Transcriptome Analysis of Co-Cultures of THP-1 Human Macrophages with Inactivated Germinated Trichophyton rubrum Conidia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human THP-1-Derived Macrophages, Media and Growth Conditions
2.2. Trichophyton rubrum Strain, Media, Growth Conditions and Inactivation
2.3. Co-Culture Conditions
2.4. Electron Microscopy
2.5. LDH Assay for Assessing the Viability of THP-1 Macrophages Co-Cultured with T. rubrum LGC
2.6. Quantification of Cytokines
2.7. RNA Isolation and Integrity Analysis
2.8. Library Construction and Sequencing
2.9. Analysis of Sequencing Data
2.10. QPCR Validation
3. Results
3.1. Electron Microscopy of Co-Cultures
3.2. LDH Assay for Assessing the Viability of THP-1 Macrophages Co-Cultured with T. rubrum LGC
3.3. RNA-Seq Analysis of Macrophages Co-Cultured with T. rubrum IGC
3.4. Analysis of the Transcriptional Profile of Differentially Expressed Genes
3.5. Functional Categorization of Differentially Expressed Genes
3.6. Validation by qPCR
3.7. Comparison of the Expression Profile of Validated Genes between Co-Cultures Using IGC and LGC
3.8. Analysis of the Release of Interleukins during Co-Culture
3.9. Comparison of the Response of THP-1 Human Macrophages Co-Cultured with T. rubrum and Stimulated with Bacterial LPS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hay, R.J. Superficial Mycoses. In Hunter’s Tropical Medicine and Emerging Infectious Diseases; Elsevier: Amsterdam, The Netherlands, 2020; pp. 648–652. [Google Scholar]
- Gnat, S.; Lagowshi, D.; Nowakiewicz, A.; Zieba, P. The host range of dermatophytes, it is at all possible? Phenotypic evaluation of the keratinolytic activity of Trichophyton verrucosum clinical isolates. Mycoses 2019, 62, 274–283. [Google Scholar] [CrossRef]
- Khurana, A.; Sardana, K.; Chowdhary, A. Antifungal resistance in dermatophytes: Recent trends and therapeutic implications. Fungal Genet. Biol. 2019, 132, 103–255. [Google Scholar] [CrossRef]
- Sai, S.B.; Tejashree, A.; Veeranna, S.; Krishna, K.M. Speciation and in vitro activity of four antifungal drugs against clinical isolates of dermatophytes by e-test method. Int. J. Sci. Res. 2019, 8, 6. [Google Scholar]
- Siqueira, E.R.; Ferreira, C.J.; Maffei, C.M.L.; Candido, R.C. Ocorrência de dermatófitos em amostras de unhas, pés e mãos coletadas de estudantes universitários. Rev. Soc. Bras. Med. Trop. 2006, 39, 269–271. [Google Scholar] [CrossRef] [Green Version]
- Silva, K.A.; Gomes, B.S.; Magalhães, O.M.C.; Lacerda Filho, A.M. Etiologia das dermatofitoses diagnosticadas em pacientes atendidos no Laboratório de Micologia Médica no Centro de Biociências da Universidade Federal de Pernambuco. Braz. J. Clin. Anal. 2018, 50, 33–37. [Google Scholar]
- Bongomin, F.; Gago, S.; Oladele, O.R.; Denning, W.D. Global and multi-national prevalence of fungal diseases—Estimate precision. J. Fungi. 2017, 3, 57. [Google Scholar] [CrossRef] [Green Version]
- Kasperova, A.; Cahlikova, R.; Kunert, J.; Sebela, M.; Novak, Z.; Raska, M. Exposition of dermatophyte Trichophyton mentagrophytes to L-cystine induces expression and activation of cysteine dioxygenase. Mycoses 2014, 57, 672–678. [Google Scholar] [CrossRef]
- Brasch, J. Pathogenesis of tinea. JDDG J. Der Dtsch. Dermatol. Ges. 2010, 8, 780–786. [Google Scholar] [CrossRef]
- Lanternier, F.; Pathan, S.; Vincent, Q.B.; Liu, L.; Cypowyj, S.; Prando, C.; Migaud, M.; Taibi, L.; Ammar-Khodja, A.; Stambouli, O.B.; et al. Deep Dermatophytosis and Inherited CARD9 Deficiency. N. Engl. J. Med. 2013, 369, 1704–1714. [Google Scholar] [CrossRef] [Green Version]
- Hube, B.; Hay, R.; Brash, J.; Veraldi, S.; Schaller, M. Dermatomycoses and inflammation: The adaptive balance between growth, damage, and survival. J. Mycol. Med. 2015, 25, e44–e58. [Google Scholar] [CrossRef]
- Peres, N.T.D.A.; Maranhão, F.C.A.; Rossi, A.; Martinez-Rossi, N.M. Dermatophytes: Host-pathogen interaction and antifungal resistance. An. Bras. Dermatol. 2010, 85, 657–667. [Google Scholar] [CrossRef] [Green Version]
- Toussaint, F.; Sticherling, M. Multiple Dermal Abscesses by Trichophyton rubrum in an Immunocompromised Patient. Front. Med. 2019, 6, 97. [Google Scholar] [CrossRef]
- Al-khikani, F.; Ayit, A. Major challenges in dermatophytosis treatment: Current options and future visions. Egypt. J. Dermatol. Venerol. 2021, 41, 1–9. [Google Scholar] [CrossRef]
- Huang, X.; Yi, J.; Yin, S.; Li, M.; Ye, C.; Lai, W.; Chen, J. Trichophyton rubrum conidia modulate the expression and transport of Toll-like receptor 2 in HaCaT cell. Microb. Pathog. 2015, 83–84, 1–5. [Google Scholar] [CrossRef]
- Burstein, V.L.; Beccacece, I.; Guasconi, L.; Mena, C.J.; Cervi, L.; Chiapello, S.L. Skin Immunity to Dermatophytes: From Experimental Infection Models to Human Disease. Front. Immunol. 2020, 11, 605644. [Google Scholar] [CrossRef]
- Tokura, Y.; Kobayashi, M.; Kabashima, K. Epidermal chemokines and modulation by antihistamines, antibiotics and antifungals. Exp. Dermatol. 2008, 17, 81–90. [Google Scholar] [CrossRef]
- Hesse-macabata, J.; Morgner, B.; Morgenstern, S.; Grimm, M.O.; Elsner, P.; Hipler, U.C.; Wiegand, C. Innate immune response of human epidermal keratinocytes and dermal fibroblast to in vitro incubation of Trichophyton benhamiae DSM 6916. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 1177–1188. [Google Scholar] [CrossRef]
- Segura, G.G.; Cantelli, B.A.; Peronni, K.; Sanches, P.R.; Komoto, T.T.; Rizzi, E.; Beleboni, R.O.; Junior, W.A.d.S.; Martinez-Rossi, N.M.; Marins, M.; et al. Cellular and molecular response of macrophages THP-1 during co-culture with inactive Trichophyton rubrum conidia. J. Fungi 2020, 6, 363. [Google Scholar] [CrossRef]
- Gatto, M.; Borim, P.A.; Wolf, I.R.; Da Cruz, T.F.; Mota, G.A.F.; Braz, A.M.M.; Amorim, B.; Valente, G.T.; Golim, M.D.A.; Venturini, J.; et al. Transcriptional analysis of THP-1 cells infected with leishmania infantum indicates no activation of the inflammasome platform. PLoS Negl. Trop. Dis. 2020, 14, e0007949. [Google Scholar] [CrossRef] [Green Version]
- Bener, G.; Félix, A.J.; Diego, C.S.; Fabregat, I.P.; Ciudad, J.C.; Noé, V. Silencing of CD47 and SIRPα by Polypurine reverse Hoogsteen hairpins to promote MCF-7 breast cancer cells death by PMA-differentiated THP-1 cells. BMC Immunol. 2016, 17, 32. [Google Scholar] [CrossRef] [Green Version]
- Miranda, M.B.; Mcguire, T.F.; Johnson, D.E. Importance of MEK-1/-2 signaling in monocytic and granulocytic differentiation of myeloid cell lines. Leukemia 2002, 16, 683–692. [Google Scholar] [CrossRef] [Green Version]
- Fachin, A.L.; Ferreira-Nozawa, M.S.; Maccheroni, W.; Martinez-Rossi, N.M. Role of the ABC transporter TruMDR2 in terbinafine, 4-nitroquinoline N-oxide and ethidium bromide susceptibility in Trichophyton rubrum. J. Med. Microbiol. 2006, 55, 1093–1099. [Google Scholar] [CrossRef] [Green Version]
- Cantelli, B.A.M.; Bitencourt, T.A.; Komoto, T.T.; Beleboni, R.O.; Marins, M.; Fachin, A.L. Caffeic acid and licochalcone A interfere with the glyoxylate cycle of Trichophyton rubrum. Biomed. Pharmacother. 2017, 96, 1389–1394. [Google Scholar] [CrossRef]
- Petrucelli, M.F.; Peronni, K.; Sanches, P.R.; Komoto, T.T.; Matsuda, J.B.; da Silva, W.A.; Beleboni, R.O.; Martinez-Rossi, N.M.; Marins, M.; Fachin, A.L. Dual RNA-Seq Analysis of Trichophyton rubrum and HaCat Keratinocyte Co-Culture Highlights Important Genes for Fungal-Host Interaction. Genes 2018, 9, 362. [Google Scholar] [CrossRef] [Green Version]
- Chai, L.Y.A.; Kullberg, B.J.; Vonk, A.G.; Warris, A.; Cambi, A.; Latgé, J.-P.; Joosten, L.A.B.; van der Meer, J.W.M.; Netea, M.G. Modulation of toll-like receptor 2 (TLR2) and TLR4 responses by Aspergillus fumigatus. Infect. Immun. 2009, 77, 2184–2192. [Google Scholar] [CrossRef] [Green Version]
- Santiago, K.; Bomfim, G.F.; Criado, P.R.; Almeida, S.R. Monocyte-Derived Dendritic Cells from Patients with Dermatophytosis Restrict the Growth of Trichophyton rubrum and Induce CD4-T Cell Activation. PLoS ONE 2014, 9, e110879. [Google Scholar] [CrossRef]
- Brzicova, T.; Javorkova, E.; Vrbova, K.; Zajicova, A.; Holan, V.; Pinkas, D.; Philimonenko, V.; Sikorova, J.; Klema, J.; Topinka, J.; et al. Molecular Responses in THP-1 Macrophage-Like Cells exposed to diverse nanoparticles. Nanomaterials 2019, 9, 687. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30, 207–210. [Google Scholar] [CrossRef] [Green Version]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Anders, S.; Huber, W. Differential expression analysis for sequence count data. Genome Biol. 2010, 11, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Ma, R.; Zhang, D.; Hu, P.; Li, Q.; Lin, C. HOXB7-S3 inhibits the proliferation and invasion of MCF-7 human breast cancer cells. Mol. Med. Rep. 2015, 12, 4901–4908. [Google Scholar] [CrossRef] [Green Version]
- Dai, Z.J.; Ma, X.; Kang, H.; Gao, J.; Min, W.; Guan, H.; Diao, Y.; Lu, W.; Wang, X. Antitumor activity of the selective cyclooxygenase-2 inhibitor, celecoxib, on breast cancer in vitro and in vivo. Cancer Cell Int. 2012, 12, 53. [Google Scholar] [CrossRef] [Green Version]
- Yoshikawa, Y.; Almeida, S.R. The Role of Phagocytes and NETs in Dermatophytosis. Mycopathologia 2017, 182, 263–272. [Google Scholar] [CrossRef]
- Das Gupta, M.; Fliesser, M.; Springer, J.; Breitschopf, T.; Schlossnagel, H.; Schmitt, A.-L.; Kurzai, O.; Hünniger, K.; Einsele, H.; Löffler, J. Aspergillus fumigatus induces microRNA-132 in human monocytes and dendritic cells. Int. J. Med. Microbiol. 2014, 304, 592–596. [Google Scholar] [CrossRef]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef]
- Baltazar, L.D.M.; Santos, P.C.; de Paula, T.P.; Rachid, M.A.; Cisalpino, P.S.; Souza, D.G.; Santos, D.A. IFN-γ impairs Trichophyton rubrum proliferation in a murine model of dermatophytosis through the production of IL-1β and reactive oxygen species. Med. Mycol. 2014, 52, 293–302. [Google Scholar] [CrossRef] [Green Version]
- Khawar, M.B.; Abbasi, M.H.; Sheikh, N. IL-32: A Novel Pluripotent Inflammatory Interleukin, towards Gastric Inflammation, Gastric Cancer, and Chronic Rhino Sinusitis. Mediat. Inflamm. 2016, 2016, 8413768. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, J.C.; Heinhuis, B.; Gomes, R.S.; Damen, M.S.; Real, F.; Mortara, R.A.; Keating, S.T.; Dinarello, C.A.; Joosten, L.A.; Ribeiro-Dias, F. Cytokines and microbicidal molecules regulated by IL-32 in THP-1-derived human macrophages infected with New World Leishmania species. PLOS Negl. Trop. Dis. 2017, 11, 22. [Google Scholar] [CrossRef] [Green Version]
- de Matos, G.G.; de Figueiredo, A.M.B.; Gonçalves, P.H.D.; de Lima Silva, L.L.; Bastista, A.C.; Borges, C.L.; de Almeida Soares, C.M.; Joosten, L.A.; Ribeiro-Dias, F. Paracoccidioides brasiliensis induces IL-32 and is controlled by IL-15/IL-32/vitamin D pathway in vitro. Microb. Pathog. 2021, 154, 104864. [Google Scholar] [CrossRef]
- Papic, N.; Maxwell, C.; Delker, D.A.; Liu, S.; Heale, B.E.; Hagedorn, C.H. RNA-Sequencing Analysis of 5′ Capped RNAs Identifies Many New Differentially Expressed Genes in Acute Hepatitis C Virus Infection. Viruses 2012, 4, 581–612. [Google Scholar] [CrossRef] [Green Version]
- Bin, L.; Li, X.; Richers, B.; Streib, J.; Hu, J.; Taylor, P.; Leung, D.Y.M. Ankyrin repeat domain 1 regulates innate immune responses against herpes simplex virus 1: A potential role in eczema herpeticum. J. Allergy Clin. Immunol. 2018, 141, 2085–2093.e1. [Google Scholar] [CrossRef] [Green Version]
- Samaras, S.E.; Almodóvar-García, K.; Wu, N.; Yu, F.; Davidson, J. Global deletion of ankrd1 results in a wound-healing phenotype associated with dermal fibroblast dysfunction. Am. J. Pathol. 2015, 185, 96–109. [Google Scholar] [CrossRef] [Green Version]
- Feng, A.; Rice, A.D.; Zhang, Y.; Kelly, G.T.; Zhou, T.; Wang, T. S1PR1-Associated Molecular Signature Predicts Survival in Patients with Sepsis. Shock 2020, 53, 284–292. [Google Scholar] [CrossRef]
- Zhao, J.; Zhu, M.; Jiang, H.; Shen, S.; Su, X.; Shi, Y. Combination of sphingosine-1-phosphate receptor 1 (S1PR1) agonist and antiviral drug: A potential therapy against pathogenic influenza virus. Sci. Rep. 2019, 9, 5272. [Google Scholar] [CrossRef] [Green Version]
- Lorè, N.I.; Sipione, B.; He, G.; Strug, L.; Atamni, H.J.; Dorman, A.; Mott, R.; Iragi, F.; Bragonzi, A. Collaborative cross mice yield genetic modifiers for pseudomonas aeruginosa infection in human lung disease. Mbio 2020, 11, e00097-20. [Google Scholar] [CrossRef] [Green Version]
- Lewis, C.C.; Aronow, B.; Hutton, J.; Santeliz, J.; Dienger, K.; Herman, N.; Finkelman, F.D.; Wills-karp, M. Unique and overlapping gene expression patterns driven by IL-4 and IL-13 in the mouse lung. J. Allergy Clin. Immunol. 2009, 123, 795–804. [Google Scholar] [CrossRef] [Green Version]
- Cochet, F.; Peri, F. The Role of Carbohydrates in the Lipopolysaccharide (LPS)/Toll-like Receptor 4 (TLR4) Signalling. Int. J. Mol. Sci. 2017, 18, 2318. [Google Scholar] [CrossRef] [Green Version]
- Pivarcsi, A.; Bodai, L.; Réthi, B.; Kenderessy-Szabó, A.; Koreck, A.; Széll, M.; Beer, Z.; Bata-Csörgoő, Z.; Magócsi, M.; Rajnavölgyi, É.; et al. Expression and Function of Toll-like Receptors 2 and 4 in Human Keratinocytes. Int. Immunol. 2003, 15, 721–730. [Google Scholar] [CrossRef] [Green Version]
- Jannuzzi, G.P.; Almeida, J.R.F.; Paulo, L.N.M.; Almeida, S.R.; Ferreira, K.S. Intracellular PRRs Activation in Targeting the Immune Response Against Fungal Infections. Front. Cell. Infect. Microbiol. 2020, 10, 591970. [Google Scholar] [CrossRef]
ID | Gene Product Name | Log2 (Fold Change) |
---|---|---|
Up-regulated | ||
CRLF2 | cytokine receptor-like factor 2 | 2.79 |
GREM1 | gremlin 1, DAN family BMP antagonist | 2.75 |
EBF1 | EBF transcription factor 1 | 2.59 |
MMP10 | matrix metallopeptidase 10 | 2.41 |
ANKRD1 | ankyrin repeat domain 1 | 2.21 |
LIF | LIF interleukin 6 family cytokine | 2.14 |
HIVEP2 | human immunodeficiency virus type I enhancer binding protein 2 | 2.12 |
CCL24 | C-C motif chemokine ligand 24 | 1.92 |
SLC43A2 | solute carrier family 43 member 2 | 1.92 |
CSF1 | colony stimulating factor 1 | 1.90 |
Down-regulated | ||
P2RY12 | purinergic receptor P2Y12 | −1.88 |
S1PR1 | sphingosine-1-phosphate receptor 1 | −1.69 |
NTS | neurotensin | −1.67 |
BBOX1 | gamma-butyrobetaine hydroxylase 1 | −1.44 |
LINC01537 | long intergenic non-protein coding RNA 1537 | −1.31 |
NLRP12 | NLR family pyrin domain containing 12 | −1.26 |
HPSE | heparanase | −1.24 |
FCGBP | Fc fragment of IgG binding protein | −1.22 |
PDE7B | phosphodiesterase 7B | −1.20 |
MMRN2 | multimerin 2 | −1.19 |
Biological Processes | ||
---|---|---|
Immune response | ||
ID | Gene name | Log2 (fold change) |
CRLF2 | cytokine receptor-like factor 2 | 2.79 |
CCL24 | chemokine (C-C motif) ligand 24 | 1.92 |
CSF1 | colony stimulating factor 1 (macrophage) | 1.9 |
CXCL3 | chemokine (C-X-C motif) ligand 3 | 1.88 |
CXCL1 | chemokine (C-X-C motif) ligand 1 (melanoma growth stimulating activity, alpha) | 1.72 |
CXCL8 | chemokine (C-X-C motif) ligand 8 | 1.71 |
IL32 | interleukin 32 | 1.27 |
CXCL2 | chemokine (C-X-C motif) ligand 2 | 1.10 |
CD1D | CD1d molecule | −1.03 |
FCGBP | Fc fragment of IgG binding protein | −1.22 |
Other functions | ||
MMP10 Protein metabolism | matrix metallopeptidase 10 | 2.41 |
ANKRD1 Regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism | ankyrin repeat domain 1 (cardiac muscle) | 2.21 |
SLC43A2 Transport | solute carrier family 43 member 2 | 1.92 |
S1PR1 Cell communication Signal transduction | sphingosine-1-phosphate receptor 1 | −1.69 |
TLR8 Innate immune response | Toll-like receptor 8 | −1.06 |
TLR7 Cell communication Signal transduction | Toll-like receptor 7 | −1.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cantelli, B.A.; Segura, G.G.; Bitencourt, T.A.; de Abreu, M.H.; Petrucelli, M.F.; Peronni, K.; Sanches, P.R.; Beleboni, R.O.; da Silva Junior, W.A.; Martinez-Rossi, N.M.; et al. Transcriptome Analysis of Co-Cultures of THP-1 Human Macrophages with Inactivated Germinated Trichophyton rubrum Conidia. J. Fungi 2023, 9, 563. https://doi.org/10.3390/jof9050563
Cantelli BA, Segura GG, Bitencourt TA, de Abreu MH, Petrucelli MF, Peronni K, Sanches PR, Beleboni RO, da Silva Junior WA, Martinez-Rossi NM, et al. Transcriptome Analysis of Co-Cultures of THP-1 Human Macrophages with Inactivated Germinated Trichophyton rubrum Conidia. Journal of Fungi. 2023; 9(5):563. https://doi.org/10.3390/jof9050563
Chicago/Turabian StyleCantelli, Bruna Aline, Gabriela Gonzalez Segura, Tamires Aparecida Bitencourt, Mariana Heinzen de Abreu, Monise Fazolin Petrucelli, Kamila Peronni, Pablo Rodrigo Sanches, Rene Oliveira Beleboni, Wilson Araújo da Silva Junior, Nilce Maria Martinez-Rossi, and et al. 2023. "Transcriptome Analysis of Co-Cultures of THP-1 Human Macrophages with Inactivated Germinated Trichophyton rubrum Conidia" Journal of Fungi 9, no. 5: 563. https://doi.org/10.3390/jof9050563
APA StyleCantelli, B. A., Segura, G. G., Bitencourt, T. A., de Abreu, M. H., Petrucelli, M. F., Peronni, K., Sanches, P. R., Beleboni, R. O., da Silva Junior, W. A., Martinez-Rossi, N. M., Marins, M., & Fachin, A. L. (2023). Transcriptome Analysis of Co-Cultures of THP-1 Human Macrophages with Inactivated Germinated Trichophyton rubrum Conidia. Journal of Fungi, 9(5), 563. https://doi.org/10.3390/jof9050563