Detection and Molecular Phylogenetic-Morphometric Characterization of Rhizoctonia tuliparum, Causal Agent of Gray Bulb Rot of Tulips and Bulbous Iris
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal isolates
2.2. DNA Extraction from Fungal Isolates, Soil, and Plant Tissue
2.3. Primer Design and qPCR Assay for R. tuliparum
2.4. Detection of Lab-Grown and Field-Collected (Natural) Sclerotia of R. tuliparum
2.5. Detection of R. tuliparum in Soil and Plant Samples
2.6. Phylogenetic Analyses
2.7. Morphometric Analyses of the ITS2 Region
3. Results
3.1. R. tulipia qPCR Detection Assay Sensitivity and Specificity
3.2. Detection of Lab-Grown and Natural Sclerotia
3.3. Detection of R. tuliparum in Soil
3.4. Detection of R. tuliparum in Bulbs
3.5. Phylogenetic Analyses
3.6. Morphometric Analyses of the ITS2 Region
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Whetzel, H.H.; Arthur, J.M. Gray Bulb-Rot of Tulips Caused By Rhizoctonia tuliparum (Klebh.) N. Comb; Cornell University: Ithaca, NY, USA, 1925. [Google Scholar]
- Buddin, W. The grey bulb rot of tulips and its control. J. Minist. Agric. Fish. 1937, 44, 1154–1159. [Google Scholar]
- Moore, W.C. Grey Bulb Rot of tulip. J. Hortic. Soc. 1950, 75, 113–117. [Google Scholar]
- Moore, W.C. Diseases of Bulbs, 2nd ed.; Dickens, J.S.W., Ed.; Her Majesty’s Stationary Office: London, UK, 1979; 205p. [Google Scholar]
- Boerema, G.H.; Hamers, M.E.C. Check-list for scientific names of common parasitic fungi. Series 3a: Fungi on bulbs: Liliaceae. Nether. J. Plant Pathol. 1988, 94, 1–29. [Google Scholar] [CrossRef]
- Gladders, P.; Coley-Smith, J.R. Rhizoctonia tuliparum: A winter-active pathogen. Trans. Brit. Mycol. Soc. 1978, 71, 129–139. [Google Scholar] [CrossRef]
- Wakker, J.H. Onderzoek der Ziekten van Hyacinthen en Andere Bol- En Knolgewassen; Algemeene Vereeniging voor Bloembollencultuur: Haarlem, The Netherlands, 1884; 26p. [Google Scholar]
- Whetzel, H.H.; Arthur, J.M. The grey bulb-rot of tulips. Phytopathology 1924, 14, 30–31. [Google Scholar]
- McGovern, R.J.; Elmer, W.H. Diseases of Tulip. In Handbook of Florists’ Crops Diseases. Handbook of Plant Disease Management; McGovern, R., Elmer, W., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Coley-Smith, J.R.; Humphreys-Jones, D.R.; Gladders, P. Long-term survival of sclerotia of Rhizoctonia tuliparum. Plant Pathol. 1979, 28, 128–130. [Google Scholar] [CrossRef]
- Blok, W.; Coenen, T.C.M.; Termorshiuzen, A.J.; Lamers, J.G. The potential of biological soil disinfestation to manage fusarium foot and root rot in asparagus. Acta Hortic. 2008, 776, 135–144. [Google Scholar] [CrossRef] [Green Version]
- Chastagner, G.A.; DeBauw, A. Alternatives to PCNB for controlling Gray Bulb Rot on tulips. Acta Hort. (ISHS) 2011, 886, 311–317. [Google Scholar] [CrossRef]
- Lakshman, D.K.; Cloyd, R.A.; Chastagner, G.A. Integrated management of diseases and pests on ornamental geophytes: Challenges and progress. Acta Hortic. 2019, 1237, 13–32. [Google Scholar] [CrossRef]
- Leclerc, M.; Doré, T.; Gilligan, C.A.; Lucas, P.; Filipe, J.A. Host growth can cause invasive spread of crops by soilborne pathogens. PLoS ONE 2013, 8, e63003. [Google Scholar] [CrossRef] [Green Version]
- Termorshuizen, A.J.; Jeger, M.J. Assessing inoculum of soilborne plant pathogens: Theory and practice. Acta Hortic. 2014, 1044, 75–80. [Google Scholar] [CrossRef]
- Wei, F.; Fan, R.; Dong, H.T.; Shang, W.-J.; Xu, X.M.; Zhu, H.Q.; Yang, J.R.; Hu, X.P. Threshold microsclerotial inoculum for cotton Verticillium wilt determined through wet-sieving and real-time quantitative PCR. Phytopathology 2015, 105, 220–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panth, M.; Hassler, S.C.; Baysal-Gurel, F. Methods for management of soilborne diseases in crop production. Agriculture 2020, 10, 16. [Google Scholar] [CrossRef] [Green Version]
- Heid, C.A.; Stevens, J.; Livak, K.J.; Williams, P.M. Real time quantitative PCR. Genome Res. 1996, 10, 986–994. [Google Scholar] [CrossRef] [Green Version]
- Burton, R.J.; Coley-Smith, J.R. Antibiotics in sclerotia and mycelium of Rhizoctonia species. Trans. Br. Mycol. Soc. 1985, 85, 447–453. [Google Scholar] [CrossRef]
- Dijst, G.; Schneider, J.H.M. Flower bulb diseases incited by Rhizoctonia species. In Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control; Sneh, B., Jabaji-Hare, S., Neate, S.M., Dijst, G., Eds.; Kluwer: Dordrecht, The Netherlands, 1996; pp. 279–288. [Google Scholar]
- Sundaresan, N.; Jagan, E.G.; Kathamuthu, G.; Pandi, M. Internal transcribed spacer 2 (ITS2) molecular morphometric analysis-based species delimitation of foliar endophytic fungi from Aglaia elaeagnoidea, Flacourtia inermis and Premna serratifolia. PLoS ONE 2019, 14, e0215024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Billoud, B.; Guerrucci, M.A.; Masselot, M.; Deutsch, J.S. Cirrepede phylogeny using a novel approach: Molecular morphometrics. Mol. Biol. Evol. 2020, 17, 1435–1445. [Google Scholar] [CrossRef] [Green Version]
- Haugland, R.A.; Siefring, S.C.; Wymer, L.J.; Brenner, K.P.; Dufour, A.P. Comparison of Enterococcus measurements in freshwater at two recreational beaches by quantitative Polymerase Chain Reaction and membrane filter culture analysis. Water Res. 2005, 39, 559–568. [Google Scholar] [CrossRef]
- Ruijter, J.M.; Ramakers, C.; Hoogaars, W.M.; Karlen, Y.; Bakker, O.; van den Hoff, M.J.; Moorman, A.F. Amplification efficiency: Linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 2009, 37, e45. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The Clustal X Windows interface; flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res. 1997, 24, 4876–4882. [Google Scholar] [CrossRef] [Green Version]
- Maddison, W.P.; Maddison, D.R. Mesquite: A Modular System for Evolutionary Analysis. 2019, Version 3.61. Available online: http://www.mesquiteproject.org (accessed on 10 November 2021).
- Huelsenbeck, J.P.; Ronquist, F. MrBayes: Bayesian inference of phylogeny trees. Bioinformatics 2001, 17, 754–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swofford, D.L. PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods); Version 4.0b10; Sinauer Associates: Sunderland, MA, USA, 2002. [Google Scholar] [CrossRef]
- Vu, D.; Groenewald, M.; de Vries, M.; Gehrmann, T.; Stielow, B.; Eberhardt, U.; Al-Hatmi, A.; Groenewald, J.Z.; Cardinal, G.; Houbraken, J.; et al. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud. Mycol. 2019, 92, 135–154. [Google Scholar] [CrossRef]
- Ankenbrand, M.J.; Keller, A.; Wolf, M.; Schultz, J.; Förster, F. ITS2 database V: Twice as much. Mol. Biol. Evol. 2015, 32, 3030–3032. [Google Scholar] [CrossRef] [PubMed]
- Wolf, M.; Chen, S.; Song, J.; Ankenbrand, M.; Müller, T. Compensatory base changes in ITS2 secondary structures correlate with the biological species concept despite intragenomic variability in ITS2 sequences—A proof of concept. PLoS ONE 2013, 8, e66726. [Google Scholar] [CrossRef] [PubMed]
- Ceresini, P.C.; Costa-Souza, E.; Zala, M.; Furtado, E.L.; Souza, N.L. Evidence that the Ceratobasidium-like white-thread blight and black rot fungal pathogens from persimmon and tea crops in the Brazilian Atlantic Forest agroecosystem are two distinct phylospecies. Genet. Mol. Biol. 2012, 35, 480–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Sun, L.W.H.; Wang, N.; Yu, H.; Chen, H. Detection and quantification of Rhizoctonia cerealis in soil using real-time PCR. J. Gen. Plant Pathol. 2012, 78, 247–254. [Google Scholar] [CrossRef]
- Calvo, A.M.; Cary, J.W. Association of fungal secondary metabolism and sclerotial biology. Front. Microbiol. 2015, 6, 62. [Google Scholar] [CrossRef] [Green Version]
- Shu, C.; Sun, S.; Chen, J.; Chen, J.; Zhou, E. Comparison of different methods for total RNA extraction from sclerotia of Rhizoctonia solani. Elec. J. Biotechnol. 2014, 17, 50–54. [Google Scholar] [CrossRef] [Green Version]
- Wei, T.; Lebas, B.S.M.; Shiller, J.B.; Quinn, B.D.; Clover, G.R.G. Detection of five viruses infecting dormant bulbs by TaqMan-based real-time RT-PCR. Australas. Plant Pathol. 2012, 41, 93–98. [Google Scholar] [CrossRef]
- Schrader, C.; Schielke, A.; Ellerbroek, L.; Johne, R. PCR inhibitors—Occurrence, properties, and removal. J. Appl. Microbiol. 2012, 113, 1014–1026. [Google Scholar] [CrossRef]
- Tellenbach, C.; Grünig, C.R.; Sieber, T.N. Suitability of quantitative real-time PCR to estimate biomass of fungal root endophytes. Appl. Environ. Microbiol. 2010, 76, 5764–5772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feau, N.; Decourcelle, T.; Husson, C.; Desprez-Loustau, M.-L.; Dutech, C. Finding single copy genes out of sequenced genomes for multilocus phylogenetics in non-model fungi. PLoS ONE 2011, 6, e18803. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.H.; Su, J.H.; Shang, J.J.; Wu, Y.Y.; Li, Y.; Bao, D.P.; Yao, Y.J. Evaluation of the ribosomal DNA internal transcribed spacer (ITS), specifically ITS1 and ITS2, for the analysis of fungal diversity by deep sequencing. PLoS ONE 2018, 13, e0206428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mbareche, H.; Veillette, M.; Bilodeau, G.; Duchaine, C. Comparison of the performance of ITS1 and ITS2 as barcodes in amplicon-based sequencing of bioaerosols. PeerJ 2020, 8, e8523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Tian, W.; Gao, Z.; Wang, G.; Zhao, H. Phylogenetic utility of rRNA ITS2 sequence-structure under functional constraint. Int. J. Mol. Sci. 2020, 21, 6395–6407. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Lakshman, D.K.; Roberts, D.P.; Ismaiel, A.; Hooda, K.S.; Gogoi, R. Morphopathological and molecular morphometric characterization of Waitea circinata var. prodigus causing a novel sheath spot disease of maize in India. Plant Dis. 2021. [Google Scholar] [CrossRef]
- Coleman, A.W. Is there a molecular key to the level of “biological species” in eukaryotes? A DNA guide. Mol. Phylogenet. Evol. 2009, 50, 197–203. [Google Scholar] [CrossRef]
- Müller, T.; Philippi, N.; Dandekar, T.; Schultz, J.; Wolf, M. Distinguishing species. RNA 2007, 13, 1469–1472. [Google Scholar] [CrossRef] [Green Version]
- Ahvenniemi, P.; Wolf, M.; Lehtonen, M.J.; Wilson, P.; German-Kinnari, M.; Valkonen, J.P.T. Evolutionary diversification indicated by compensatory base changes in ITS2 secondary structures in a complex fungal species, Rhizoctonia solani. J. Mol. Evol. 2009, 69, 150–163. [Google Scholar] [CrossRef]
- Kammerer, S.J.; Burpee, L.L.; Harmon, P.F. Identification of a new Waitea circinata variety causing basal leaf blight of seashore paspalum. Plant Dis. 2011, 95, 515–522. [Google Scholar] [CrossRef] [Green Version]
- Amaradasa, B.S.; Lakshman, D.K.; Horvath, B.J.; Amundsen, K.L. Development of SCAR markers and UP-PCR cross-hybridization method for specific detection of four major subgroups of Rhizoctonia from infected turfgrasses. Mycologia 2014, 106, 163–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amaradasa, B.S.; Lakshman, D.K.; McCall, D.; Horvath, B.J. In vitro fungicide sensitivity of Rhizoctonia and Waitea isolates collected from turfgrasses. J. Environ. Hort. 2014, 32, 126–132. [Google Scholar] [CrossRef]
- Amaradasa, B.S.; Lakshman, D.K.; Amundsen, K. AFLP fingerprinting for identification of infra-species groups of Rhizoctonia solani and Waitea circinata. J. Plant Protect. Microbiol. 2015, 6, 3. [Google Scholar] [CrossRef] [Green Version]
- Sharon, M.S.; Kuninaga, S.; Hyakumachi, M.; Naito, S.; Sneh, B. Classification of Rhizoctonia spp., using rDNA-ITS sequence analysis supports the genetic basis of the classical anastomosis grouping. Mycoscience 2008, 49, 93–114. [Google Scholar] [CrossRef]
- van Klaveren, C. Ziegnten in bloembollen. Maandbl. Landbouw Voorl. 1949, 6, 147–153. [Google Scholar]
- Muller, P.J.; Vink, P.; Van Zaagen, A. Flooding caused loss in viability and pathogenicity of sclerotia of Rhizoctonia tuliparum. Eur. J. Plant Pathol. 1988, 94, 45–47. [Google Scholar] [CrossRef]
- Chastagner, G.; Hanks, G.; Daughtrey, M.; Yedidia, I.; Miller, T.; Pappu, H. Sustainable Production and Integrated Management: Environmental Issues. In Ornamental Geophytes: From Basic Science to Sustainable Horticultural Production; Kamenetsky, R., Okubo, H., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 363–420. [Google Scholar] [CrossRef]
- Conijn, C. Tulip Diseases. Roodbont Publishers B.V.: Zutphen, The Netherlands, 2016; p. 149. [Google Scholar]
- Chastagner, G.A.; Garfinkel, A. Diseases Affecting Ornamental Geophytes and Their Control. In Achieving Sustainable Cultivation of Ornamental Plants; Reid, M., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2020; pp. 367–414. [Google Scholar] [CrossRef]
Isolate | Species | Host/Source | Origin | Ct Value |
---|---|---|---|---|
PC76 | Rhizoctonia solani AG-2-1 | Tulip | Washington | N/A a |
Rh060811 c | R. solani AG 2-1 | Pea | Washington | N/A |
Rh070913 c | R. solani AG 2-1 | Onion | Washington | N/A |
Rh070937 c | R. solani AG 2-1 | Pea | Washington | N/A |
Rh070933 c | R. solani AG 3 | Potato | Washington | N/A |
Rh070934 c | R. solani AG 3 | Potato | Washington | N/A |
Rh070935 c | R. solani AG 3 | Onion | Washington | N/A |
Rh070942 c | R. solani AG 3 | Pea | Washington | N/A |
Rh070912 c | R. solani AG 3 | Onion | Washington | N/A |
Rh010901 c | R. solani AG 4 | Pea | Washington | N/A |
Rh070908 c | R. solani AG 4 | Pea | Washington | N/A |
Rh070909 c | R. solani AG 4 | Pea | Washington | N/A |
Rh070910 c | R. solani AG 4 | Pea | Washington | N/A |
Rh070915 c | R. solani AG 4 | Onion | Washington | N/A |
Rh070929 c | R. solani AG 4 | Onion | Washington | N/A |
Rh070939 c | R. solani AG 4 | Onion | Washington | N/A |
Rh070940 c | R. solani AG 4 | Potato | Washington | N/A |
Rh070930 c | R. solani AG 5 | Potato | Washington | N/A |
Rh070931 c | R. solani AG 5 | Pea | Washington | N/A |
Rh070932 c | R. solani AG 5 | Potato | Washington | N/A |
Rh080714 c | R. solani AG 8 | Wheat | Washington | N/A |
Rh010911 c | R. solani AG 8 | Onion | Washington | N/A |
Rh070922 c | R. solani AG 8 | Soil d | Washington | N/A |
Rh070927 c | R. solani AG 8 | Onion | Washington | N/A |
Rh070943 c | R. solani AG 8 | Pea | Washington | N/A |
Rh100557 c | R. solani AG 8 | Wheat | Washington | N/A |
Rh070921 c | R. solani AG 9 | Pea | Washington | N/A |
Rh070938 c | R. solani AG 9 | Pea | Washington | N/A |
Rh090801 c | Ceratobasidium AG-A | Onion | Washington | N/A |
Rh010913 c | Ceratobasidium AG-A | Onion | Washington | N/A |
Rh070923 c | Ceratobasidium AG-E | Soil d | Washington | N/A |
Rh110712 c | Ceratobasidium AG-I | Wheat | Washington | N/A |
Rh070716 c | Ceratobasidium AG-I | Wheat | Washington | N/A |
Rh070914 c | Ceratobasidium AG-I | Pea | Washington | N/A |
Rh010905 c | Ceratobasidium sp. | Onion | Washington | N/A |
Rh010909 c | Waitea circinata (R. oryzae grp. 1) | Onion | Washington | N/A |
Rh070924 c | W. circinata (var. circinata) | Soil d | Washington | N/A |
Rh070925 c | W. circinata (var. circinata) | Soil d | Washington | N/A |
Rh070936 c | W. circinata (var. circinata) | Onion | Washington | N/A |
Rh070911 c | Ceratobasidium sp. | Pea | Washington | N/A |
Rh070926 c | Rhizoctonia spp. | Soil d | Washington | N/A |
Rh070928 c | Rhizoctonia spp. | Onion | Washington | N/A |
VSP 05-01 A c | R. solani AG 4, HG II | Onion | Columbia Basin | N/A |
VSP 05-01 B c | R. solani AG 4, HG II | Onion | Columbia Basin | N/A |
VSP 05-37 A c | Swiss Chard | Washington | N/A | |
VSP 05-37 B c | Swiss Chard | Washington | N/A | |
VSP 06-26 B c | R. solani AG 4, HG II | Onion | Columbia Basin | N/A |
VSP 08-13 A c | Onion | Columbia Basin | N/A | |
VSP 08-14 B c | Onion | Columbia Basin | N/A | |
VSP 08-19 A c | Onion | Columbia Basin | N/A | |
VSP 08-19 G c | Onion | Columbia Basin | N/A | |
VSP 08-33 B, plt 4 c | Skullcap | Columbia Basin | N/A | |
06SPFWLA c | R. solani AG 3 | Spinach | Washington | N/A |
VSP 08-33 A, plt 6 c | R. solani | Skullcap | Columbia Basin | N/A |
VSP 10-20 Tamara 1 c | R. solani | Onion | Columbia Basin | N/A |
VSP 10-20 Tamara 2 c | R. solani | Onion | Columbia Basin | N/A |
VSP 10-20 Field 2-2 c | R. solani | Onion | Columbia Basin | N/A |
VSP 10-20 Field 2-3 c | R. solani | Onion | Columbia Basin | N/A |
LP 3 c | R. solani | Pea | Oregon | N/A |
LP 10 c | R. solani | Pea | Oregon | N/A |
LP 12 c | R. solani | Pea | Oregon | N/A |
LP 13 c | R. solani | Pea | Oregon | N/A |
MBL12140 | R. tuliparum | Iris | Washington | 19.60 |
MBL12141 | R. tuliparum | Iris | Washington | 16.10 |
MBL12145 | R. tuliparum | Iris | Washington | 27.25 |
MBL12146 | R. tuliparum | Iris | Washington | 17.84 |
MBL11082 (DGF2_VV) | R. tuliparum | Iris | Washington | 33.51 |
Rh_Tulip | R. tuliparum | Tulip | Washington | 13.93 |
I-399 b | R. tuliparum | Iris | Washington | |
I-399 | R. tuliparum 1:10 | Iris | Washington | 18.79 |
I-399 | R. tuliparum 1:100 | Iris | Washington | 21.32 |
I-399 | R. tuliparum 1:1000 | Iris | Washington | 24.90 |
No template control e | --- | --- | --- | N/A |
Primer/Probe Name | Sequence (5′-3′) | Target Region | Study |
---|---|---|---|
R. tuliparum primers | |||
Rtul_for | CGAGGTCGACTTTTTGTTTTGG | ITSa | This study |
Rtul_rev | CCGAGTGGAACCGAGTTCAC | ITS | This study |
R. tuliparum probe R. tuliparum probe | |||
Rtul_probe | [TET] TTTGCGGATTCACGTCC [MGB-NFQ] | ITS | This study |
Sketa Exogenous Amplification Control (EAC) primers | |||
SketaF2 | GGTTTCCGCAGCTGGG | ITS | [23] |
SketaR3 | CCGAGCCGTCCTGGTCTA | ITS | [23] |
Sketa probe | |||
SketaP2 | [6-FAM] AGTCGCAGGCGGCCACCGT [TAMRA] | ITS | [23] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coats, K.; DeBauw, A.; Lakshman, D.K.; Roberts, D.P.; Ismaiel, A.; Chastagner, G. Detection and Molecular Phylogenetic-Morphometric Characterization of Rhizoctonia tuliparum, Causal Agent of Gray Bulb Rot of Tulips and Bulbous Iris. J. Fungi 2022, 8, 163. https://doi.org/10.3390/jof8020163
Coats K, DeBauw A, Lakshman DK, Roberts DP, Ismaiel A, Chastagner G. Detection and Molecular Phylogenetic-Morphometric Characterization of Rhizoctonia tuliparum, Causal Agent of Gray Bulb Rot of Tulips and Bulbous Iris. Journal of Fungi. 2022; 8(2):163. https://doi.org/10.3390/jof8020163
Chicago/Turabian StyleCoats, Katie, Annie DeBauw, Dilip K. Lakshman, Daniel P. Roberts, Adnan Ismaiel, and Gary Chastagner. 2022. "Detection and Molecular Phylogenetic-Morphometric Characterization of Rhizoctonia tuliparum, Causal Agent of Gray Bulb Rot of Tulips and Bulbous Iris" Journal of Fungi 8, no. 2: 163. https://doi.org/10.3390/jof8020163
APA StyleCoats, K., DeBauw, A., Lakshman, D. K., Roberts, D. P., Ismaiel, A., & Chastagner, G. (2022). Detection and Molecular Phylogenetic-Morphometric Characterization of Rhizoctonia tuliparum, Causal Agent of Gray Bulb Rot of Tulips and Bulbous Iris. Journal of Fungi, 8(2), 163. https://doi.org/10.3390/jof8020163