Prevalence of Pneumocystosis in Sub-Saharan Africa and Helminth Immune Modulation
Abstract
:Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dunbar, A.; Schauwvlieghe, A.; Algoe van Hellemond, J.J.; Reynders, M.; Vandecasteele, S.; Boelens, J.; Depuydt, P.; Rijnders, B. Epidemiology of Pneumocystis jirovecii Pneumonia and (Non-) use of Prophylaxis. Front. Cell. Infect. Microbiol. 2020, 10, 224. [Google Scholar] [CrossRef] [PubMed]
- Bateman, M.; Oladele, R.; Kolls, J.K. Diagnosing Pneumocystis jirovecii pneumonia: A review of current methods and novel approaches. Med. Mycol. 2020, 58, 1015–1028. [Google Scholar] [CrossRef]
- Dhingra, D.; Singh, A.; Mandal, A. Pneumocystis jirovecii pneumonia in children. J. Pediatr. Infect. Dis. 2018, 13, 2–9. [Google Scholar] [CrossRef]
- Nevez, G.; Guillaud-Saumur, T.; Cros, P.; Papon, N.; Vallet, S.; Quinio, D.; Minoui-Tran, A.; Pilorgé, L.; de Parscau, L.; Sizun, J.; et al. Pneumocystis primary infection in infancy: Additional french data and review of the literature. Med. Mycol. 2019, 58, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Pereira-Díaz, E.; Moreno-Verdejo, F.; De La Horra, C.; Guerrero, J.A.; Calderón, E.J.; Medrano, F.J. Changing trends in the epidemiology and risk factors of Pneumocystis pneumonia in Spain. Front. Public Health 2019, 7, 275. [Google Scholar] [CrossRef] [PubMed]
- Respaldiza, N.; Medrano, F.J.; Medrano, A.C.; Varela, J.M.; de la Horra, C.; Montes-Cano, M.; Ferrer, S.; Wichmann, I.; Gargallo-Viola, D.; Calderon, E.J. High seroprevalence of Pneumocystis infection in spanish children. Clin. Microbiol. Infect. 2004, 10, 1029–1031. [Google Scholar] [CrossRef] [Green Version]
- Vargas, S.L.; Hughes, W.T.; Santolaya, M.E.; Ulloa, A.V.; Ponce, C.A.; Cabrera, C.E.; Cumsille, F.; Gigliotti, F. Search for primary infection by Pneumocystis Carinii in a cohort of normal, healthy infants. Clin. Infect. Dis. 2001, 32, 855–861. [Google Scholar] [CrossRef] [Green Version]
- Morris, A.; Wei, K.; Afshar, K.; Huang, L. Epidemiology and clinical significance of Pneumocystis colonization. J. Infect. Dis. 2008, 197, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Charpentier, E.; Ménard, S.; Marques, C.; Berry, A.; Iriart, X. Immune response in Pneumocystis infections according to the host immune system status. J. Fungi. 2021, 7, 625. [Google Scholar] [CrossRef]
- Elsegeiny, W.; Zheng, M.; Eddens, T.; Gallo, R.L.; Dai, G.; Trevejo-Nunez, G.; Castillo, P.; Kracinovsky, K.; Cleveland, H.; Horne, W.; et al. Murine models of Pneumocystis infection recapitulate human primary immune disorders. JCI Insight 2018, 3, e91894. [Google Scholar] [CrossRef]
- Hoving, J.C.; Kolls, J.K. new advances in understanding the host immune response to Pneumocystis. Curr. Opin. Microbiol. 2017, 40, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Deckman, J.M.; Kurkjian, C.J.; McGillis, J.P.; Cory, T.J.; Birket, S.E.; Schutzman, L.M.; Murphy, B.S.; Garvy, B.A.; Feola, D.J. Pneumocystis infection alters the activation state of pulmonary macrophages. Immunobiology 2017, 222, 188–197. [Google Scholar] [CrossRef] [Green Version]
- Nandakumar, V.; Hebrink, D.; Jenson, P.; Kottom, T.; Limper, A.H. Differential macrophage polarization from Pneumocystis in immunocompetent and immunosuppressed hosts: Potential adjunctive therapy during pneumonia. Infect. Immun. 2017, 85, e00939-16. [Google Scholar] [CrossRef] [Green Version]
- Hay, J.W.; Osmond, D.H.; Jacobson, M.A. Projecting the medical costs of aids and arc in the United States. J. Acquir. Immune Defic. Syndr. 1988, 1, 466–485. [Google Scholar]
- Serwadda, D.; Goodgame, R.; Lucas, S.; Kocjan, G. Absence of pneumocystosis in ugandan aids patients. AIDS 1989, 3, 47–48. [Google Scholar]
- Elvin, K.M.; Lumbwe, C.M.; Luo, N.P.; Bjorkman, A.; Kallenius, G.; Linder, E. Pneumocystis carinii is not a major cause of pneumonia in HIV infected patients in Lusaka, Zambia. Trans. R. Soc. Trop. Med. Hyg. 1989, 83, 553–555. [Google Scholar] [CrossRef]
- Karstaedt, A.S. Aids–The baragwanath experience. Part III. HIV infection in adults at Baragwanath Hospital. S. Afr. Med. J. 1992, 82, 95–97. [Google Scholar]
- Wasserman, S.; Engel, M.E.; Griesel, R.; Mendelson, M. Burden of Pneumocystis pneumonia in HIV-infected adults in sub-Saharan Africa: A systematic review and meta-analysis. BMC Infect. Dis. 2016, 16, 482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, A.; Lundgren, J.D.; Masur, H.; Walzer, P.D.; Hanson, D.L.; Frederick, T.; Huang, L.; Beard, C.B.; Kaplan, J.E. Current epidemiology of Pneumocystis pneumonia. Emerg. Infect. Dis. 2004, 10, 1713–1720. [Google Scholar] [CrossRef]
- de Armas Rodríguez, Y.; Wissmann, G.; Müller, A.L.; Pederiva, M.A.; Brum, M.C.; Brackmann, R.L.; De Paz, V.C.; Calderón, E.J. Pneumocystis jirovecii pneumonia in developing countries. Parasite 2011, 18, 219–228. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.F.; Lindley, A.R.; Malinc, A.S.; Ambroseb, H.E.; Wakefieldb, A.E. Isolates of Pneumocystis jirovecii from Harare show high genotypic similarity to isolates from London at the superoxide dismutase locus. Trans. R. Soc. Trop. Med. Hyg. 2005, 99, 202–206. [Google Scholar] [CrossRef]
- Duggal, P.; An, P.; Beaty, T.H.; Strathdee, S.A.; Farzadegan, H.; Markham, R.B.; Johnson, L.; O’Brien, S.J.; Vlahov, D.; Winkler, C.A. Genetic influence of CXCR6 chemokine receptor alleles on PCP-mediated AIDS progression among African Americans. Genes Immun. 2003, 4, 245–250. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.F.; Huang, L.; Walzer, P.D. The relationship between Pneumocystis infection in animal and human hosts, and climatological and environmental air pollution factors: A systematic review. OBM Genet. 2018, 2, 1–20. [Google Scholar] [CrossRef]
- Hotez, P.J.; Kamath, A. Neglected tropical diseases in Sub-Saharan Africa: Review of their prevalence, distribution, and disease burden. PLoS Negl. Trop. Dis. 2009, 3, e412. [Google Scholar] [CrossRef] [Green Version]
- Harris, N.; Loke, P. Recent advances in type-2-cell-mediated immunity: Insights from helminth infection. Immunity 2017, 47, 1024–1036. [Google Scholar] [CrossRef] [Green Version]
- Maizels, R.M. Regulation of immunity and allergy by helminth parasites. Allergy 2020, 75, 524–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, J.D.; Jackson, J.A.; Faulkner, H.; Behnke, J.; Else, K.J.; Kamgno, J.; Boussinesq, M.; Bradley, J.E. Intensity of intestinal infection with multiple worm species is related to regulatory cytokine output and immune hyporesponsiveness. J. Infect. Dis. 2008, 197, 1204–1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheer, S.; Krempl, C.; Kallfass, C.; Frey, S.; Jakob, T.; Mouahid, G.; Moné, H.; Schmitt-Gräff, A.; Staeheli, P.; Lamers, M.C. Schistosoma mansoni bolsters anti-viral immunity in the murine respiratory tract. PLoS ONE 2014, 9, e112469. [Google Scholar] [CrossRef] [PubMed]
- Potian, J.A.; Rafi, W.; Bhatt, K.; McBride, A.; Gause, W.C.; Salgame, P. Preexisting helminth infection induces inhibition of innate pulmonary anti-tuberculosis defense by engaging the IL-4 receptor pathway. J. Exp. Med. 2011, 208, 1863–1874. [Google Scholar] [CrossRef]
- Nacher, M.; Singhasivanon, P.; Traore, B.; Vannaphan, S.; Gay, F.; Chindanond, D. Helminth infections are associated with protection from cerebral malaria and increased nitrogen derivatives concentrations in Thailand. Am. J. Trop. Med. Hyg. 2002, 66, 304–309. [Google Scholar] [CrossRef]
- Furze, R.; Hussell, T.; Selkirk, M. Amelioration of influenza-induced pathology in mice by coinfection with Trichinella spiralis. Infect. Immun. 2006, 74, 1924–1932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, I.B.; Pickering, D.A.; Troy, S.; Croese, J.; Loukas, A.; Navarro, S. Suppression of inflammation and tissue damage by a hookworm recombinant protein in experimental colitis. Clin. Trans. Immunol. 2017, 6, e157. [Google Scholar] [CrossRef]
- Fonte, L.; Acosta, A.; Sarmiento, M.E.; Ginori, M.; García, G.; Norazmi, M.N. COVID 19 lethality in Sub-Saharan Africa and helminth immune modulation. Front. Immunol. 2020, 11, 574910. [Google Scholar] [CrossRef]
- Schoffelena, A.F.; van Lelyvelda, S.F.L.; Bartha, R.E.; Frank de Wolfb, L.G.; Neteac, M.G.; An Hoepelmana, A.I.M. Lower incidence of Pneumocystis jirovecii pneumonia among Africans in the Netherlands host or environmental factors? AIDS 2013, 27, 117984. [Google Scholar] [CrossRef]
- Weinstock, J.V. Autoimmunity: The worm returns. Nature 2012, 491, 183–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fonte, L.; Ginori, M.; Calderón, E.J.; de Armas, Y. Prevalence of Pneumocystosis in Sub-Saharan Africa and Helminth Immune Modulation. J. Fungi 2022, 8, 45. https://doi.org/10.3390/jof8010045
Fonte L, Ginori M, Calderón EJ, de Armas Y. Prevalence of Pneumocystosis in Sub-Saharan Africa and Helminth Immune Modulation. Journal of Fungi. 2022; 8(1):45. https://doi.org/10.3390/jof8010045
Chicago/Turabian StyleFonte, Luis, María Ginori, Enrique J. Calderón, and Yaxsier de Armas. 2022. "Prevalence of Pneumocystosis in Sub-Saharan Africa and Helminth Immune Modulation" Journal of Fungi 8, no. 1: 45. https://doi.org/10.3390/jof8010045
APA StyleFonte, L., Ginori, M., Calderón, E. J., & de Armas, Y. (2022). Prevalence of Pneumocystosis in Sub-Saharan Africa and Helminth Immune Modulation. Journal of Fungi, 8(1), 45. https://doi.org/10.3390/jof8010045