirroring-in nature? Comparison of kinship analysis in clutches of the endangered giant Amazon river turtle, Podocnemis expansa (Chelonia: Podocnemididae) in both captivity and natural habitat. Lat. Am. J. Aquat. Res. 2018, 46, 346–354. [Google Scholar] [CrossRef]
- Chen, P.N. Conservation of the southern river terrapin Batagur affinis (Reptilia: Testudines: Geoemydidae) in Malaysia: A case study involving local community participation. J. Threat. Taxa 2017, 9, 10035–10046. [Google Scholar] [CrossRef]
- Townsend, W.R.; Borman, A.R.; Yiyoguaje, E.; Mendua, L. Cofán Indians’ monitoring of freshwater turtles in Zábalo, Ecuador. Biodivers. Conserv. 2005, 14, 2743–2755. [Google Scholar] [CrossRef]
- Burke, R.L. Head-starting turtles: Learning from experience. Herpetol. Conserv. Biol. 2015, 10, 299–308. [Google Scholar]
- Boede, E.; Hernández, O. Diseases in arrau sideneck turtle, Podocnemis expansa, kept in Venezuelan farms. Rev. Cient. Fac. Cienc. Vet. 2004, 14, 395–403. [Google Scholar]
- Arpini, C.M.; Nóbrega, Y.C.; Castheloge, V.D.; Neves, D.S.; Tadokoro, C.E.; Costa, G.L.d.; Oliveira, M.M.E.; Santos, M.R.d.D. Purpuriocillium lilacinum infection in captive loggerhead sea turtle hatchlings. Med. Mycol. Case Rep. 2019, 23, 8–11. [Google Scholar] [CrossRef]
- Mitura, A.; Niemczuk, K.; Zaręba, K.; Zając, M.; Laroucau, K.; Szymańska-Czerwińska, M. Free-living and captive turtles and tortoises as carriers of new Chlamydia spp. PLoS ONE 2017, 12, e0185407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfitzer, S.; Boustead, K.J.; Vorster, J.H.; du Plessis, L.; la Grange, L.J. Adenoviral hepatitis in two Nile crocodile (Crocodylus niloticus) hatchlings from South Africa. J. S. Afr. Vet. Assoc. 2019, 90, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bardi, E.; Noviello, E.; Hofmannová, L. Protozoa and protozoal infections in chelonians. J. Exot. Pet Med. 2019, 31, 5–12. [Google Scholar] [CrossRef]
- Wyneken, J.; Burke, T.; Salmon, M.; Pedersen, D. Egg failure in natural and relocated sea turtle nests. J. Herpetol. 1988, 22, 88–96. [Google Scholar] [CrossRef]
- Girondot, M.; Fretey, J.; Prouteau, I.; Lescure, J. Hatchling success for Dermochelys coriacea in a French Guiana hatchery. In Proceedings of the Tenth Annual Workshop on Sea Turtle Biology and Conservation, Hilton Head Island, SC, USA, 20–24 February 1990; NOAA Technical Memorandum NMFS-SEFC-278. pp. 229–232. [Google Scholar]
- Craven, K.S.; Awong-Taylor, J.; Griffiths, L.; Bass, C.; Muscarella, M. Identification of bacterial isolates from unhatched loggerhead (Caretta caretta) sea turtle eggs in Georgia, USA. Mar. Turt. Newsl. 2007, 115, 9–11. [Google Scholar]
- Al-Bahry, S.; Mahmoud, I.; Elshafie, A.; Al-Harthy, A.; Al-Ghafri, S.; Al-Amri, I.; Alkindi, A. Bacterial flora and antibiotic resistance from eggs of green turtles Chelonia mydas: An indication of polluted effluents. Mar. Pollut. Bull. 2009, 58, 720–725. [Google Scholar] [CrossRef]
- Soslau, G.; Spotila, J.R.; Chun, A.; Yi, S.; Weber, K.T. Potentially lethal bacteria in leatherback turtle eggs in the wild threaten both turtles and conservationists. J. Exp. Mar. Biol. Ecol. 2011, 410, 101–106. [Google Scholar] [CrossRef]
- Sarmiento-Ramírez, J.M.; van der Voort, M.; Raaijmakers, J.M.; Diéguez-Uribeondo, J. Unravelling the microbiome of eggs of the endangered sea turtle Eretmochelys imbricata identifies bacteria with activity against the emerging pathogen Fusarium falciforme. PLoS ONE 2014, 9, e95206. [Google Scholar] [CrossRef] [PubMed]
- Sarmiento-Ramírez, J.M.; Abella-Perez, E.; Phillott, A.D.; Sim, J.; Van West, P.; Martín, M.P.; Marco, A.; Diéguez-Uribeondo, J. Global distribution of two fungal pathogens threatening endangered sea turtles. PLoS ONE 2014, 9, e85853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smyth, C.W.; Sarmiento-Ramírez, J.M.; Short, D.P.; Diéguez-Uribeondo, J.; O’donnell, K.; Geiser, D.M. Unraveling the ecology and epidemiology of an emerging fungal disease, sea turtle egg fusariosis (STEF). PLoS Path. 2019, 15, e1007682. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, L.M.; Khalil, L.; Marinkelle, C. A new nematode genus, Podocnematractis, for Atractis ortleppi Thapar, 1925 (Cosmocercoidea: Atractidae) and the description of another new species, P. colombiaensis from turtles Podocnemis spp. in Colombia. Syst. Parasitol. 1995, 30, 47–56. [Google Scholar] [CrossRef]
- Khalil, L.; Gibbons, L.M. Two nematodes, Paratractis hystrix (Diesing, 1851) and Buckleyatractis marinkelli n. g., n. sp. (Atractidae: Cosmocercoidea) from Podocnemis spp. in Colombia. Syst. Parasitol. 1988, 12, 187–198. [Google Scholar] [CrossRef]
- Bursey, C.R.; Reavill, D.; Greiner, E. Pneumoatractis podocnemis n. gen., n. sp. (Nematoda: Atractidae) from the yellow-spotted Amazon River Turtle, Podocnemis unifilis (Testudines: Pelomedusidae). Comp. Parasitol. 2009, 76, 149–153. [Google Scholar] [CrossRef]
- Jesus, R.F.; Cardoso, E.L.; Willkens, Y.; Futado, A.P.; dos Santos, J.N.; Melo, F.T. “Long time no see”: Redescription of Orientatractis leiperi (Nematoda: Atractidae) parasite of Podocnemis unifilis (Testudines: Podocnemididae) from Pará State, Brazil. Rev. Mex. Biodivers. 2020, 91, 913464. [Google Scholar]
- Bradford, C.M.; Denver, M.C.; Cranfield, M.R. Development of a polymerase chain reaction test for Entamoeba invadens. J. Zoo Wildl. Med. 2008, 39, 201–207. [Google Scholar] [CrossRef]
- Úngari, L.P.; Santos, A.L.Q.; Paiva, G.C.M.; Mota, K.C.P.; de Almeida Borges, L.F.; Cury, M.C. Concomitant infection of Haemogregarina sp. and Staphylococcus aureus in free-living yellow-spotted river turtle (Podocnemis unifilis): Case report. Arch. Vet. Sci. 2018, 23, 50–55. [Google Scholar] [CrossRef]
- Morais, P.B.d.; Pimenta, R.S.; Tavares, I.B.; de Garcia, V.; Rosa, C.A. Yeasts occurring in surface and mouth cavity of two chelonian species, Podocnemis expansa Schweigger and P. unifilis Troschel (Reptilia: Chelonia: Pelomedusidae), in the Javaés River Border of Araguaia National Park in Brazil. Int. J. Microbiol. 2010, 2010, 504524. [Google Scholar] [CrossRef] [Green Version]
- Morais, P.B.d.; Souza, D.R.d.; Sousa, F.M.P.d.; Oliveira, K.W.d.; Pimenta, R.S. Enterobacteriaceae in mouth and cloaca of Podocnemis expansa and P. unifilis (Testudines: Chelonia) populations of National Park of Araguaia Plains, Brazil. Braz. J. Microbiol. 2011, 42, 526–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miranda, J.M.S.; Rocha, K.d.S.; Monteiro, L.H.; Baia, I.W.M.; Monteiro, T.R.M.; Brito, J.d.S.; Mesquita, E.Y.E.; Moraes, C.C.G.d. Presence of anti-Leptospira spp. antibodies in captive yellow-spotted river turtles (Podocnemis unifilis) in the Eastern Amazon. Cienc. Rural 2020, 50, e20190088. [Google Scholar] [CrossRef]
- Martín, M.P.; Winka, K. Alternative methods of extracting and amplifying DNA from lichens. Lichenologist 2000, 32, 189–196. [Google Scholar] [CrossRef]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- White, T.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press Limited: London, UK, 1990; pp. 315–322. [Google Scholar]
- O’Donnell, K.; Kistler, H.C.; Cigelnik, E.; Ploetz, R.C. Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proc. Natl. Acad. Sci. USA 1998, 95, 2044–2049. [Google Scholar] [CrossRef] [Green Version]
- Vilgalys, R.; Hester, M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 1990, 172, 4238–4246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cubeta, M.; Echandi, E.; Abernethy, T.; Vilgalys, R. Characterization of anastomosis groups of binucleate Rhizoctonia species using restriction analysis of an amplified ribosomal RNA gene. Phytopathology 1991, 81, 1395–1400. [Google Scholar] [CrossRef]
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef] [Green Version]
- Geiser, D.M.; Al-Hatmi, A.; Aoki, T.; Arie, T.; Balmas, V.; Barnes, I.; Bergstrom, G.C.; Bhattacharyya, M.K.K.; Blomquist, C.L.; Bowden, R.; et al. Phylogenomic analysis of a 55.1 kb 19-gene dataset resolves a monophyletic Fusarium that includes the Fusarium solani species complex. Phytopathology 2020. [Google Scholar] [CrossRef]
- Katoh, K.; Misawa, K.; Kuma, K.i.; Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the 2010 Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, 14 November 2010; pp. 1–8. [Google Scholar]
- Nguyen, L.-T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [Green Version]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [Green Version]
- Huelsenbeck, J.P.; Larget, B.; Alfaro, M.E. Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo. Mol. Biol. Evol. 2004, 21, 1123–1133. [Google Scholar] [CrossRef] [PubMed]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rambaut, A. FigTree v. 1.4.3. 2016. Available online: http://tree.bio.ed.ac.uk/software/figtree (accessed on 21 November 2020).
- Wheeler, W.C. Nucleic acid sequence phylogeny and random outgroups. Cladistics 1990, 6, 363–367. [Google Scholar] [CrossRef]
- Wade, T.; Rangel, L.T.; Kundu, S.; Fournier, G.P.; Bansal, M.S. Assessing the accuracy of phylogenetic rooting methods on prokaryotic gene families. PLoS ONE 2020, 15, e0232950. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, K. Molecular phylogeny of the Nectria haematococca-Fusarium solani species complex. Mycologia 2000, 92, 919–938. [Google Scholar] [CrossRef]
- O’Donnell, K.; Sutton, D.A.; Fothergill, A.; McCarthy, D.; Rinaldi, M.G.; Brandt, M.E.; Zhang, N.; Geiser, D.M. Molecular phylogenetic diversity, multilocus haplotype nomenclature, and in vitro antifungal resistance within the Fusarium solani species complex. J. Clin. Microbiol. 2008, 46, 2477–2490. [Google Scholar] [CrossRef] [Green Version]
- Gleason, F.H.; Allerstorfer, M.; Lilje, O. Newly emerging diseases of marine turtles, especially sea turtle egg fusariosis (STEF), caused by species in the Fusarium solani complex (FSSC). Mycology 2020, 11, 184–194. [Google Scholar] [CrossRef] [Green Version]
- Bailey, J.B.; Lamb, M.; Walker, M.; Weed, C.; Craven, K.S. Detection of potential fungal pathogens Fusarium falciforme and F. keratoplasticum in unhatched loggerhead turtle eggs using a molecular approach. Endanger. Species Res. 2018, 36, 111–119. [Google Scholar] [CrossRef] [Green Version]
- Sarmiento-Ramírez, J.M.; Abella, E.; Martín, M.P.; Tellería, M.T.; López-Jurado, L.F.; Marco, A.; Diéguez-Uribeondo, J. Fusarium solani is responsible for mass mortalities in nests of loggerhead sea turtle, Caretta caretta, in Boavista, Cape Verde. FEMS Microbiol. Lett. 2010, 312, 192–200. [Google Scholar] [CrossRef] [Green Version]
- Clusella Trullas, S.; Paladino, F.V. Micro-environment of olive ridley turtle nests deposited during an aggregated nesting event. J. Zool. 2007, 272, 367–376. [Google Scholar] [CrossRef] [Green Version]
- Özdemir, B.; Türkozan, O. Hatching success of original and hatchery nests of the green turtle, Chelonia mydas, in northern Cyprus. Turk. J. Zool. 2006, 30, 377–381. [Google Scholar]
- Sarmiento-Ramírez, J.M.; Sim, J.; Van West, P.; Dieguez-Uribeondo, J. Isolation of fungal pathogens from eggs of the endangered sea turtle species Chelonia mydas in Ascension Island. J. Mar. Biol. Assoc. UK 2017, 97, 661–667. [Google Scholar] [CrossRef] [Green Version]
- Hoh, D.Z.; Lin, Y.-F.; Liu, W.-A.; Sidique, S.N.M.; Tsai, I.J. Nest microbiota and pathogen abundance in sea turtle hatcheries. Fungal Ecol. 2020, 47, 100964. [Google Scholar] [CrossRef]
- Short, D.P.; O’Donnell, K.; Thrane, U.; Nielsen, K.F.; Zhang, N.; Juba, J.H.; Geiser, D.M. Phylogenetic relationships among members of the Fusarium solani species complex in human infections and the descriptions of F. keratoplasticum sp. nov. and F. petroliphilum stat. nov. Fungal Genet. Biol. 2013, 53, 59–70. [Google Scholar] [CrossRef]
- Peinado-Acevedo, J.S.; Ramírez-Sánchez, I.C. Endocarditis by Fusarium keratoplasticum. Mycopathologia 2020, 186, 131–133. [Google Scholar] [CrossRef] [PubMed]
- Boutati, E.I.; Anaissie, E.J. Fusarium, a significant emerging pathogen in patients with hematologic malignancy: Ten years’ experience at a cancer center and implications for management. Blood J. Am. Soc. Hematol. 1997, 90, 999–1008. [Google Scholar]
- Guarro, J. Fusariosis, a complex infection caused by a high diversity of fungal species refractory to treatment. Eur. J. Clin. Microbiol. Infect. Dis. 2013, 32, 1491–1500. [Google Scholar] [CrossRef] [PubMed]
- Dallé da Rosa, P.; Ramirez-Castrillón, M.; Borges, R.; Aquino, V.; Meneghello Fuentefria, A.; Zubaran Goldani, L. Epidemiological aspects and characterization of the resistance profile of Fusarium spp. in patients with invasive fusariosis. J. Med. Microbiol. 2019, 68, 1489–1496. [Google Scholar] [CrossRef]
- Hurtig, A.-K.; Sebastián, M.S. Incidence of childhood leukemia and oil exploitation in the Amazon Basin of Ecuador. Int. J. Occup. Environ. Health 2004, 10, 245–250. [Google Scholar] [CrossRef]
- San Sebastián, M.; Karin Hurtig, A. Oil exploitation in the Amazon basin of Ecuador: A public health emergency. Rev. Panam. Salud Pública 2004, 15, 205–211. [Google Scholar] [CrossRef] [Green Version]
- Maurice, L.; López, F.; Becerra, S.; Jamhoury, H.; Le Menach, K.; Dévier, M.-H.; Budzinski, H.; Prunier, J.; Juteau-Martineau, G.; Ochoa-Herrera, V.; et al. Drinking water quality in areas impacted by oil activities in Ecuador: Associated health risks and social perception of human exposure. Sci. Total Environ. 2019, 690, 1203–1217. [Google Scholar] [CrossRef] [PubMed]
- Sandoval-Denis, M.; Lombard, L.; Crous, P.W. Back to the roots: A reappraisal of Neocosmospora. Pers. Mol. Phylogeny Evol. Fungi 2019, 43, 90–185. [Google Scholar] [CrossRef] [PubMed]
- Elshafie, A.; Al-Bahry, S.N.; AlKindi, A.Y.; Ba-Omar, T.; Mahmoud, I. Mycoflora and aflatoxins in soil, eggshells, and failed eggs of Chelonia mydas at Ras Al-Jinz, Oman. Chelonian Conserv. Biol. 2007, 6, 267–270. [Google Scholar] [CrossRef]
- Phillott, A.D.; Parmenter, C.J.; Limpus, C.J. Occurrence of mycobiota in eastern Australian sea turtle nests. Mem. Qld. Mus. 2004, 49, 701–703. [Google Scholar]
- Gambino, D.; Persichetti, M.F.; Gentile, A.; Arculeo, M.; Visconti, G.; Currò, V.; Caracappa, G.; Crucitti, D.; Piazza, A.; Mancianti, F. First data on microflora of loggerhead sea turtle (Caretta caretta) nests from the coastlines of Sicily. Biol. Open 2020, 9, bio045252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Güçlü, Ö.; Bıyık, H.; Şahiner, A. Mycoflora identified from loggerhead turtle (Caretta caretta) egg shells and nest sand at Fethiye beach, Turkey. Afr. J. Microbiol. Res. 2010, 4, 408–413. [Google Scholar]
- Neves, M.S.C.; de Melo Moura, C.C.; de Oliveira, L.G. Mycobiota from the eggs, nests and stillbirths of Eretmochelys imbricata Linneus 1766 (Testudines: Cheloniidae) in Pernambuco State, Brazil. Afr. J. Microbiol. Res. 2015, 9, 1195–1199. [Google Scholar]
- Marco, A.; Diéguez-Uribeondo, J.; Abella Pérez, E.; Martín, M.P.; Tellería, M.T.; López-Jurado, L.F. Natural colonization of loggerhead turtle eggs by the pathogenic fungus Fusarium oxysporum. In Proceedings of the Twenty Sixth Annual Symposium on Sea Turtle Biology and Conservation, Athens, Greece, 3–8 April 2006. [Google Scholar]
- Patiño-Martínez, J.; Marco, A.; Quiñones, L.; Abella, E.; Abad, R.M.; Diéguez-Uribeondo, J. How do hatcheries influence embryonic development of sea turtle eggs? Experimental analysis and isolation of microorganisms in leatherback turtle eggs. J. Exp. Zool. Part A Ecol. Genet. Physiol. 2012, 317, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Spadaro, D.; Gullino, M.; Garibaldi, A. Recent findings on the disease of rice caused by Fusarium fujikuroi. Prot. Delle Colt. 2016, 2, 11–17. [Google Scholar]
- Sunani, S.; Bashyal, B.; Rashmi, A.; Prakash, G. Conidial germination study of Fusarium fujikuroi causing bakanae disease of rice. Environ. Ecol. 2017, 35, 2790–2794. [Google Scholar]
- Amatulli, M.T.; Spadaro, D.; Gullino, M.L.; Garibaldi, A. Conventional and real-time PCR for the identification of Fusarium fujikuroi and Fusarium proliferatum from diseased rice tissues and seeds. Eur. J. Plant Pathol. 2012, 134, 401–408. [Google Scholar] [CrossRef]
- Borrero, C.; Capote, N.; Gallardo, M.; Avilés, M. First report of vascular wilt caused by Fusarium proliferatum on strawberry in Spain. Plant Dis. 2019, 103, 581. [Google Scholar] [CrossRef]
- Xiao, R.; Wang, J.; Zheng, M.; Su, H.; Zhu, Y.; Liu, B. First report of Fusarium concentricum causing stem rot disease on the medicinal plant Paris polyphylla var. chinensis in China. Plant Dis. 2019, 103, 1418. [Google Scholar] [CrossRef]
- Sidique, S.N.M.; Azuddin, N.F.; Joseph, J. First report of Fusarium species at nesting sites of endangered sea turtles in Terengganu and Melaka, Malaysia. Malays. Appl. Biol. 2017, 46, 195–205. [Google Scholar]
- Phillott, A.D.; Parmenter, C.J.; Limpus, C.J. Mycoflora identified from failed green (Chelonia mydas) and loggerhead (Caretta caretta) sea turtle eggs at Heron Island, Australia. Chelonian Conserv. Biol. 2001, 4, 170–172. [Google Scholar]
- Candan, E.D. Molecular identification of fungal isolates and hatching success of green turtle (Chelonia mydas) nests. Arch. Microbiol. 2018, 200, 911–919. [Google Scholar] [CrossRef]
- Jacobson, E.R.; Cheatwood, J.L.; Maxwell, L.K. Mycotic diseases of reptiles. Semin. Avian Exot. Pet Med. 2000, 9, 94–101. [Google Scholar] [CrossRef]
- Pedras, M.C.; Biesenthal, C.J. HPLC analyses of cultures of Phoma spp.: Differentiation among groups and species through secondary metabolite profiles. Can. J. Microbiol. 2000, 46, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Phillott, A.D.; Parmenter, C.J.; Limpus, C.J.; Harrower, K. Mycobiota as acute and chronic cloacal contaminants of female sea turtles. Aust. J. Zool. 2002, 50, 687–695. [Google Scholar] [CrossRef]
- Nardoni, S.; Papini, R.; Marcucci, G.; Mancianti, F. Survey on the fungal flora of the cloaca of healthy pet reptiles. Rev. Med. Vet. 2008, 3, 159–165. [Google Scholar]
- Oros, J.; Ramirez, A.; Poveda, J.; Rodriguez, J.; Fernandez, A. Systemic mycosis caused by Penicillium griseofulvum in a Seychelles giant tortoise (Megalochelys gigantea). Vet. Rec. 1996, 139, 295–296. [Google Scholar] [CrossRef] [PubMed]
- Rosado-Rodríguez, G.; Maldonado-Ramírez, S.L. Mycelial fungal diversity associated with the leatherback sea turtle (Dermochelys coriacea) nests from western Puerto Rico. Chelonian Conserv. Biol. 2016, 15, 265–272. [Google Scholar] [CrossRef]
- Glazebrook, J.; Campbell, R.; Thomas, A. Studies on an ulcerative stomatitis-obstructive rhinitis-pneumonia disease complex in hatchling and juvenile sea turtles Chelonia mydas and Caretta caretta. Dis. Aquat. Org. 1993, 16, 133–147. [Google Scholar] [CrossRef]
- Chen, Q.; Jiang, J.R.; Zhang, G.Z.; Cai, L.; Crous, P.W. Resolving the Phoma enigma. Stud. Mycol. 2015, 82, 137–217. [Google Scholar] [CrossRef] [Green Version]
- Barilli, E.; Cobos, M.J.; Rubiales, D. Clarification on host range of Didymella pinodes the causal agent of pea Ascochyta blight. Front. Plant Sci. 2016, 7, 592. [Google Scholar] [CrossRef]
- Pearce, T.L.; Wilson, C.R.; Gent, D.H.; Scott, J.B. Multiple mutations across the succinate dehydrogenase gene complex are associated with boscalid resistance in Didymella tanaceti in pyrethrum. PLoS ONE 2019, 14, e0218569. [Google Scholar] [CrossRef] [Green Version]
- Larki, R.; Mehrabi-Koushki, M.; Farokhinejad, R. Ectophoma iranica sp. nov. and new hosts and records of Allophoma spp. in Iran. J. Phytopathol. 2019, 167, 538–545. [Google Scholar] [CrossRef]
- Herath, K.; Harris, G.; Jayasuriya, H.; Zink, D.; Smith, S.; Vicente, F.; Bills, G.; Collado, J.; González, A.; Jiang, B. Isolation, structure and biological activity of phomafungin, a cyclic lipodepsipeptide from a widespread tropical Phoma sp. Bioorg. Med. Chem. 2009, 17, 1361–1369. [Google Scholar] [CrossRef]
- Pignati, M.T.; Fernandes, L.F.; Miorando, P.S.; Ferreira, P.D.; Pezzuti, J.C.B. Effects of the nesting environment on embryonic development, sex ratio, and hatching success in Podocnemis unifilis (Testudines: Podocnemididae) in an area of Várzea floodplain on the Lower Amazon River in Brazil. Copeia 2013, 2013, 303–311. [Google Scholar] [CrossRef]
- Pace, A.; Dipineto, L.; Fioretti, A.; Hochscheid, S. Loggerhead sea turtles as sentinels in the western mediterranean: Antibiotic resistance and environment-related modifications of gram-negative bacteria. Mar. Pollut. Bull. 2019, 149, 110575. [Google Scholar] [CrossRef] [PubMed]
- Santoro, M.; Orrego, C.M.; Hernández Gómez, G. Flora bacteriana cloacal y nasal de Lepidochelys olivacea (Testudines: Cheloniidae) en el pacífico norte de Costa Rica. Rev. Biol. Trop. 2006, 54, 43–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santoro, M.; Hernandéz, G.; Caballero, M.; García, F. Potential bacterial pathogens carried by nesting leatherback turtles (Dermochelys coriacea) in Costa Rica. Chelonian Conserv. Biol. 2008, 7, 104–108. [Google Scholar] [CrossRef]
- Candan, O.; Candan, E.D. Bacterial diversity of the green turtle (Chelonia mydas) nest environment. Sci. Total Environ. 2020, 720, 137717. [Google Scholar] [CrossRef]
- Albini; Abril; Franchini; Hüssy; Filioussis. Stenotrophomonas maltophilia isolated from the airways of animals with chronic respiratory disease. Schweiz. Arch. Für Tierheilkd. 2009, 151, 323–328. [Google Scholar] [CrossRef]
- Martínez-Silvestre, A.; Verdaguer, I.; Vidal, F.; Fortuño, L.; Franch, M.A.; Soler, J.; Velarde, R. High mortality associated with thyroid hyperplasia in European pond turtles, Emys orbicularis (L., 1758) (Emydidae) in a breeding facility at the Ebro Delta, NE Spain. Acta Zool. Bulg. Suppl. 2017, 10, 85–89. [Google Scholar]
- Díaz, M.A.; Cooper, R.K.; Cloeckaert, A.; Siebeling, R.J. Plasmid-mediated high-level gentamicin resistance among enteric bacteria isolated from pet turtles in Louisiana. Appl. Environ. Microbiol. 2006, 72, 306–312. [Google Scholar] [CrossRef] [Green Version]
- Petridou, E.; Filioussis, G.; Karavanis, E.; Kritas, S.K. Stenotrophomonas maltophilia as a causal agent of pyogranulomatous hepatitis in a buffalo (Bubalus bubalis). J. Vet. Diagn. Investig. 2010, 22, 772–774. [Google Scholar] [CrossRef] [Green Version]
- Mercier-Darty, M.; Royer, G.; Lamy, B.; Charron, C.; Lemenand, O.; Gomart, C.; Fourreau, F.; Madec, J.-Y.; Jumas-Bilak, E.; Decousser, J.-W. Comparative whole-genome phylogeny of animal, environmental, and human strains confirms the genogroup organization and diversity of the Stenotrophomonas maltophilia complex. Appl. Environ. Microbiol. 2020, 86, e02919. [Google Scholar] [CrossRef]
- Delli Paoli Carini, A.; Ariel, E.; Picard, J.; Elliott, L. Antibiotic resistant bacterial isolates from captive green turtles and in vitro sensitivity to bacteriophages. Int. J. Microbiol. 2017, 2017, 5798161. [Google Scholar] [CrossRef] [Green Version]
- Warwick, C.; Arena, P.C.; Steedman, C. Health implications associated with exposure to farmed and wild sea turtles. JRSM Short Rep. 2013, 4, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Mendes, R.; Kruijt, M.; De Bruijn, I.; Dekkers, E.; van der Voort, M.; Schneider, J.H.; Piceno, Y.M.; DeSantis, T.Z.; Andersen, G.L.; Bakker, P.A.; et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 2011, 332, 1097–1100. [Google Scholar] [CrossRef] [PubMed]
- Weller, D.M.; Raaijmakers, J.M.; Gardener, B.B.M.; Thomashow, L.S. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol. 2002, 40, 309–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haas, D.; Défago, G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 2005, 3, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Teng, J.L.; Cheung, C.L.; Ngan, A.H.; Huang, Y.; Wong, S.S.; Yip, E.K.; Ng, K.H.; Que, T.-L.; Lau, S.K. Tsukamurella serpentis sp. nov., isolated from the oral cavity of Chinese cobras (Naja atra). Int. J. Syst. Evol. Microbiol. 2016, 66, 3329–3336. [Google Scholar] [CrossRef]
- Maeda, Y.; Stanley, T.; Stirling, J.; Griffiths, M.; Calvert, A.; Stuart Elborn, J.; Cherie Millar, B.; Goldsmith, C.; Rendall, J.; Loughrey, A. No evidence of transmission of bacteria between reptiles and a CF patient—A case report of a young adult CF patient and reptiles. Zoonoses Public Health 2010, 57, e47–e53. [Google Scholar] [CrossRef]
- Martinez-Silvestre, A.; Mateu-de Antonio, E. Bacteriological features of rhinitis in captive Greek tortoises, Testudo graeca. Bull. Assoc. Reptil. Amphib. Vet. 1997, 7, 12–15. [Google Scholar] [CrossRef]
- Ahasan, M.S.; Waltzek, T.B.; Huerlimann, R.; Ariel, E. Fecal bacterial communities of wild-captured and stranded green turtles (Chelonia mydas) on the Great Barrier Reef. FEMS Microbiol. Ecol. 2017, 93, fix139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heynol, V.; Heckers, K.O.; Behncke, H.; Heusinger, A.; Marschang, R.E. Detection of bacteria in oral swabs from healthy commonmusk turtles (Sternotherus odoratus) and West African mud turtles (Pelusios castaneus). J. Herpetol. Med. Surg. 2015, 25, 33–39. [Google Scholar] [CrossRef]
Organism/ Target Gene | Primer Name a | Primer Sequence (5′→3′) | Reference |
---|---|---|---|
Fungi | |||
ITS | ITS5 (f) | GGAAGTAAAAGTCGTAACAAGG | [41] |
ITS4 (r) | TCCTCCGCTTATTGATATGC | ||
EF-1α | EF-1 (f) | ATGGGTAAGGA(A/G)GACAAGAC | [42] |
EF-2 (r) | GGA(G/A)GTACCAGT(G/C)ATCATGTT | ||
LSU | LR0R (f) | ACCCGCTGAACTTAAGC | [43,44] |
LR5 (r) | ATCCTGAGGGAAACTTC | ||
Bacteria | |||
16S | fD2 | AGAGTTTGATCATGGCTCAG | [45] |
rP1 | ACGGTTACCTTGTTACGACTT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Martín, J.M.; Sarmiento-Ramírez, J.M.; Diéguez-Uribeondo, J. Beyond Sea Turtles: Fusarium keratoplasticum in Eggshells of Podocnemis unifilis, a Threatened Amazonian Freshwater Turtle. J. Fungi 2021, 7, 742. https://doi.org/10.3390/jof7090742
García-Martín JM, Sarmiento-Ramírez JM, Diéguez-Uribeondo J. Beyond Sea Turtles: Fusarium keratoplasticum in Eggshells of Podocnemis unifilis, a Threatened Amazonian Freshwater Turtle. Journal of Fungi. 2021; 7(9):742. https://doi.org/10.3390/jof7090742
Chicago/Turabian StyleGarcía-Martín, Joaquina M., Jullie M. Sarmiento-Ramírez, and Javier Diéguez-Uribeondo. 2021. "Beyond Sea Turtles: Fusarium keratoplasticum in Eggshells of Podocnemis unifilis, a Threatened Amazonian Freshwater Turtle" Journal of Fungi 7, no. 9: 742. https://doi.org/10.3390/jof7090742
APA StyleGarcía-Martín, J. M., Sarmiento-Ramírez, J. M., & Diéguez-Uribeondo, J. (2021). Beyond Sea Turtles: Fusarium keratoplasticum in Eggshells of Podocnemis unifilis, a Threatened Amazonian Freshwater Turtle. Journal of Fungi, 7(9), 742. https://doi.org/10.3390/jof7090742