Intake of Koji Amazake Improves Defecation Frequency in Healthy Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Beverages
2.2. Quantification for A. oryzae and Its Metabolites in Koji Amazake
2.3. Study Population
2.4. Study Design
2.5. Physiological and Biochemical Variables of the Participants
2.6. Questionnaires on Defecation and Collection of Fecal Samples
2.7. Defecation Patterns and Fecal Characteristics
2.8. Fecal pH and SCFA Concentration
2.9. DNA Extraction and Next-Generation Sequencing (NGS) Analysis of Bacterial Flora in Feces
2.10. Statistical Analysis
3. Results
3.1. Analysis of Functional Components Derived from A. oryzae
3.2. Participants and Their Background Characteristics
3.3. Defecation Patterns and Fecal Characteristics
3.4. Fecal pH and SCFA Concentration
3.5. NGS Analysis of Bacterial Flora in Feces
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Campbell-Platt, G. Fermented foods—A world perspective. Food Res. Int. 1994, 27, 253–257. [Google Scholar] [CrossRef]
- Afrc, R.F. Probiotics in man and animals. J. Appl. Bacteriol. 1989, 66, 365–378. [Google Scholar] [CrossRef]
- Matsumoto, K.; Takada, T.; Shimizu, K.; Moriyama, K.; Kawakami, K.; Hirano, K.; Kajimoto, O.; Nomoto, K. Effects of a probiotic fermented milk beverage containing Lactobacillus casei strain Shirota on defecation frequency, intestinal microbiota, and the intestinal environment of healthy individuals with soft stools. J. Biosci. Bioeng. 2010, 110, 547–552. [Google Scholar] [CrossRef]
- Arakawa, C.; Suzuki, S.; Nobuta, Y.; Fu, M.; Suzuki, S.; Sunabori, S.; Suganuma, H. Effects of Lactobacillus Brevis KB290 on Bowel Movement and on Intestinal Environment in Normal Healthy Volunteers with a Tendency toward Constipation: A Randomized, Double-Blind, Placebo-Controlled, Cross-over Trial. J. Nutr. Food 2017, 16, 1–18. [Google Scholar] [CrossRef]
- Yaeshima, T.; Takahashi, S.; Matsumoto, N.; Ishibashi, N.; Hayasawa, H.; Iino, H. Effect of Yogurt Containing Bifidobacterium longum BB536 on the Intestinal Environment, Fecal Characteristics and Defecation Frequenc. Biosci. Microflora 1997, 16, 73–77. [Google Scholar] [CrossRef] [Green Version]
- Kurahashi, A. Ingredients, Functionality, and Safety of the Japanese Traditional Sweet Drink Amazake. J. Fungi 2021, 7, 469. [Google Scholar] [CrossRef]
- Sumiyoshi, K.; Nakao, M. Effect of Amazake Ingestion on Constipation. Jpn. J. Nurs. Art Sci. 2017, 16, 36–40. [Google Scholar] [CrossRef]
- Sakurai, M.; Kubota, M.; Iguchi, A.; Shigematsu, T.; Yamaguchi, T.; Nakagawa, S.; Kurahashi, A.; Oguro, Y.; Nishiwaki, T.; Aihara, K.; et al. Effects of Koji amazake and Its Lactic Acid Fermentation Product by Lactobacillus sakei UONUMA on Defecation Status in Healthy Volunteers with Relatively Low Stool Frequency. Food Sci. Technol. Res. 2019, 25, 853–861. [Google Scholar] [CrossRef]
- Yamada, K.; Sato-Mito, N.; Nagata, J.; Umegaki, K. Health Claim Evidence Requirements in Japan. J. Nutr. 2008, 138, 1192S–1198S. [Google Scholar] [CrossRef] [PubMed]
- Dimidi, E.; Christodoulides, S.; Fragkos, K.; Scott, S.M.; Whelan, K. The effect of probiotics on functional constipation in adults: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2014, 100, 1075–1084. [Google Scholar] [CrossRef] [Green Version]
- Yu, T.; Zheng, Y.-P.; Tan, J.-C.; Xiong, W.-J.; Wang, Y.; Lin, L. Effects of Prebiotics and Synbiotics on Functional Constipation. Am. J. Med. Sci. 2017, 353, 282–292. [Google Scholar] [CrossRef]
- Gibson, G.R.; Roberfroid, M.B. Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar] [CrossRef]
- Oguro, Y.; Nishiwaki, T.; Shinada, R.; Kobayashi, K.; Kurahashi, A. Metabolite profile of koji amazake and its lactic acid fermentation product by Lactobacillus sakei UONUMA. J. Biosci. Bioeng. 2017, 124, 178–183. [Google Scholar] [CrossRef]
- Oguro, Y.; Nakamura, A.; Kurahashi, A. Effect of temperature on saccharification and oligosaccharide production efficiency in koji amazake. J. Biosci. Bioeng. 2018, 127, 570–574. [Google Scholar] [CrossRef]
- Unno, T.; Sugawara, M.; Nakakuki, T.; Okada, G. Effect of β-Glucooligosaccharides on the Human Intestinal Microflora. Bifidobact. Microflora. 1993, 5, 37–50. [Google Scholar] [CrossRef]
- Nagura, T.; Muraguchi, H.; Uchino, K.; Aritsuka, T.; Benno, Y. Effects of Ingestion of Raffinose-Rich Soup on the Fecal Flora and Daily Defecation in Humans. J Intestin. Microbiol. 1999, 13, 1–7. [Google Scholar] [CrossRef]
- Kohmoto, T.; Fukui, F.; Takaku, H.; Mitsuoka, T. Dose-response Test of Isomaltooligosaccharides for Increasing Fecal Bifidobacteria. Agric. Biol. Chem. 1991, 55, 2157–2159. [Google Scholar] [CrossRef]
- Kaneko, T.; Kohmoto, T.; Kikuchi, H.; Shiota, M.; Yatake, T.; Iino, H.; Tsuji, K. Effects of Isomaltooligosaccharides Intake on Defecation and Intestinal Environment in Healthy Volunteers. J. Home Econ. Jpn. 1993, 44, 245–254. [Google Scholar] [CrossRef]
- Yasuhiko, F.; Masao, O. Structure of cerebroside in Aspergillus oryzae. Biochim. Et Biophys. Acta (BBA)-Lipids Lipid Metab. 1977, 486, 161–171. [Google Scholar] [CrossRef]
- Sakamoto, M.; Skatani, M.; Ferdouse, J.; Hmajima, H.; Tsuge, K.; Nishimukai, M.; Yanagita, T.; Nagao, K.; Mitsukake, S.; Kitagaki, H. Development of a Quantitative Method for the Contents of Glycosylceramide Contained in Japanese Foods Brewed with Koji and Its Application. J. Brew Soc. Jan. 2017, 112, 655–662. [Google Scholar]
- Hamajima, H.; Fujikawa, A.; Yamashiro, M.; Ogami, T.; Kitamura, S.; Tsubata, M.; Tan, S.; Matsunaga, H.; Sawada, K.; Kumagai, S.; et al. Chemical Analysis of the Sugar Moiety of Monohexosylceramide Contained in Koji, Japanese Traditional Rice Fermented with Aspergillus. Fermentation 2016, 2, 2. [Google Scholar] [CrossRef] [Green Version]
- Hamajima, H.; Matsunaga, H.; Fujikawa, A.; Sato, T.; Mitsutake, S.; Yanagita, T.; Nagao, K.; Nakayama, J.; Kitagaki, H. Japanese traditional dietary fungus koji Aspergillus oryzae functions as a prebiotic for Blautia coccoides through glycosylceramide: Japanese dietary fungus koji is a new prebiotic. SpringerPlus 2016, 5, 1321. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, J.; Neyrinck, A.M.; Zhang, Z.; Seethaler, B.; Nazare, J.-A.; Sánchez, C.R.; Roumain, M.; Muccioli, G.G.; Bindels, L.B.; Cani, P.D.; et al. Metabolite profiling reveals the interaction of chitin-glucan with the gut microbiota. Gut Microbes 2020, 12. [Google Scholar] [CrossRef]
- Kurahashi, A.; Nakamura, A.; Oguro, Y.; Watanabe, K.; Ozaki, N.; Goto, H.; Hirayama, M. Beneficial Effects of Koji Amazake in Suppressing the Postprandial Increase in Blood Glucose and Insulin Levels in Healthy Adults. J. Brew Soc. Jan. 2020, 115, 43–53. [Google Scholar]
- Fujii, F.; Ozeki, K.; Kanda, A.; Hamachi, M.; Nunokawa, Y. A Simple Method for the Determination of Grown Mycelial Content in Ricekoji using Commercial Cell Wall Lytic Enzyme, Yatalase. J. Brew. Soc. Jpn. 1992, 87, 757–759. [Google Scholar] [CrossRef]
- Reissig, J.L.; Storminger, J.L.; Leloir, L. A Modified Colorimetric Method for the Estimation of N-Acetylamino Sugars. J. Biol. Chem. 1955, 217, 959–966. [Google Scholar] [CrossRef]
- Ogata, T.; Nakamura, T.; Anjitsu, K.; Yaeshima, T.; Takahashi, S.; Fukuwatari, Y.; Ishibashi, N.; Hayasawa, H.; Fujisawa, T.; Iino, H. Effect of Bifidobacterium Longum BB536 Administration on the Intestinal Environment, Defecation Frequency and Fecal Characteristics of Human Volunteers. Biocsi. Microflora 1997, 16, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Saito, T.; Hayakawa, T.; Nakamura, K.; Takita, T.; Suzuki, K.; Innami, S. Fecal Output, Gastrointestinal Transit Time, Frequency of Evacuation and Apparent Excretion Rate of Dietary Fiber in Young Men Given Diets Containing Different Levels of Dietary Fiber. J. Nutr. Sci. Vitaminol. 1991, 37, 493–508. [Google Scholar] [CrossRef]
- Lewis, S.J.; Heaton, K.W. Stool Form Scale as a Useful Guide to Intestinal Transit Time. Scand. J. Gastroenterol. 1997, 32, 920–924. [Google Scholar] [CrossRef]
- Takahashi, S.; Tomita, J.; Nishioka, K.; Hisada, T.; Nishijima, M. Development of a Prokaryotic Universal Primer for Simultaneous Analysis of Bacteria and Archaea Using Next-Generation Sequencing. PLoS ONE 2014, 9, e105592. [Google Scholar] [CrossRef] [Green Version]
- Hisada, T.; Endoh, K.; Kuriki, K. Inter- and intra-individual variations in seasonal and daily stabilities of the human gut microbiota in Japanese. Arch. Microbiol. 2015, 197, 919–934. [Google Scholar] [CrossRef] [Green Version]
- Aronesty, E. Comparison of Sequencing Utility Programs. Open Bioinformatics J. 2013, 7, 1–8. [Google Scholar] [CrossRef]
- Gordon, A.; Hannon, G.J. FASTQ/A Short-Reads Preprocessing Tools. 2010. Available online: http://hannonlab.cshl.edu/fastx_toolkit/ (accessed on 24 August 2020).
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [Green Version]
- Kasai, C.; Sugimoto, K.; Moritani, I.; Tanaka, J.; Oya, Y.; Inoue, H.; Tameda, M.; Shiraki, K.; Ito, M.; Takei, Y.; et al. Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC Gastroenterol. 2015, 15, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirata, M.; Tsuge, K.; Jayakody, L.N.; Urano, Y.; Sawada, K.; Inaba, S.; Nagao, K.; Kitagaki, H. Structural Determination of Glucosylceramides in the Distillation Remnants of Shochu, the Japanese Traditional Liquor, and Its Production by Aspergillus kawachii. J. Agric. Food Chem. 2012, 60, 11473–11482. [Google Scholar] [CrossRef]
- Sugawara, T.; Aida, K.; Duan, J.; Hirata, T. Analysis of glucosylceramides from various sources by liquid chromatography-ion trap mass spectrometry. J. Oleo Sci. 2010, 59, 387–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hijova, E.; Chmelarova, A. Short chain fatty acids and colonic health. Bratisl Lek List. 2007, 108, 354–358. [Google Scholar]
- Kruse, H.-P.; Kleessen, B.; Blaut, M. Effects of inulin on faecal bifidobacteria in human subjects. Br. J. Nutr. 1999, 82, 375–382. [Google Scholar] [CrossRef] [Green Version]
- Swanson, K.; Grieshop, C.M.; Flickinger, E.A.; Bauer, L.L.; Wolf, B.W.; Chow, J.; Garleb, K.A.; Williams, J.A.; Fahey, G.C. Fructooligosaccharides and Lactobacillus acidophilus Modify Bowel Function and Protein Catabolites Excreted by Healthy Humans. J. Nutr. 2002, 132, 3042–3050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hess, J.; Wang, Q.; Gould, T.; Slavin, J. Impact of Agaricus bisporus Mushroom Consumption on Gut Health Markers in Healthy Adults. Nutrients 2018, 10, 1402. [Google Scholar] [CrossRef] [Green Version]
- Asai, S.; Miyachi, H. Evaluation of skin-moisturizing effects of oral or percutaneous use of plant ceramides. Rinsho byori. Jpn. J. Clin. Pathol. 2007, 55, 209–215. [Google Scholar]
- Uchiyama, T.; Nakano, Y.; Ueda, O.; Mori, H.; Nakashima, M.; Noda, A.; Ishizaki, C.; Mizoguchi, M. Oral Intake of Glucosylceramide Improves Relatively Higher Level of Transepidermal Water Loss in Mice and Healthy Human Subjects. J. Health Sci. 2008, 54, 559–566. [Google Scholar] [CrossRef] [Green Version]
- Miyagawa, M.; Fujikawa, A.; Nagadome, M.; Kohama, K.; Ogami, T.; Kitamura, S.; Kitagaki, H. Glycosylceramides Purified from the Japanese Traditional Non-Pathogenic Fungus Aspergillus and Koji Increase the Expression of Genes Involved in Tight Junctions and Ceramide Delivery in Normal Human Epidermal Keratinocytes. Fermentation 2019, 5, 43. [Google Scholar] [CrossRef] [Green Version]
- Yoshimi, A.; Miyazawa, K.; Abe, K. Cell wall structure and biogenesis in Aspergillus species. Biosci. Biotechnol. Biochem. 2016, 80, 1700–1711. [Google Scholar] [CrossRef] [Green Version]
- Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Microbial Ecology: Human Gut Microbes Associated with Obesity. Nature 2006, 444, 1022–1023. [Google Scholar] [CrossRef]
- Schwiertz, A.; Taras, D.; Schäfer, K.; Beijer, S.; Bos, N.A.; Donus, C.; Hardt, P.D. Microbiota and SCFA in Lean and Overweight Healthy Subjects. Obesity 2010, 18, 190–195. [Google Scholar] [CrossRef]
- Fernandez-Raudales, D.; Hoeflinger, J.L.; Bringe, N.A.; Cox, S.B.; Dowd, S.; Miller, M.J.; De Mejia, E.G. Consumption of different soymilk formulations differentially affects the gut microbiomes of overweight and obese men. Gut Microbes 2012, 3, 490–500. [Google Scholar] [CrossRef]
- Kassaian, N.; Feizi, A.; Rostami, S.; Aminorroaya, A.; Yaran, M.; Amini, M. The effects of 6 mo of supplementation with probiotics and synbiotics on gut microbiota in the adults with prediabetes: A double blind randomized clinical trial. Nutrition 2020, 79–80, 110854. [Google Scholar] [CrossRef]
Item | koji amazake | Placebo |
---|---|---|
Energy (Kcal) | 127.4 | 128.6 |
Moisture (g) | 86.4 | 85.6 |
Protein (g) | 1.4 | 1.5 |
Fat (g) | 0.4 | 0.2 |
Total GlcCer (mg) | 1.39 | 0.41 |
GlcCer from A. oryzae (mg) | 1.16 | ND |
GlcCer from rice (mg) | 0.23 | 0.41 |
Ash (g) | 0.1 | 0.1 |
Carbohydrate (CHO) (g) | 29.7 | 30.6 |
Dietary fiber (g) | 0.2 | 0.1 |
Available CHO (g) | 29.5 | 30.5 |
Digestible CHO (g) | 26.4 | 28.0 |
Glucose (g) | 26.1 | 27.8 |
Maltose (g) | 0.17 | 0.20 |
Trehalose (g) | 0.14 | ND |
Prebiotics (g) | 3.12 | 2.47 |
Isomaltose (g) | 1.96 | 1.89 |
Isomaltotiose (g) | 0.10 | 0.18 |
Panose (g) | 0.10 | ND |
Sophorose (g) | 0.66 | 0.32 |
Nigerose (g) | 0.20 | 0.08 |
Kojibiose (g) | 0.10 | ND |
Group n | Time Point (Period) (1) | Weekly Defecation Patterns (3,4) | Scores of Fecal Characteristics (2,3,4) | |||||
---|---|---|---|---|---|---|---|---|
Defecation Days (Days/Week) | Frequency (Times/Week) | Weight (g/Week) | Shape | Color | Odor | Sensation | ||
koji amazake n = 22 age range 20–66 | 0 w (−1 to 0 w) | 3.95 ± 1.05 a | 4.68 ± 1.59 a | 518 ± 277 | 3.24 ± 0.49 | 2.76 ± 0.40 a | 2.89 ± 0.67 | 3.31 ± 0.88 |
1 w (0 to 1 w) | 4.73 ± 1.75 a | 5.95 ± 2.61 a | 616 ± 330 | 3.08 ± 0.51 | 3.01 ± 0.39 a | 2.96 ± 0.38 | 3.15 ± 0.78 | |
2 w (1 to 2 w) | 5.09 ± 1.51 a,* | 6.32 ± 2.21 a,* | 712 ± 385 # | 3.02 ± 0.44 | 3.11 ± 0.38 b | 2.96 ± 0.43 | 3.42 ± 0.84 | |
3 w (2 to 3 w) | 5.41 ± 1.53 b,* | 6.73 ± 2.76 b,** | 752 ± 360 | 2.97 ± 0.40 | 3.21 ± 0.49 b | 2.88 ± 0.42 | 3.31 ± 0.65 | |
4 w (3 to 4 w) | 5.09 ± 1.80 a,* | 6.32 ± 2.53 a,** | 724 ± 402 * | 3.11 ± 0.36 | 2.97 ± 0.45 a | 2.78 ± 0.45 | 3.20 ± 0.78 | |
5 w (4 to 5 w) | 4.86 ± 1.55 a | 6.00 ± 2.60 a | 665 ± 387 | 3.11 ± 0.32 | 3.03 ± 0.41 a | 2.82 ± 0.38 | 3.43 ± 0.70 | |
Placebo n = 22 age range 22–66 | 0 w (−1 to 0 w) | 4.00 ± 1.07 | 4.73 ± 1.67 | 484 ± 235 | 3.34 ± 0.58 | 2.78 ± 0.54 | 2.86 ± 0.72 | 3.02 ± 0.85 |
1 w (0 to 1 w) | 4.00 ± 1.41 | 4.95 ± 2.03 | 515 ± 264 | 3.16 ± 0.54 | 3.04 ± 0.54 | 3.15 ± 0.54 | 3.17 ± 0.60 | |
2 w (1 to 3 w) | 4.14 ± 1.42 | 4.50 ± 1.71 | 519 ± 272 | 3.15 ± 0.67 | 3.08 ± 0.60 | 3.01 ± 0.60 | 3.40 ± 0.71 | |
3 w (2 to 3 w) | 4.18 ± 1.50 | 5.09 ± 9.18 | 647 ± 386 | 3.27 ± 0.70 | 3.06 ± 0.54 | 2.92 ± 0.56 | 3.15 ± 0.70 | |
4 w (3 to 4 w) | 3.95 ± 1.46 | 4.50 ± 1.85 | 501 ± 225 | 3.31 ± 0.66 | 3.07 ± 0.51 | 2.86 ± 0.58 | 3.12 ± 0.73 | |
5 w (4 to 5 w) | 4.77 ± 1.34 | 5.59 ± 1.94 | 681 ± 441 | 3.45 ± 0.64 | 3.04 ± 0.50 | 3.00 ± 0.50 | 3.26 ± 0.64 | |
ANOVA p value (5) | Group | 0.0638 | 0.0463 | 0.2296 | 0.0886 | 0.9871 | 0.5117 | 0.4944 |
Time | 0.0003 | 0.0011 | 0.0000 | 0.1035 | 0.0001 | 0.0350 | 0.1135 | |
Group × time | 0.0036 | 0.0031 | 0.0282 | 0.6584 | 0.7229 | 0.6205 | 0.8051 |
Fatty Acid | Group | Fecal Fatty Acid Concentration, μmol/g Feces | Weekly Fecal Fatty Acid Weight, mmol | ||||
---|---|---|---|---|---|---|---|
0 w | 3 w | 5 w | 0 w | 3 w | 5 w | ||
Succinic acid | amazake | 2.22 ± 5.44 | 1.98 ± 4.36 | 5.02 ± 9.74 | 0.56 ± 0.98 | 1.09 ± 2.51 | 1.44 ± 2.91 |
Placebo | 1.33 ± 0.92 | 2.86 ± 4.93 | 3.13 ± 6.16 | 0.52 ± 0.89 | 2.51 ± 3.02 | 1.73 ± 3.95 | |
Acetic acid | amazake | 41.3 ± 15.1 | 48.1 ± 17.2 | 47.0 ± 12.7 | 21.7 ± 15.3 a | 37.0 ± 27.3 b | 32.1 ± 23.4 a |
Placebo | 31.3 ± 15.8 a | 44.8 ± 16.4 b | 42.6 ± 19.4 a | 16.7 ± 14.8 | 30.3 ± 27.9 | 26.9 ± 19.7 | |
Propionic acid | amazake | 13.0 ± 5.5 | 15.9 ± 8.5 | 13.6 ± 5.5 | 7.29 ± 6.26 | 12.87 ± 11.08 | 9.18 ± 7.68 |
Placebo | 10.8 ± 4.1 a | 15.8 ± 7.0 b | 14.6 ± 7.5 a | 5.25 ± 3.37 a | 11.08 ± 10.65 b | 9.13 ± 6.40 a | |
iso-Butyric acid | amazake | 2.03 ± 0.92 | 1.37 ± 0.67 | 1.77 ± 0.85 | 0.37 ± 0.79 | 0.79 ± 0.84 | 0.65 ± 0.90 |
Placebo | 1.59 ± 0.59 | 1.80 ± 0.54 | 2.04 ± 0.77 | 0.28 ± 0.36 a | 0.84 ± 0.83 b | 0.53 ± 0.68 a | |
n-Butyric acid | amazake | 8.95 ± 5.13 | 10.18 ± 5.97 | 9.99 ± 5.88 | 4.42 ± 2.92 a | 7.83 ± 6.72 b | 6.71 ± 6.49 a |
Placebo | 6.98 ± 4.12 | 9.27 ± 4.71 | 10.05 ± 7.51 | 3.69 ± 3.88 | 6.72 ± 4.51 | 6.49 ± 6.22 | |
iso-Valeric acid | amazake | 2.68 ± 1.50 | 2.08 ± 0.79 | 2.18 ± 1.44 | 0.79 ± 1.31 | 1.35 ± 1.07 | 1.15 ± 1.30 |
Placebo | 2.18 ± 1.06 | 2.48 ± 1.15 | 2.39 ± 1.21 | 0.67 ± 0.52 | 1.07 ± 1.07 | 1.28 ± 1.07 | |
n-Valeric acid | amazake | 2.71 ± 2.57 | 2.18 ± 0.84 | 1.91 ± 0.82 | 0.78 ± 1.19 | 1.36 ± 1.26 | 1.11 ± 1.21 |
Placebo | 1.38 ± 0.39 | 2.08 ± 1.05 | 2.14 ± 0.93 | 0.35 ± 0.38 a | 1.26 ± 1.06 b | 0.73 ± 0.83 a | |
Total SCFA | amazake | 66.8 ± 24.8 | 78.4 ± 29.9 | 74.8 ± 18.9 | 35.3 ± 24.8 a | 61.2 ± 45.6 b | 50.9 ± 35.8 a |
Placebo | 52.2 ± 21.3 a | 73.9 ± 22.6 b | 71.5 ± 32.1 b | 26.9 ± 21.2 a | 41.4 ± 45.0 b | 45.0 ± 30.3 a | |
Total fatty acids | amazake | 74.3 ± 43.9 | 85.4 ± 43.9 | 78.8 ± 19.6 | 38.4 ± 28.7 a | 62.4 ± 46.4 b | 52.4 ± 35.3 a |
Placebo | 60.7 ± 27.8 a | 91.6 ± 45.3 b | 74.4 ± 32.1 a | 27.9 ± 22.9 a | 52.7 ± 44.3 b | 47.2 ± 31.6 a |
Genera | Relative Abundance%, Koji Amazake n = 22 | Relative Abundance%, Placebo n = 22 | ||||
---|---|---|---|---|---|---|
0 w | 3 w | 5 w | 0 w | 3 w | 5 w | |
Blautia | 15.40 ± 8.62 | 13.03 ± 9.65 | 14.25 ± 7.64 | 12.17 ± 6.45 | 14.42 ± 6.07 | 14.42 ± 8.71 |
Bifidobacterium | 13.57 ± 8.96 | 14.91 ± 8.72 | 16.66 ± 9.11 | 12.38 ± 10.57 | 12.31 ± 11.12 | 12.31 ± 12.03 |
Bacteroides | 6.56 ± 5.77 | 8.96 ± 6.63 | 5.94 ± 5.28 | 9.52 ± 5.09 | 7.14 ± 6.16 | 7.14 ± 5.04 |
Lachnospiracea(a) | 6.50 ± 3.48 | 7.44 ± 5.45 | 6.01 ± 3.65 | 6.78 ± 4.22 | 6.86 ± 4.67 | 6.86 ± 3.19 |
Faecalibacterium | 5.74 ± 4.60 | 6.23 ± 4.13 | 5.17 ± 3.39 | 6.18 ± 4.72 | 5.49 ± 4.50 | 5.49 ± 4.60 |
Collinsella | 2.84 ± 2.97 | 5.01 ± 4.85 | 5.26 ± 4.96 | 3.15 ± 2.54 | 5.58 ± 4.11 | 5.58 ± 3.99 |
Gemmiger | 5.36 ± 4.09 | 4.42 ± 3.43 | 4.83 ± 4.02 | 4.95 ± 5.18 | 3.36 ± 2.83 | 3.36 ± 5.81 |
Ruminococcus | 5.42 ± 5.72 | 3.28 ± 4.01 | 5.43 ± 5.64 | 4.58 ± 5.63 | 4.01 ± 4.53 | 4.01 ± 4.86 |
Fusicatenibacter | 4.66 ± 4.10 | 2.68 ± 2.40 | 2.97 ± 2.97 | 5.09 ± 4.13 | 3.57 ± 3.05 | 3.57 ± 2.83 |
Ruminococcus2 | 4.43 ± 6.23 | 2.82 ± 2.70 | 2.80 ± 2.48 | 3.99 ± 3.17 | 3.55 ± 4.01 | 3.55 ± 2.47 |
Roseburia | 3.31 ± 3.80 | 2.31 ± 2.22 | 2.46 ± 1.91 | 3.00 ± 3.74 | 330 ± 3.86 | 3.30 ± 3.85 |
Clostridium XlVa | 2.15 ± 1.65 | 2.56 ± 2.11 | 2.44 ± 2.49 | 2.61 ± 2.38 | 2.91 ± 2.35 | 2.91 ± 1.64 |
Rejected hit | 2.28 ± 4.90 | 1.84 ± 1.87 | 2.10 ± 2.98 | 2.43 ± 3.25 | 2.18 ± 2.84 | 2.18 ± 2.26 |
Anaerostipes | 3.21 ± 2.56 | 2.40 ± 2.27 | 2.35 ± 2.08 | 2.06 ± 1.96 | 1.56 ± 1.70 | 1.56 ± 1.56 |
Streptococcus | 1.99 ± 3.37 | 1.41 ± 1.83 | 1.81 ± 1.94 | 1.79 ± 1.88 | 2.11 ± 2.14 | 2.11 ± 2.70 |
Clostridium IV | 1.32 ± 2.14 | 1.02 ± 1.14 | 1.49 ± 1.92 | 2.85 ± 3.64 | 1.68 ± 2.51 | 1.68 ± 3.17 |
Clostridium XVIII | 1.30 ± 1.90 | 1.41 ± 1.61 | 1.24 ± 1.17 | 1.13 ± 1.03 | 1.63 ± 1.53 | 1.63 ± 1.53 |
Dorea | 1.59 ± 0.95 | 1.41 ± 1.73 | 1.39 ± 1.33 | 1.54 ± 1.76 | 1.50 ± 1.39 | 1.50 ± 1.34 |
Megamonas | 0.04 ± 0.17 | 1.40 ± 4.46 | 0.43 ± 1.86 | 0.62 ± 2.61 | 1.49 ± 6.29 | 1.49 ± 8.45 |
Megasphaera | 1.05 ± 2.48 | 1.37 ± 2.28 | 1.49 ± 2.66 | 0.38 ± 1.40 | 1.59 ± 6.59 | 1.59 ± 2.10 |
Prevotella | 0.21 ± 0.55 | 1.30 ± 4.37 | 0.17 ± 0.45 | 0.17 ± 0.40 | 0.22 ± 0.64 | 0.22 ± 0.18 |
Dialister | 0.88 ± 1.99 | 0.98 ± 1.59 | 1.35 ± 2.81 | 0.61 ± 0.89 | 0.97 ± 1.25 | 0.86 ± 1.40 |
Clostridium XI | 0.51 ± 0.74 | 0.62 ± 0.69 | 0.75 ± 0.99 | 1.20 ± 1.04 | 0.72 ± 0.68 | 0.99 ± 1.40 |
Coprococcus | 1.02 ± 1.56 | 0.69 ± 1.00 | 0.86 ± 1.26 | 0.94 ± 1.08 | 0.81 ± 0.99 | 0.80 ± 1.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurahashi, A.; Enomoto, T.; Oguro, Y.; Kojima-Nakamura, A.; Kodaira, K.; Watanabe, K.; Ozaki, N.; Goto, H.; Hirayama, M. Intake of Koji Amazake Improves Defecation Frequency in Healthy Adults. J. Fungi 2021, 7, 782. https://doi.org/10.3390/jof7090782
Kurahashi A, Enomoto T, Oguro Y, Kojima-Nakamura A, Kodaira K, Watanabe K, Ozaki N, Goto H, Hirayama M. Intake of Koji Amazake Improves Defecation Frequency in Healthy Adults. Journal of Fungi. 2021; 7(9):782. https://doi.org/10.3390/jof7090782
Chicago/Turabian StyleKurahashi, Atsushi, Toshihiko Enomoto, Yoshifumi Oguro, Ayana Kojima-Nakamura, Kazuya Kodaira, Kenichi Watanabe, Nobuhiro Ozaki, Hiroshi Goto, and Masao Hirayama. 2021. "Intake of Koji Amazake Improves Defecation Frequency in Healthy Adults" Journal of Fungi 7, no. 9: 782. https://doi.org/10.3390/jof7090782
APA StyleKurahashi, A., Enomoto, T., Oguro, Y., Kojima-Nakamura, A., Kodaira, K., Watanabe, K., Ozaki, N., Goto, H., & Hirayama, M. (2021). Intake of Koji Amazake Improves Defecation Frequency in Healthy Adults. Journal of Fungi, 7(9), 782. https://doi.org/10.3390/jof7090782