Genome-Wide Analysis of Cytochrome P450s of Alternaria Species: Evolutionary Origin, Family Expansion and Putative Functions
Abstract
:1. Introduction
2. Methodology
2.1. Sequence Data Retrieval
2.2. Sequence Validation
2.3. Annotation of CYPs
2.4. Construction of Heatmap
2.5. Phylogenetic Reconstruction of CYPs
2.6. Identification of Cytochrome P450s Associated with Secondary Metabolism-Related Gene Clusters
2.7. Subcellular Localization Analysis
3. Results
3.1. CYP Proteins in Alternaria
3.2. Family and Clan Classification
3.3. Evolutionary Relationship
3.4. Subcellular Location
3.5. Distribution of Secondary Metabolite-Related Gene
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meena, M.; Gupta, S.K.; Swapnil, P.; Zehra, A.; Dubey, M.K.; Upadhyay, R.S. Alternaria toxins: Potential virulence factors and genes related to pathogenesis. Front. Microbiol. 2017, 8, 1451. [Google Scholar] [CrossRef] [PubMed]
- Mamgain, A.; Roychowdhury, R.; Tah, J. Alternaria pathogenicity and its strategic controls. Res. J. Biol. 2013, 1, 1–9. [Google Scholar]
- Singh, V.; Shrivastava, A.; Jadon, S.; Wahi, N.; Singh, A.; Sharma, N. Alternaria diseases of vegetable crops and its management control to reduce the low production. Int. J. Agric. Sci. 2015, 7, 834–840. [Google Scholar]
- Dalinova, A.A.; Salimova, D.R.; Berestetskiy, A.O. Fungi of the genera Alternaria as producers of biological active compounds and mycoherbicides. Appl. Biochem. Microbiol. 2020, 56, 256–272. [Google Scholar] [CrossRef]
- Patil, S.V.; Jayamohan, N.S.; Kumudini, B.S. Strategic assessment of multiple plant growth promotion traits for shortlisting of fluorescent Pseudomonas spp. and seed priming against ragi blast disease. Plant Growth Regul. 2016, 80, 47–58. [Google Scholar] [CrossRef]
- Elgorban, A.M.; Bahkali, A.H.; Al Farraj, D.A.; Abdel-Wahab, M.A. Natural products of Alternaria sp., an endophytic fungus isolated from Salvadora persica from Saudi Arabia. Saudi J. Biol. Sci. 2019, 26, 1068–1077. [Google Scholar] [CrossRef]
- Sajad, A.M.; Jamaluddin; Abid, H.Q. Fungi associated with the spoilage of post-harvest tomato fruits and their frequency of occurrences in different markets of Jabalpur, Madhya-Pradesh, India. Int. J. Curr. Res. Rev. 2017, 9, 12–16. Available online: https://ijcrr.com/uploads/118_pdf.pdf (accessed on 25 September 2021).
- Romero-Hernández, L.; Velez, P.; Betanzo-Gutiérrez, I.; Camacho-López, M.D.; Vázquez-Duhalt, R.; Riquelme, M. Extra-heavy crude oil degradation by Alternaria sp. isolated from deep-sea sediments of the Gulf of Mexico. Appl. Sci. 2021, 11, 6090. [Google Scholar] [CrossRef]
- Lou, J.; Fu, L.; Peng, Y.; Zhou, L. Metabolites from Alternaria fungi and their bioactivities. Molecules 2013, 18, 5891–5935. [Google Scholar] [CrossRef]
- Zarafi, A.B.; Dauda, W.P. Exploring the importance of fungi in agricultural biotechnology. Int. J. Agric. Sci. Vet. Med. 2019, 7, 1–12. [Google Scholar]
- Takaoka, S.; Kurata, M.; Harimoto, Y.; Hatta, R.; Yamamoto, M.; Akimitsu, K.; Tsuge, T. Complex regulation of secondary metabolism controlling pathogenicity in the phytopathogenic fungus Alternaria alternata. New Phytol. 2014, 202, 1297–1309. [Google Scholar] [CrossRef] [PubMed]
- Chadha, S.; Mehetre, S.T.; Bansal, R.; Kuo, A.; Aerts, A.; Grigoriev, I.V.; Druzhinina, I.S.; Mukherjee, P.K. Genome-wide analysis of cytochrome P450s of Trichoderma spp.: Annotation and evolutionary relationships. Fungal Biol. Biotechnol. 2018, 5, 12. [Google Scholar] [CrossRef] [PubMed]
- Kelly, S.L.; Kelly, D.E. Microbial cytochromes P450: Biodiversity and biotechnology. Where do cytochromes P450 come from, what do they do and what can they do for us? Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120476. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Lee, M.K.; Jefcoate, C.; Kim, S.C.; Chen, F.; Yu, J.H. Fungal cytochrome p450 monooxygenases: Their distribution, structure, functions, family expansion, and evolutionary origin. Genome Biol. Evol. 2014, 6, 1620–1634. [Google Scholar] [CrossRef] [Green Version]
- Syed, K.; Yadav, J.S. P450 monooxygenases (P450ome) of the model white rot fungus Phanerochaete chrysosporium. Crit. Rev. Microbiol. 2012, 38, 339–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newsome, A.W.; Nelson, D.; Corran, A.; Kelly, S.L.; Kelly, D.E. The cytochrome P 450 complement (CYP ome) of Mycosphaerella graminicola. Biotechnol. Appl. Biochem. 2013, 60, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Lah, L.; Haridas, S.; Bohlmann, J.; Breuil, C. The cytochromes P450 of Grosmannia clavigera: Genome organization, phylogeny, and expression in response to pine host chemicals. Fungal Genet. Biol. 2013, 50, 72–81. [Google Scholar] [CrossRef]
- Dauda, W.P.; Glen, E.; Abraham, P.; Adetunji, C.O.; Morumda, D.; Abraham, S.E.; Wabba, G.P.; Ogwuche, I.O.; Azameti, M.K. Comparative Phylogenomic Analysis of Cytochrome P450 Monooxygenases from Fusarium Species; Research Square: Durham, UK, 2021. [Google Scholar] [CrossRef]
- Tsuge, T.; Harimoto, Y.; Hanada, K.; Akagi, Y.; Kodama, M.; Akimitsu, K.; Yamamoto, M. Evolution of pathogenicity controlled by small, dispensable chromosomes in Alternaria alternata pathogens. Physiol. Mol. Plant Pathol. 2016, 95, 27–31. [Google Scholar] [CrossRef]
- Meena, M.; Samal, S. Alternaria host-specific (HSTs) toxins: An overview of chemical characterization, target sites, regulation and their toxic effects. Toxicol. Rep. 2019, 6, 745–758. [Google Scholar] [CrossRef]
- Huang, K.; Tang, J.; Zou, Y.; Sun, X.; Lan, J.; Wang, W.; Xu, P.; Wu, X.; Ma, R.; Wang, Q.; et al. Whole-genome sequence of Alternaria alternata, the causal agent of black spot of kiwifruit. Front. Microbiol. 2021, 12, 713462. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Jones, D.T.; Taylor, W.R.; Thornton, J.M. The rapid generation of mutation data matrices from protein sequences. Bioinformatics 1992, 8, 275–282. [Google Scholar] [CrossRef]
- Dauda, W.P.; Abraham, P.; Fasogbon, I.V.; Adetunji, C.O.; Banwo, O.O.; Kashina, B.D.; Alegbejo, M.D. Cassava mosaic virus in Africa: Functional analysis of virus coat proteins based on evolutionary processes and protein structure. Gene Rep. 2021, 24, 101239. [Google Scholar] [CrossRef]
- Savojardo, C.; Martelli, P.L.; Fariselli, P.; Profiti, G.; Casadio, R. BUSCA: An integrative web server to predict subcellular localization of proteins. Nucleic Acids Res. 2018, 46, W459–W466. [Google Scholar] [CrossRef]
- Dang, H.X.; Pryor, B.; Peever, T.; Lawrence, C.B. The Alternaria genomes database: A comprehensive resource for fungal genus comprised of saprophytes, plant pathogens, and allergic species. BMC Genom. 2015, 16, 239. [Google Scholar] [CrossRef] [Green Version]
- Kgosiemang, I.K.R.; Mashele, S.S.; Syed, K. Comparative genomics and evolutionary analysis of cytochrome P450 monooxygenases in fungal subphylum Saccharomycotina. J. Pure Appl. Microbiol. 2014, 8, 291–302. [Google Scholar]
- Shin, J.; Kim, J.E.; Lee, Y.W.; Son, H. Fungal cytochrome P450s and the P450 complement (CYPome) of Fusarium graminearum. Toxins 2018, 10, 112. [Google Scholar] [CrossRef] [Green Version]
- Soanes, D.M.; Alam, I.; Cornell, M.; Wong, H.M.; Hedeler, C.; Paton, N.W.; Rattray, M.; Hubbard, S.J.; Oliver, S.G.; Talbot, N.J. Comparative genome analysis of filamentousfungi reveals gene family expansions associated with fungal pathogen-esis. PLoS ONE 2008, 3, e2300. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, S.; Kohmoto, K. Host-specific toxins and chemical structures from Alternaria species. Annu. Rev. Phytopathol. 1983, 21, 87–116. [Google Scholar] [CrossRef]
- Tsuge, T.; Harimoto, Y.; Akimitsu, K.; Ohtani, K.; Kodama, M.; Akagi, Y.; Egusa, M.; Yamamoto, M.; Otani, H. Host-selective toxins produced by the plant pathogenic fungus Alternaria alternata. FEMS Microbiol. Rev. 2013, 37, 44–66. [Google Scholar] [CrossRef]
- Kelly, D.E.; Kraševec, N.; Mullins, J.; Nelson, D.R. The CYPome (cytochrome P450 complement) of Aspergillus nidulans. Fungal Genet. Biol. 2009, 46, S53–S61. [Google Scholar] [CrossRef]
- Syed, K.; Shale, K.; Pagadala, N.S.; Tuszynski, J. Systematic identification and evolutionary analysis of catalytically versatile cytochrome p450 monooxygenase families enriched in model basidiomycete fungi. PLoS ONE 2014, 9, e86683. [Google Scholar] [CrossRef]
- Hansen, C.C.; Nelson, D.R.; Møller, B.L.; Werck-Reichhart, D. Plant cytochrome P450 plasticity andevolution. Mol. Plant 2021, 14, 1244–1265. [Google Scholar] [CrossRef]
- Nelson, D.R.; Koymans, L.; Kamataki, T.; Stegeman, J.J.; Feyereisen, R.; Waxman, D.J.; Waterman, M.R.; Gotoh, O.; Coon, M.J.; Estabrook, R.W.; et al. P450 superfamily: Update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 1996, 6, 1–42. [Google Scholar] [CrossRef]
- Werck-Reichhart, D.; Feyereisen, R. Cytochromes P450: A success story. Genome Biol. 2000, 1, reviews3003. [Google Scholar] [CrossRef] [Green Version]
- Brakhage, A.A. Regulation of fungal secondary metabolism. Nat. Rev. Microbiol. 2012, 11, 21–32. [Google Scholar] [CrossRef]
- Adetunji, C.O.; Olaniyan, O.T.; Anani, O.A.; Inobeme, A.; Ukhurebor, K.E.; Bodunrinde, R.E.; Adetunji, J.B.; Singh, K.R.; Nayak, V.; Palnam, W.D.; et al. Bionanomaterials for green bionanotechnology. In Bionanomaterials; IOP Publishing: Bristol, UK, 2021. [Google Scholar]
- Yim, G.; Wang, H.H.; Frs, J.D. Antibiotics as signalling molecules. Philos. Trans. R. Soc. B Biol. Sci. 2007, 362, 1195–1200. [Google Scholar] [CrossRef] [Green Version]
- Brakhage, A.A.; Schroeckh, V. Fungal secondary metabolites–strategies to activate silent gene clusters. Fungal Genet. Biol. 2011, 48, 15–22. [Google Scholar] [CrossRef]
- Saha, P.; Sarkar, A.; Sabnam, N.; Shirke, M.D.; Mahesh, H.B.; Nikhil, A.; Rajamani, A.; Gowda, M.; Roy-Barman, S. Comparative analysis of secondary metabolite gene clusters in different strains of Magnaporthe oryzae. FEMS Microbiol. Lett. 2021, 368, fnaa216. [Google Scholar] [CrossRef]
- Thomma, B.P. Alternaria spp.: From general saprophyte to specific parasite. Mol. Plant Pathol. 2003, 4, 225–236. [Google Scholar] [CrossRef]
- Oyekanmi, A.; Okibe, F.; Dauda, W.P. Toxic elements levels in water and some vegetable crops grown in farms in Bade Local Government area of Yobe state, Nigeria. Asian J. Phys. Chem. Sci. 2018, 6, 1–12. [Google Scholar] [CrossRef]
- Adetunji, C.O.; Olaniyan, O.T.; Igere, B.E.; Ekundayo, T.C.; Anani, O.A.; Bodunrinde, R.E.; Olisaka, F.N.; Inobeme, A.; Uwadiae, E.O.; Obayagbona, O.N.; et al. Microbial Degradation of Chlorophenolic Compounds. In Recent Advances in Microbial Degradation; Springer: Singapore, 2021; pp. 313–349. [Google Scholar]
- Oide, S.; Moeder, W.; Krasnoff, S.; Gibson, D.; Haas, H.; Yoshioka, K.; Turgeon, B.G. NPS6, encoding a non-ribosomal peptide synthetase involved in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic ascomycetes. Plant Cell 2006, 18, 2836–2853. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Cho, Y.; La Rota, M.; Cramer, R.A., Jr.; Lawrence, C.B. Functional analysis of the Alternaria brassicicola non-ribosomal peptide synthetase gene AbNPS2 reveals a role in conidial cell wall construction. Mol. Plant Pathol. 2007, 8, 23–39. [Google Scholar] [CrossRef]
Alternaria Species | Genome Size (Mb) | Number of Predicted Genes | Total Cyp Proteins | Protein with Complete Sequences | Family Type | Clan Type | Families with No FCPD Matches |
---|---|---|---|---|---|---|---|
A. fragaria BMP 3062 | 33,135,386 | 12,272 | 125 | 23 | 19 | 14 | 1 |
A. capsici BMP0180 | 31,350,549 | 11,487 | 113 | 25 | 20 | 15 | 3 |
A. mali BMP3064 | 34,331,800 | 12,715 | 132 | 28 | 23 | 19 | 3 |
A. citriarbusti BMP2343 | 33,865,016 | 12,606 | 131 | 27 | 21 | 16 | 2 |
A. solani BMP0185 | 31,129,923 | 12,258 | 129 | 32 | 24 | 23 | 1 |
A. brassicicola | 31,974,449 | 10,688 | 127 | 28 | 12 | 10 | 11 |
A. dauci BMP0167 | 30,427,686 | 11,981 | 123 | 33 | 27 | 23 | 1 |
A. tangelonis BMP2327 | 33,765,687 | 12,639 | 125 | 28 | 24 | 19 | 1 |
A. rosae MPI-PUGE-AT-0040 v1.0 | 33,831,682 | 12,640 | 152 | 27 | 19 | 14 | 5 |
A. gaisen BMP2338 | 33,998,619 | 13,902 | 137 | 26 | 20 | 15 | 2 |
A. macrospora BMP1949 | 31,350,355 | 11,961 | 130 | 42 | 30 | 22 | 2 |
A. porri BMP0178 | 29,243,729 | 12,232 | 127 | 24 | 20 | 15 | 1 |
A. alternata SRC1lrK2f v1.0 | 32,990,834 | 13,469 | 209 | 29 | 26 | 22 | 1 |
Total | 1760 | 372 | 34 |
Phylogenetic Clade | Sequence Entry | CYP Families | CYP Clans | Putative Function |
---|---|---|---|---|
I | 127 | Cyp65, Cyp561, Cyp563, Cyp62, Cyp567, Cyp566, Cyp548, Cyp528, Cyp539, Cyp628, Cyp671, Cyp53, Cyp673, Cyp684, Cyp583, Cyp578, Cyp680, Cyp643, Cyp5095, Cyp677, Cyp682, Cyp681, Cyp552 | CYP65, CYP61, CYP62, CYP566, CYP548, CYP528, CYP52, CTP574, CYP53, CYP673, CYP583, CYP578, CYP58, CYP643, CYP677 | Xenobiotic metabolism, Secondary metabolism, Primary metabolism |
II | 53 | Cyp561, Cyp620, Cyp630, Cyp570, Cyp527, Cyp535, Cyp573, Cyp675, Cyp629, Cyp5080, Cyp531, Cyp5077, Cyp532 | CYP65, CYP533, CYP630, CYP507, CYP572, CYP531 | Xenobiotic metabolism, secondary metabolism Primary metabolism |
III | 5 | Cyp576 | CYP576 | |
IV | 12 | Cyp5075, Cyp51, Cyp540 | CYP589, CYP51, CYP540 | Primary metabolism |
V | 3 | Cyp539 | CYP52 | Xenobiotic metabolism |
VI | 63 | Cyp609, Cyp5112, Cyp561, Cyp530, Cyp645, Cyp639, Cyp550, Cyp61, Cyp5125, Cyp559, Cyp68, Cyp595, Cyp596, Cyp503, Cyp654, Cyp5103 | CYP609, CYP58, CYP530, CYP65, CYP645, CYP639, CYP550, CYP61, CYP559, CYP68, CYP54, CYP653 | Secondary metabolism, Xenobiotic metabolism, Primary metabolism |
VII | 2 | No match in FCDP | No match in FCDP | |
VIII | 1 | No match in FCDP | No match in FCDP | |
IX | 24 | Cyp534, Cyp56, Cyp547, Cyp539, Cyp65, | CYP534, CYP56, CYP547, CYP52, CYP65 | Xenobiotic metabolism, Primary metabolism, Secondary metabolism |
X | 82 | Cyp59, Cyp586, Cyp526, Cyp505, Cyp504, Cyp665, Cyp530, Cyp546, Cyp5053, Cyp5093, Cyp5068, CYP5063, CYP5069, CYP5148, CYP620, CYP530, CYP628, CYP543 | CYP59, CYP526, CYP505, CYP504, CYP52, CYP530, CYP546 CYP5063, CYP533, CYP529 | Xenobiotic metabolism, Primary metabolism, Secondary metabolism |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dauda, W.P.; Morumda, D.; Abraham, P.; Adetunji, C.O.; Ghazanfar, S.; Glen, E.; Abraham, S.E.; Peter, G.W.; Ogra, I.O.; Ifeanyi, U.J.; et al. Genome-Wide Analysis of Cytochrome P450s of Alternaria Species: Evolutionary Origin, Family Expansion and Putative Functions. J. Fungi 2022, 8, 324. https://doi.org/10.3390/jof8040324
Dauda WP, Morumda D, Abraham P, Adetunji CO, Ghazanfar S, Glen E, Abraham SE, Peter GW, Ogra IO, Ifeanyi UJ, et al. Genome-Wide Analysis of Cytochrome P450s of Alternaria Species: Evolutionary Origin, Family Expansion and Putative Functions. Journal of Fungi. 2022; 8(4):324. https://doi.org/10.3390/jof8040324
Chicago/Turabian StyleDauda, Wadzani Palnam, Daji Morumda, Peter Abraham, Charles Oluwaseun Adetunji, Shakira Ghazanfar, Elkanah Glen, Shittu Emmanuel Abraham, Grace Wabba Peter, Israel Ogwuche Ogra, Ulasi Joseph Ifeanyi, and et al. 2022. "Genome-Wide Analysis of Cytochrome P450s of Alternaria Species: Evolutionary Origin, Family Expansion and Putative Functions" Journal of Fungi 8, no. 4: 324. https://doi.org/10.3390/jof8040324
APA StyleDauda, W. P., Morumda, D., Abraham, P., Adetunji, C. O., Ghazanfar, S., Glen, E., Abraham, S. E., Peter, G. W., Ogra, I. O., Ifeanyi, U. J., Musa, H., Azameti, M. K., Paray, B. A., & Gulnaz, A. (2022). Genome-Wide Analysis of Cytochrome P450s of Alternaria Species: Evolutionary Origin, Family Expansion and Putative Functions. Journal of Fungi, 8(4), 324. https://doi.org/10.3390/jof8040324