Alumina as an Antifungal Agent for Pinus elliottii Wood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Selection and Wood Treatment
2.2. Decay Resistance Tests
2.3. FT-IR and TG Analyses
2.4. Statistical Analysis
3. Results and Discussion
3.1. Mass Loss Results
3.2. Chemical Changes Accessed by FT-IR
3.3. Chemical Changes Accessed by TG
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shang, J.; Yan, S.; Wang, Q. Degradation Mechanism and Chemical Component Changes in Betula platyphylla Wood by Wood-Rot Fungi. BioResources 2013, 8, 6066–6077. [Google Scholar] [CrossRef] [Green Version]
- Woźniak, M. Antifungal Agents in Wood Protection—A Review. Molecules 2022, 27, 6392. [Google Scholar] [CrossRef] [PubMed]
- Manavalan, T.; Manavalan, A.; Heese, K. Characterization of Lignocellulolytic Enzymes from White-Rot Fungi. Curr. Microbiol. 2015, 70, 485–498. [Google Scholar] [CrossRef] [PubMed]
- Rouches, E.; Herpoël-Gimbert, I.; Steyer, J.P.; Carrere, H. Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: A review. Renew. Sustain. Energy Rev. 2016, 59, 179–198. [Google Scholar] [CrossRef]
- Bari, E.; Nazarnezhad, N.; Kazemi, S.M.; Tajick Ghanbary, M.A.; Mohebby, B.; Schmidt, O.; Clausen, C.A. Comparison between degradation capabilities of the white rot fungi Pleurotus ostreatus and Trametes versicolor in beech wood. Int. Biodeterior. Biodegrad. 2015, 104, 231–237. [Google Scholar] [CrossRef]
- Witomski, P.; Olek, W.; Bonarski, J.T. Changes in strength of Scots pine wood (Pinus silvestris L.) decayed by brown rot (Coniophora puteana) and white rot (Trametes versicolor). Constr. Build. Mater. 2016, 102, 162–166. [Google Scholar] [CrossRef]
- Tišma, M.; Žnidaršič-Plazl, P.; Šelo, G.; Tolj, I.; Šperanda, M.; Bucić-Kojić, A.; Planinić, M. Trametes versicolor in lignocellulose-based bioeconomy: State of the art, challenges and opportunities. Bioresour. Technol. 2021, 330, 124997. [Google Scholar] [CrossRef]
- Bari, E.; Daryaei, M.G.; Karim, M.; Bahmani, M.; Schmidt, O.; Woodward, S.; Tajick Ghanbary, M.A.; Sistani, A. Decay of Carpinus betulus wood by Trametes versicolor—An anatomical and chemical study. Int. Biodeterior. Biodegrad. 2019, 137, 68–77. [Google Scholar] [CrossRef]
- Kojima, Y.; Várnai, A.; Ishida, T.; Sunagawa, N.; Petrovic, D.M.; Igarashi, K.; Jellison, J.; Goodell, B.; Alfredsen, G.; Westereng, B.; et al. A Lytic Polysaccharide Monooxygenase with Broad Xyloglucan Specificity from the Brown-Rot Fungus Gloeophyllum trabeum and Its Action on Cellulose-Xyloglucan Complexes. Appl. Environ. Microbiol. 2016, 82, 6557–6572. [Google Scholar] [CrossRef] [Green Version]
- Arantes, V.; Goodell, B. Current understanding of brown-rot fungal biodegradation mechanisms: A review. ACS Symp. Ser. 2014, 1158, 3–21. [Google Scholar] [CrossRef]
- Calonego, F.W.; De Andrade, M.C.N.; Negrão, D.R.; Rocha, C.D.; Minhoni, M.T.D.A.; Latorraca, J.V.; Severo, E.T.D. Behavior of the Brown-rot Fungus Gloeophyllum trabeum on Thermally-modified Eucalyptus grandis Wood. Floresta Ambient. 2013, 20, 417–423. [Google Scholar] [CrossRef]
- Uyup, M.K.A.; Khadiran, T.; Husain, H.; Salim, S.; Siam, N.A.; Hua, L.S. Resistance improvement of rubberwood treated with zinc oxide nanoparticles and phenolic resin against white-rot fungi, Pycnoporus sanguineus. Maderas. Cienc. Tecnol. 2019, 21, 457–466. [Google Scholar] [CrossRef] [Green Version]
- Ghorbani, M.; Biparva, P.; Hosseinzadeh, S. Effect of colloidal silica nanoparticles extracted from agricultural waste on physical, mechanical and antifungal properties of wood polymer composite. Eur. J. Wood Wood Prod. 2018, 76, 749–757. [Google Scholar] [CrossRef]
- Moya, R.; Berrocal, A.; Rodriguez-Zuñiga, A.; Vega-Baudrit, J.; Noguera, S.C. Effect of silver nanoparticles on white-rot wood decay and some physical properties of three tropical wood species. Wood Fiber Sci. 2014, 46, 527–538. [Google Scholar]
- Can, A.; Sivrikaya, H.; Hazer, B.; Palanti, S. Beech (Fagus orientalis) wood modification through the incorporation of polystyrene-ricinoleic acid copolymer with Ag nanoparticles. Cellulose 2022, 29, 1149–1161. [Google Scholar] [CrossRef]
- Harandi, D.; Ahmadi, H.; Mohammadi Achachluei, M. Comparison of TiO2 and ZnO nanoparticles for the improvement of consolidated wood with polyvinyl butyral against white rot. Int. Biodeterior. Biodegrad. 2016, 108, 142–148. [Google Scholar] [CrossRef]
- Nair, S.; Pandey, K.K.; Giridhar, B.N.; Vijayalakshmi, G. Decay resistance of rubberwood (Hevea brasiliensis) impregnated with ZnO and CuO nanoparticles dispersed in propylene glycol. Int. Biodeterior. Biodegrad. 2017, 122, 100–106. [Google Scholar] [CrossRef]
- De Filpo, G.; Palermo, A.M.; Rachiele, F.; Nicoletta, F.P. Preventing fungal growth in wood by titanium dioxide nanoparticles. Int. Biodeterior. Biodegrad. 2013, 85, 217–222. [Google Scholar] [CrossRef]
- Yang, H.; Liu, M.; Ouyang, J. Novel synthesis and characterization of nanosized γ-Al2O3 from kaolin. Appl. Clay Sci. 2010, 47, 438–443. [Google Scholar] [CrossRef]
- Stevens, R.; Binner, J.G.P. Structure, properties and production of β-alumina. J. Mater. Sci. 1984, 19, 695–715. [Google Scholar] [CrossRef]
- Gudkov, S.V.; Burmistrov, D.E.; Smirnova, V.V.; Semenova, A.A.; Lisitsyn, A.B. A Mini Review of Antibacterial Properties of Alumina Nanoparticles. Nanomaterials 2022, 12, 2635. [Google Scholar] [CrossRef] [PubMed]
- Pandey, K.; Pitman, A. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int. Biodeterior. Biodegrad. 2003, 52, 151–160. [Google Scholar] [CrossRef]
- Tomak, E.D.; Topaloglu, E.; Gumuskaya, E.; Yildiz, U.C.; Ay, N. An FT-IR study of the changes in chemical composition of bamboo degraded by brown-rot fungi. Int. Biodeterior. Biodegrad. 2013, 85, 131–138. [Google Scholar] [CrossRef]
- Le Floch, A.; Jourdes, M.; Teissedre, P.L. Polysaccharides and lignin from oak wood used in cooperage: Composition, interest, assays: A review. Carbohydr. Res. 2015, 417, 94–102. [Google Scholar] [CrossRef]
- Escalante, J.; Chen, W.H.; Tabatabaei, M.; Hoang, A.T.; Kwon, E.E.; Andrew Lin, K.Y.; Saravanakumar, A. Pyrolysis of lignocellulosic, algal, plastic, and other biomass wastes for biofuel production and circular bioeconomy: A review of thermogravimetric analysis (TGA) approach. Renew. Sustain. Energy Rev. 2022, 169, 112914. [Google Scholar] [CrossRef]
- Nurazzi, N.M.; Asyraf, M.R.M.; Rayung, M.; Norrrahim, M.N.F.; Shazleen, S.S.; Rani, M.S.A.; Shafi, A.R.; Aisyah, H.A.; Radzi, M.H.M.; Sabaruddin, F.A.; et al. Thermogravimetric analysis properties of cellulosic natural fiber polymer composites: A review on influence of chemical treatments. Polymers 2021, 13, 2710. [Google Scholar] [CrossRef]
- Aydemir, D.; Civi, B.; Alsan, M.; Can, A.; Sivrikaya, H.; Gunduz, G.; Wang, A. Mechanical, morphological and thermal properties of nano-boron nitride treated wood materials. Maderas. Cienc. Tecnol. 2016, 18, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Taghiyari, H.R.; Rassam, G.; Ahmadi-DavazdahEmam, K. Effects of densification on untreated and nano-aluminum-oxide impregnated poplar wood. J. For. Res. 2017, 28, 403–410. [Google Scholar] [CrossRef]
- Gallio, E.; Acosta, A.P.; Delucis, R. de Á.; dos Santos, P.S.B.; Gatto, D.A. Flammability of a softwood impregnated with alumina nanoparticles. J. Indian Acad. Wood Sci. 2021, 18, 75–82. [Google Scholar] [CrossRef]
- Vek, V.; Poljanšek, I.; Humar, M.; Willför, S.; Oven, P. In vitro inhibition of extractives from knotwood of Scots pine (Pinus sylvestris) and black pine (Pinus nigra) on growth of Schizophyllum commune, Trametes versicolor, Gloeophyllum trabeum and Fibroporia vaillantii. Wood Sci. Technol. 2020, 54, 1645–1662. [Google Scholar] [CrossRef]
- Aramburu, A.B.; Guidoti, A.B.; Schneider, D.M.; Cruz, N.D.; de Avila Delucis, R. Colour of polyurethane foams filled with wood and wood derivatives exposed to two xylophagous fungi. J. Cell. Plast. 2022, 58, 541–553. [Google Scholar] [CrossRef]
- Olatinwo, R.; So, C.-L.; Eberhardt, T.L. Effect of Acaromyces Ingoldii Secondary Metabolites on the Growth of Brown-Rot (Gloeophyllum trabeum) and White-Rot (Trametes versicolor) Fungi. Mycobiology 2019, 47, 506–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, M.; Li, N.; Bao, Y.; Li, J.; Zhong, H.; Chen, Y.; Yu, Y. Outdoor Wood Mats-Based Engineering Composite: Influence of Process Parameters on Decay Resistance against Wood-Degrading Fungi Trametes versicolor and Gloeophyllum trabeum. Polymers 2021, 13, 3173. [Google Scholar] [CrossRef]
- Bader, T.K.; Hofstetter, K.; Alfredsen, G.; Bollmus, S. Microstructure and stiffness of Scots pine (Pinus sylvestris L) sapwood degraded by Gloeophyllum trabeum and Trametes versicolor–Part I: Changes in chemical composition, density and equilibrium moisture content. Holzforschung 2012, 66, 199–206. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, L.; Chao, Y.; Nawawi, D.S.; Akiyama, T.; Yokoyama, T.; Matsumoto, Y. Analysis of Lignin Aromatic Structure in Wood Based on the IR Spectrum. J. Wood Chem. Technol. 2012, 32, 294–303. [Google Scholar] [CrossRef]
- Acosta, A.P.; de Avila Delucis, R.; de Oliveira Voloski, C.; Beltrame, R.; Cruz, N.D.; Gatto, D.A. Infrared spectroscopy as a tool to evaluate pine woods treated by in situ polymerization with three different precursors and decayed by a white-rot fungus. J. Indian Acad. Wood Sci. 2021, 18, 59–65. [Google Scholar] [CrossRef]
- Qi, J.; Jia, L.; Liang, Y.; Luo, B.; Zhao, R.; Zhang, C.; Wen, J.; Zhou, Y.; Fan, M.; Xia, Y. Fungi’s selectivity in the biodegradation of Dendrocalamus sinicus decayed by white and brown rot fungi. Ind. Crops Prod. 2022, 188, 115726. [Google Scholar] [CrossRef]
- Stangerlin, D.M.; Costa, A.F.; Garlet, A.; Pastore, T.C.M. Resistência Natural da Madeira de Três Espécies Amazônicas Submetidas ao Ataque de Fungos Apodrecedores. Rev. Ciência Madeira-RCM 2013, 4, 15–32. [Google Scholar] [CrossRef]
- Popescu, C.-M.; Gradinariu, P.; Popescu, M.-C. Structural analysis of lime wood biodegraded by white rot fungi through infrared and two dimensional correlation spectroscopy techniques. J. Mol. Struct. 2016, 1124, 78–84. [Google Scholar] [CrossRef]
- Backa, S.; Brolin, A.; Nilsson, T. Characterisation of Fungal Degraded Birch Wood by FTIR and Py-GC. Holzforschung 2001, 55, 225–232. [Google Scholar] [CrossRef]
- Andlar, M.; Rezić, T.; Marđetko, N.; Kracher, D.; Ludwig, R.; Šantek, B. Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation. Eng. Life Sci. 2018, 18, 768–778. [Google Scholar] [CrossRef] [PubMed]
- Karim, M.; Daryaei, M.G.; Torkaman, J.; Oladi, R.; Ghanbary, M.A.T.; Bari, E.; Yilgor, N. Natural decomposition of hornbeam wood decayed by the white rot fungus Trametes versicolor. An. Acad. Bras. Cienc. 2017, 89, 2647–2655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esteves, B.; Velez Marques, A.; Domingos, I.; Pereira, H. Chemical changes of heat treated pine and eucalypt wood monitored by FTIR. Maderas. Cienc. Tecnol. 2013, 15, 245–258. [Google Scholar] [CrossRef] [Green Version]
- Ganne-Chédeville, C.; Jääskeläinen, A.-S.; Froidevaux, J.; Hughes, M.; Navi, P. Natural and artificial ageing of spruce wood as observed by FTIR-ATR and UVRR spectroscopy. Holzforschung 2012, 66, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Özgenç, Ö.; Durmaz, S.; Boyaci, I.H.; Eksi-Kocak, H. Determination of chemical changes in heat-treated wood using ATR-FTIR and FT Raman spectrometry. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 171, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Pandey, K.K. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J. Appl. Polym. Sci. 1999, 71, 1969–1975. [Google Scholar] [CrossRef]
- Costa, M.D.A.; da Costa, A.F.; Pastore, T.C.M.; Braga, J.W.B.; Gonçalez, J.C. Caracterização do ataque de fungos apodrecedores de madeiras através da colorimetria e da espectroscopia de infravermelho. Ciência Florest. 2011, 21, 567–577. [Google Scholar] [CrossRef] [Green Version]
- Darwish, S.S.; El Hadidi, N.M.N.; Mansour, M. The effect of fungal decay on Ficus sycomorus wood. Int. J. Conserv. Sci. 2013, 4, 271–282. [Google Scholar]
- Goodell, B.; Winandy, J.E.; Morrell, J.J. Fungal Degradation of Wood: Emerging Data, New Insights and Changing Perceptions. Coatings 2020, 10, 1210. [Google Scholar] [CrossRef]
- Popescu, C.-M.; Lisa, G.; Manoliu, A.; Gradinariu, P.; Vasile, C. Thermogravimetric analysis of fungus-degraded lime wood. Carbohydr. Polym. 2010, 80, 78–83. [Google Scholar] [CrossRef]
- Liu, R.; Morrell, J.J.; Yan, L. Thermogravimetric Analysis Studies of Thermally-treated Glycerol Impregnated Poplar Wood. BioResources 2018, 13, 1563–1575. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Fan, Q.; He, Z.; Wang, Z.; Wang, X.; Sun, J. Effect of biodegradation on thermogravimetric and chemical characteristics of hardwood and softwood by brown-rot fungus. Bioresour. Technol. 2016, 211, 443–450. [Google Scholar] [CrossRef] [PubMed]
Treatment | Mass Loss (%) | >600 (°C) | ||||
---|---|---|---|---|---|---|
30–105 (°C) | 105–200 (°C) | 200–300 (°C) | 300–400 (°C) | 400–600 (°C) | ||
PE | 9.75 | 0.78 | 3.98 | 50.67 | 18.49 | 16.33 |
PE − GT | 3.91 | 0.87 | 5.40 | 53.60 | 17.86 | 18.36 |
PE − TV | 5.09 | 0.94 | 6.43 | 51.73 | 21.58 | 14.23 |
PE + Al2O3 0.1% | 9.79 | 0.50 | 2.75 | 50.24 | 19.15 | 17.57 |
PE + Al2O3 0.1% − GT | 4.24 | 0.75 | 5.39 | 54.24 | 18.64 | 16.74 |
PE + Al2O3 0.1% − TV | 5.31 | 0.51 | 6.44 | 53.80 | 20.75 | 13.19 |
PE + Al2O3 0.3% | 9.83 | 0.70 | 2.08 | 48.96 | 20.05 | 18.38 |
PE + Al2O3 0.3% − GT | 4.06 | 0.53 | 9.54 | 50.89 | 17.66 | 17.32 |
PE + Al2O3 0.3% − TV | 4.83 | 0.79 | 4.36 | 54.00 | 18.55 | 17.47 |
PE + Al2O3 0.5% | 9.53 | 0.76 | 2.13 | 49.15 | 20.54 | 17.89 |
PE + Al2O3 0.5% − GT | 4.64 | 0.55 | 7.91 | 50.68 | 19.09 | 17.13 |
PE + Al2O3 0.5% − TV | 4.88 | 0.51 | 4.79 | 53.60 | 18.55 | 17.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acosta, A.P.; Gallio, E.; Cruz, N.; Aramburu, A.B.; Lunkes, N.; Missio, A.L.; Delucis, R.d.A.; Gatto, D.A. Alumina as an Antifungal Agent for Pinus elliottii Wood. J. Fungi 2022, 8, 1299. https://doi.org/10.3390/jof8121299
Acosta AP, Gallio E, Cruz N, Aramburu AB, Lunkes N, Missio AL, Delucis RdA, Gatto DA. Alumina as an Antifungal Agent for Pinus elliottii Wood. Journal of Fungi. 2022; 8(12):1299. https://doi.org/10.3390/jof8121299
Chicago/Turabian StyleAcosta, Andrey P., Ezequiel Gallio, Nidria Cruz, Arthur B. Aramburu, Nayara Lunkes, André L. Missio, Rafael de A. Delucis, and Darci A. Gatto. 2022. "Alumina as an Antifungal Agent for Pinus elliottii Wood" Journal of Fungi 8, no. 12: 1299. https://doi.org/10.3390/jof8121299
APA StyleAcosta, A. P., Gallio, E., Cruz, N., Aramburu, A. B., Lunkes, N., Missio, A. L., Delucis, R. d. A., & Gatto, D. A. (2022). Alumina as an Antifungal Agent for Pinus elliottii Wood. Journal of Fungi, 8(12), 1299. https://doi.org/10.3390/jof8121299