Evaluation of a Liquid Media MALDI-TOF MS Protocol for the Identification of Dermatophytes Isolated from Tinea capitis Infections
Abstract
:1. Introduction
2. Material and Methods
2.1. Study and Site Design
2.2. Microorganisms
2.2.1. Reference Strains
2.2.2. Clinical Isolates
2.3. Subculturing Protocol
2.4. The Liquid Media MALDI-TOF MS Protocol
2.5. The Solid MALDI-TOF MS Protocol
2.6. Databases
2.7. Rate of Correct Identification and Turnaround Time
2.8. Spectra
2.9. Blanks
3. Results
3.1. Validation of the Liquid Media MALDI-TOF MS Protocol (on BCCM/IHEM in-House Library)
3.2. Testing the Liquid Media Protocol on Sub-Cultures of Clinical Isolates (on BCCM/IHEM in-House Library)
3.3. Testing the Liquid Media Protocol on Primary Clinical Isolates (on BCCM/IHEM in-House Library)
3.4. Other Databases
3.5. Bruker Database
3.6. MSI Database
3.7. Turnaround Time
3.8. Performing the Liquid MALDI-TOF MS Protocol at Fixed Points in Time
3.9. Spectra
3.10. Blank Samples
4. Discussion
4.1. Evaluating the Liquid Protocol
4.2. Evaluating the Bruker and MSI Databases
4.3. Importance of the Database
4.4. Future Perspectives
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weitzman, I.; Summerbell, R.C. The dermatophytes. Clin. Microbiol. Rev. 1995, 8, 240–259. [Google Scholar] [CrossRef] [PubMed]
- de Hoog, G.S.; Dukik, K.; Monod, M.; Packeu, A.; Stubbe, D.; Hendrickx, M.; Kupsch, C.; Stielow, J.B.; Freeke, J.; Göker, M.; et al. Toward a Novel Multilocus Phylogenetic Taxonomy for the Dermatophytes. Mycopathologia 2016, 182, 5–31. [Google Scholar] [CrossRef] [Green Version]
- Male, O. Mycoses—A broad spectrum multi-faceted disease complex. Wien. Med. Wochenschr. 1946 1989, 139, 342–345. [Google Scholar]
- Havlickova, B.; Czaika, V.A.; Friedrich, M. Epidemiological trends in skin mycoses worldwide. Mycoses 2008, 51 (Suppl. S4), 2–15. [Google Scholar] [CrossRef]
- Michaels, B.D.; Del Rosso, J.Q. Tinea capitis in infants: Recognition, evaluation, and management suggestions. J. Clin. Aesthetic Dermatol. 2012, 5, 49–59. [Google Scholar]
- Leung, A.K.; Hon, K.L.; Leong, K.F.; Barankin, B.; Lam, J.M. Tinea Capitis: An Updated Review. Recent Patents Inflamm. Allergy Drug Discov. 2020, 14, 58–68. [Google Scholar] [CrossRef]
- Sacheli, R.; Harag, S.; Dehavay, F.; Evrard, S.; Rousseaux, D.; Adjetey, A.; Seidel, L.; Laffineur, K.; Lagrou, K.; Hayette, M.-P. Belgian National Survey on Tinea Capitis: Epidemiological Considerations and Highlight of Terbinafine-Resistant T. mentagrophytes with a Mutation on SQLE Gene. J. Fungi 2020, 6, 195. [Google Scholar] [CrossRef] [PubMed]
- Elewski, B.E. Tinea capitis: A current perspective. J. Am. Acad. Dermatol. 2000, 42, 1–20. [Google Scholar] [CrossRef]
- Hay, R.J. Tinea Capitis: Current Status. Mycopathologia 2016, 182, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Fuller, L.C.; Barton, R.C.; Mohd Mustapa, M.F.; Proudfoot, L.E.; Punjabi, S.P.; Higgins, E.M.; Hughes, J.; Sahota, A.; Griffiths, M.; McDonagh, A.; et al. British Association of D ermatologists’ guidelines for the management of tinea capitis 2014. Br. J. Dermatol. 2014, 171, 454–463. [Google Scholar] [CrossRef]
- Abdel-Rahman, S.M.; Sugita, T.; González, G.M.; Ellis, D.; Arabatzis, M.; Vella-Zahra, L.; Viguié-Vallanet, C.; Hiruma, M.; Leeder, J.S.; Preuett, B. Divergence among an International Population of Trichophyton tonsurans Isolates. Mycopathologia 2010, 169, 1. [Google Scholar] [CrossRef] [PubMed]
- Alshawa, K.; Lacroix, C.; Benderdouche, M.; Mingui, A.; Derouin, F.; Feuilhade de Chauvin, M. Increasing incidence of Trichophyton tonsurans in Paris, France: A 15-year retrospective study. Br. J. Dermatol. 2011, 166, 1149–1150. [Google Scholar] [CrossRef] [PubMed]
- Coulibaly, O.; L’Ollivier, C.; Piarroux, R.; Ranque, S. Epidemiology of human dermatophytoses in Africa. Med. Mycol. 2018, 56, 145–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kieliger, S.; Glatz, M.; Cozzio, A.; Bosshard, P. Tinea capitis and tinea faciei in the Zurich area-an 8-year survey of trends in the epidemiology and treatment patterns. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 1524–1529. [Google Scholar] [CrossRef] [PubMed]
- Gräser, Y.; Scott, J.; Summerbell, R. The New Species Concept in Dermatophytes—A Polyphasic Approach. Mycopathologia 2008, 166, 239–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanbe, T. Molecular Approaches in the Diagnosis of Dermatophytosis. Mycopathologia 2008, 166, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Nenoff, P.; Erhard, M.; Simon, J.C.; Muylowa, G.K.; Herrmann, J.; Rataj, W.; Gräser, Y. MALDI-TOF mass spectrometry—A rapid method for the identification of dermatophyte species. Med. Mycol. 2013, 51, 17–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Packeu, A.; De Bel, A.; L’Ollivier, C.; Ranque, S.; Detandt, M.; Hendrickx, M. Fast and Accurate Identification of Dermatophytes by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry: Validation in the Clinical Laboratory. J. Clin. Microbiol. 2014, 52, 3440–3443. [Google Scholar] [CrossRef] [Green Version]
- Marvin, L.F.; Roberts, M.A.; Fay, L.B. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in clinical chemistry. Clin. Chim. Acta 2003, 337, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Murray, P.R. What Is New in Clinical Microbiology—Microbial Identification by MALDI-TOF Mass Spectrometry: A paper from the 2011 William Beaumont Hospital Symposium on molecular pathology. J. Mol. Diagn. 2012, 14, 419–423. [Google Scholar] [CrossRef] [Green Version]
- L’Ollivier, C.; Ranque, S. MALDI-TOF-Based Dermatophyte Identification. Mycopathologia 2017, 182, 183–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erhard, M.; Hipler, U.-C.; Burmester, A.; Brakhage, A.A.; Wöstemeyer, J. Identification of dermatophyte species causing onychomycosis and tinea pedis by MALDI-TOF mass spectrometry. Exp. Dermatol. 2008, 17, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Azrad, M.; Keness, Y.; Nitzan, O.; Pastukh, N.; Tkhawkho, L.; Freidus, V.; Peretz, A. Cheap and rapid in-house method for direct identification of positive blood cultures by MALDI-TOF MS technology. BMC Infect. Dis. 2019, 19, 72. [Google Scholar] [CrossRef] [Green Version]
- Rosenthal, S.A.; Furnari, D. The Use of a Cycloheximide-Chloramphenicol Medium in Routine Culture for Fungi. J. Investig. Dermatol. 1957, 28, 367–371. [Google Scholar] [CrossRef] [Green Version]
- Cassagne, C.; Ranque, S.; Normand, A.-C.; Fourquet, P.; Thiebault, S.; Planard, C.; Hendrickx, M.; Piarroux, R. Mould Routine Identification in the Clinical Laboratory by Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry. PLoS ONE 2011, 6, e28425. [Google Scholar] [CrossRef] [PubMed]
- Sacheli, R.; Henri, A.; Seidel, L.; Ernst, M.; Darfouf, R.; Adjetey, C.; Schyns, M.; Marechal, L.; Meex, C.; Arrese, J.; et al. Evaluation of the new Id-Fungi plates medium from Conidia for MALDI-TOF MS identification of filamentous fungi and comparison with conventional methods as identification tool for dermatophytes from nails, hair and skin samples. Mycoses 2020, 63, 1115–1127. [Google Scholar] [CrossRef]
- Hedayati, M.T.; Ansari, S.; Ahmadi, B.; Armaki, M.T.; Shokohi, T.; Taghizadeh Armaki, M.; Er, H.; Özhak, B.; Öğünç, D.; Ilkit, M.; et al. Identification of clinical dermatophyte isolates obtained from Iran by matrix-assisted laser desorption/ionization time-offlight mass spectrometry. Curr. Med. Mycol. 2019, 5, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Meletiadis, J.; Meis, J.F.G.M.; Mouton, J.W.; Verweij, P.E. Analysis of Growth Characteristics of Filamentous Fungi in Different Nutrient Media. J. Clin. Microbiol. 2001, 39, 478–484. [Google Scholar] [CrossRef] [Green Version]
- Buskirk, A.D.; Hettick, J.M.; Chipinda, I.; Law, B.F.; Siegel, P.D.; Slaven, J.E.; Green, B.J.; Beezhold, D.H. Fungal pigments inhibit the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of darkly pigmented fungi. Anal. Biochem. 2011, 411, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Alanio, A.; Beretti, J.; Dauphin, B.; Mellado, E.; Quesne, G.; Lacroix, C.; Amara, A.; Berche, P.; Nassif, X.; Bougnoux, M.-E. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for fast and accurate identification of clinically relevant Aspergillus species. Clin. Microbiol. Infect. 2011, 17, 750–755. [Google Scholar] [CrossRef] [PubMed]
IHEM Reference Strains | MALDI-TOF MS SC | MALDI-TOF MS LC | ||
---|---|---|---|---|
ID | LS | ID | LS | |
IHEM 25452 E. floccosum | E. floccosum | 2.15 | E. floccosum | 2.05 |
IHEM 26878 M. audouinii | M. audouinii | 2.19 | M. audouinii | 2.34 |
IHEM 27271 M. canis | M. canis | 2.27 | M. canis | 2.18 |
IHEM 26589 N. gypsea | N. gypsea | 2.46 | N. gypsea | 2.34 |
IHEM 2771 T. interdigitale | T. interdigitale | 2.55 | T. interdigitale | 2.40 |
IHEM 4270 T. mentagrophytes | T. mentagrophytes | 2.18 | T. mentagrophytes | 2.33 |
IHEM 13886 T. rubrum | T. rubrum | 2.49 | T. rubrum | 2.08 |
IHEM 27691 T. soudanense | T. soudanense | 2.40 | T. soudanense | 1.81 |
IHEM T. tonsurans | T. tonsurans | 2.36 | T. interdigitale | 2.28 |
IHEM 26519 T. violaceum | T. violaceum | 2.08 | T. violaceum | 1.82 |
Overall average | 2.35 ± 0.03 | 2.14 ± 0.04 |
Species | Number of Samples for Sub-Cultured Clinical Isolates |
---|---|
M. audouinii | 8 |
M. canis | 16 |
T. tonsurans | 8 |
T. soudanense | 6 |
T. violaceum | 1 |
Total | 39 |
BCCM/IHEM in-House Library | Bruker Library | MSI Library | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sub-Cultures of Clinical Dermatophyte Isolates | Primary Dermatophyte Isolates | Sub-Cultures of Clinical Dermatophyte Isolates | Primary Dermatophyte Isolates | Sub-Cultures of Clinical Dermatophyte Isolates | Primary Dermatophyte Isolates | |||||||
Species | RCI SC (%) | RCI LC (%) | RCI SC (%) | RCI LC (%) | RCI SC (%) | RCI LC (%) | RCI SC (%) | RCI LC (%) | RCI SC (%) | RCI LC (%) | RCI SC (%) | RCI LC (%) |
Microsporumsp. | 88 | 92 | 100 | 60 | 61 | 61 | 0 | 10 | 83 | 57 | 100 | 70 |
Microsporum audouinii | 75 | 75 | 100 | 56 | 0 | 0 | 0 | 0 | 75 | 63 | 100 | 67 |
Microsporum canis | 94 | 100 | 100 | 100 | 93 | 93 | 0 | 100 | 87 | 53 | 100 | 100 |
Trichophytonsp. | 87 | 13 | 91 | 25 | 27 | 33 | 18 | 0 | 47 | 33 | 36 | 25 |
Trichophyton tonsurans | 88 | 0 | 75 | 0 | 50 | 63 | 50 | 0 | 75 | 63 | 100 | 75 |
Trichophyton soudanense | 100 | 33 | 100 | 38 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Trichophyton violaceum | 0 | 0 | / | / | 0 | 0 | / | / | 100 | 0 | / | / |
Clinical dermatophyte isolates overall | 87 | 62 | 94 | 41 | 47 | 50 | 11 | 5 | 68 | 47 | 41 | 45 |
Species | Number of Samples for Primary Isolates |
---|---|
M. audouinii | 9 |
M. canis | 1 |
T. tonsurans | 4 |
T. soudanense | 8 |
Total | 22 |
Sample | Type | Species |
---|---|---|
IHEM26373 | Reference strain | Trichophyton tonsurans |
19/0009/27 | Sub-culture | Trichophyton tonsurans |
19/0009/46 | Sub-culture | Trichophyton tonsurans |
19/0009/52 | Sub-culture | Trichophyton tonsurans |
19/0009/53 | Sub-culture | Trichophyton tonsurans |
19/0009/60 | Sub-culture | Trichophyton tonsurans |
19/0009/73 | Sub-culture | Trichophyton tonsurans |
19/0009/82 | Sub-culture | Trichophyton tonsurans |
19/0009/83 | Sub-culture | Trichophyton tonsurans |
19/0009/14 | Primary isolate | Trichophyton tonsurans |
21OS/144 | Primary isolate | Trichophyton tonsurans |
21OS/145 | Primary isolate | Trichophyton tonsurans |
21OS/2284 | Primary isolate | Trichophyton tonsurans |
IHEM n° | Species |
---|---|
7897 | Trichophyton tonsurans |
15472 | Trichophyton tonsurans |
19736 | Trichophyton tonsurans |
23483 | Trichophyton tonsurans |
26373 | Trichophyton tonsurans |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lecerf, P.; De Paepe, R.; Jazaeri, Y.; Normand, A.-C.; Martiny, D.; Packeu, A. Evaluation of a Liquid Media MALDI-TOF MS Protocol for the Identification of Dermatophytes Isolated from Tinea capitis Infections. J. Fungi 2022, 8, 1248. https://doi.org/10.3390/jof8121248
Lecerf P, De Paepe R, Jazaeri Y, Normand A-C, Martiny D, Packeu A. Evaluation of a Liquid Media MALDI-TOF MS Protocol for the Identification of Dermatophytes Isolated from Tinea capitis Infections. Journal of Fungi. 2022; 8(12):1248. https://doi.org/10.3390/jof8121248
Chicago/Turabian StyleLecerf, Pauline, Roelke De Paepe, Yasaman Jazaeri, Anne-Cécile Normand, Delphine Martiny, and Ann Packeu. 2022. "Evaluation of a Liquid Media MALDI-TOF MS Protocol for the Identification of Dermatophytes Isolated from Tinea capitis Infections" Journal of Fungi 8, no. 12: 1248. https://doi.org/10.3390/jof8121248
APA StyleLecerf, P., De Paepe, R., Jazaeri, Y., Normand, A. -C., Martiny, D., & Packeu, A. (2022). Evaluation of a Liquid Media MALDI-TOF MS Protocol for the Identification of Dermatophytes Isolated from Tinea capitis Infections. Journal of Fungi, 8(12), 1248. https://doi.org/10.3390/jof8121248