Biological Synthesis of Monodisperse Uniform-Size Silver Nanoparticles (AgNPs) by Fungal Cell-Free Extracts at Elevated Temperature and pH
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms
2.2. Production of Fungal Cell-Free (FCF) Extract
2.3. Biological Synthesis of AgNPs
2.4. AgNPs Characterisation
2.5. Statistical Analysis
3. Results
3.1. Production of Fungal Cell-Free Extract
3.2. Biological Synthesis of AgNPs
3.3. AgNP Characterisation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meyer, V.; Basenko, E.Y.; Benz, J.P.; Braus, G.H.; Caddick, M.X.; Csukai, M.; De Vries, R.P.; Endy, D.; Frisvad, J.C.; Gunde-Cimerman, N.; et al. Growing a circular economy with fungal biotechnology: A white paper. Fungal Biol. Biotechnol. 2020, 7, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, J.A.; Barbosa, B.V.R.; Martins, B.D.A.; Guirlanda, C.P.; Moura, M.A.F. Use of the Versatility of Fungal Metabolism to Meet Modern Demands for Healthy Aging, Functional Foods, and Sustainability. J. Fungi 2020, 6, 223. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Wang, D.; Li, Y. Green chemistry for nanoparticle synthesis. Chem. Soc. Rev. 2015, 44, 5778–5792. [Google Scholar] [CrossRef] [PubMed]
- Yin, K.; Wang, Q.; Lv, M.; Chen, L. Microorganism remediation strategies towards heavy metals. Chem. Eng. J. 2019, 360, 1553–1563. [Google Scholar] [CrossRef]
- Balu, S.; Andra, S.; Kannan, S.; Muthalagu, M. Facile synthesis of silver nanoparticles with medicinal grass and its biological assessment. Mater. Lett. 2020, 259, 126900. [Google Scholar] [CrossRef]
- Cele, T. Preparation of Nanoparticles. In Engineered Nanomaterials—Health and Safety; IntechOpen: London, UK, 2020. [Google Scholar]
- Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci. 2014, 9, 385–406. [Google Scholar]
- Kaabipour, S.; Hemmati, S. A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures. Beilstein J. Nanotechnol. 2021, 12, 102–136. [Google Scholar] [CrossRef]
- Correa-Llantén, D.N.; A Muñoz-Ibacache, S.; E Castro, M.; A Muñoz, P.; Blamey, J.M. Gold nanoparticles synthesized by Geobacillus sp. strain ID17 a thermophilic bacterium isolated from Deception Island, Antarctica. Microb. Cell Factories 2013, 12, 75. [Google Scholar] [CrossRef] [Green Version]
- Dudhane, A.A.; Waghmode, S.R.; Dama, L.B.; Mhaindarkar, V.P.; Sonawane, A.; Katariya, S. Synthesis and Characterisation of Gold Nanoparticles using Plant Extract of Terminalia arjuna with Anti-bacterial Activity. Int. J. Nanosci. Nanotechnol. 2019, 15, 75–82. [Google Scholar]
- Kitching, M.; Ramani, M.; Marsili, E. Fungal biosynthesis of gold nanoparticles: Mechanism and scale up. Microb. Biotechnol. 2014, 8, 904–917. [Google Scholar] [CrossRef]
- Kuppusamy, P.; Yusoff, M.M.; Maniam, G.P.; Govindan, N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications–An updated report. Saudi Pharm. J. 2016, 24, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Nindawat, S.; Agrawal, V. Fabrication of silver nanoparticles using Arnebia hispidissima (Lehm.) A. DC. root extract and unravelling their potential biomedical applications. Artif. Cells Nanomed. Biotechnol. 2019, 47, 166–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thakkar, K.N.; Mhatre, S.S.; Parikh, R.Y. Biological synthesis of metallic nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Marsili, E. A green chemical approach for the synthesis of gold nanoparticles: Characterisation and mechanistic aspect. Rev. Environ. Sci. Biotechnol. 2010, 9, 199–204. [Google Scholar] [CrossRef] [Green Version]
- Madden, O.; Naughton, M.D.; Moane, S.; Murray, P.G. Mycofabrication of common plasmonic colloids, theoretical considerations, mechanism and potential applications. Adv. Colloid Interface Sci. 2015, 225, 37–52. [Google Scholar] [CrossRef]
- Shah, M.; Fawcett, D.; Sharma, S.; Tripathy, S.K.; Poinern, G.E.J. Green Synthesis of Metallic Nanoparticles via Biological Entities. Materials 2015, 8, 7278–7308. [Google Scholar] [CrossRef] [Green Version]
- ISO. ISO/TR 18401, in Nanotechnologies—Plain language explanation of selected terms from the ISO/IEC 80004 Series. 2017. Available online: https://www.iso.org/obp/ui/#iso:std:iso:tr:18401:ed-1:v1:en (accessed on 24 March 2022).
- Al-Khuzai, R.; Aboud, M.; Alwan, S. Biological Synthesis of Silver Nanoparticles from Sprolegnia parasitica. J. Phys. Conf. Ser. 2019, 1294, 062090. [Google Scholar] [CrossRef] [Green Version]
- Princy, K.F.; Gopinath, A. Optimisation of physicochemical parameters in the biofabrication of gold nanoparticles using marine macroalgae Padina tetrastromatica and its catalytic efficacy in the degradation of organic dyes. J. Nanostruct. Chem. 2018, 8, 333–342. [Google Scholar] [CrossRef] [Green Version]
- Saxena, J.; Sharma, P.K.; Sharma, M.M.; Singh, A. Process optimisation for green synthesis of silver nanoparticles by Sclerotinia sclerotiorum MTCC 8785 and evaluation of its antibacterial properties. SpringerPlus 2016, 5, 861. [Google Scholar] [CrossRef] [Green Version]
- Quester, K.; Avalos-Borja, M.; Castro-Longoria, E. Controllable Biosynthesis of Small Silver Nanoparticles Using Fungal Extract. J. Biomater. Nanobiotechnol. 2016, 7, 118–125. [Google Scholar] [CrossRef] [Green Version]
- Salem, S.S.; Ali, O.M.; Reyad, A.M.; Abd-Elsalam, K.A.; Hashem, A.H. Pseudomonas indica-Mediated Silver Nanoparticles: Antifungal and Antioxidant Biogenic Tool for Suppressing Mucormycosis Fungi. J. Fungi 2022, 8, 126. [Google Scholar] [CrossRef] [PubMed]
- Zaki, S.A.; Ouf, S.A.; Albarakaty, F.M.; Habeb, M.M.; Aly, A.A.; Abd-Elsalam, K.A. Trichoderma harzianum-Mediated ZnO Nanoparticles: A Green Tool for Controlling Soil-Borne Pathogens in Cotton. J. Fungi 2021, 7, 952. [Google Scholar] [CrossRef] [PubMed]
- Agnihotri, S.; Mukherji, S.; Mukherji, S. Size-controlled silver nanoparticles synthesised over the range 5–100 Nm using the same protocol and their antibacterial efficacy. RSC Adv. 2013, 4, 3974–3983. [Google Scholar] [CrossRef] [Green Version]
- Raza, M.A.; Kanwal, Z.; Rauf, A.; Sabri, A.N.; Riaz, S.; Naseem, S. Size- and Shape-Dependent Antibacterial Studies of Silver Nanoparticles Synthesised by Wet Chemical Routes. Nanomaterials 2016, 6, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salomoni, R.; Léo, P.; Montemor, A.; Rinaldi, B.; Rodrigues, M. Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnol. Sci. Appl. 2017, 10, 115–121. [Google Scholar] [CrossRef] [Green Version]
- El-Naggar, N.E.-A.; Hussein, M.H.; El-Sawah, A.A. Bio-fabrication of silver nanoparticles by phycocyanin, characterization, in vitro anticancer activity against breast cancer cell line and in vivo cytotoxicity. Sci. Rep. 2017, 7, 10844. [Google Scholar] [CrossRef] [Green Version]
- Gurunathan, S.; Qasim, M.; Park, C.; Yoo, H.; Kim, J.-H.; Hong, K. Cytotoxic Potential and Molecular Pathway Analysis of Silver Nanoparticles in Human Colon Cancer Cells HCT. Int. J. Mol. Sci. 2018, 19, 2269. [Google Scholar] [CrossRef] [Green Version]
- Saratale, R.G.; Benelli, G.; Kumar, G.; Kim, D.S.; Saratale, G.D. Bio-fabrication of silver nanoparticles using the leaf extract of an ancient herbal medicine, dandelion (Taraxacum officinale), evaluation of their antioxidant, anticancer potential, and antimicrobial activity against phytopathogens. Environ. Sci. Pollut. Res. 2017, 25, 10392–10406. [Google Scholar] [CrossRef]
- Lee, S.H.; Jun, B.-H. Silver Nanoparticles: Synthesis and Application for Nanomedicine. Int. J. Mol. Sci. 2019, 20, 865. [Google Scholar] [CrossRef] [Green Version]
- AbdelRahim, K.; Mahmoud, S.Y.; Ali, A.M.; Almaary, K.S.; Mustafa, A.E.-Z.M.; Husseiny, S.M. Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer. Saudi J. Biol. Sci. 2017, 24, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Hamedi, S.; Ghaseminezhad, M.; Shokrollahzadeh, S.; Shojaosadati, S.A. Controlled biosynthesis of silver nanoparticles using nitrate reductase enzyme induction of filamentous fungus and their antibacterial evaluation. Artif. Cells Nanomed. Biotechnol. 2016, 45, 1588–1596. [Google Scholar] [CrossRef]
- Katapodis, P.; Christakopoulou, V.; Kekos, D.; Christakopoulos, P. Optimisation of xylanase production by Chaetomium thermophilum in wheat straw using response surface methodology. Biochem. Eng. J. 2007, 35, 136–141. [Google Scholar] [CrossRef]
- Ameen, F.; Al-Homaidan, A.A.; Al-Sabri, A.; Almansob, A.; AlNAdhari, S. Anti-oxidant, anti-fungal and cytotoxic effects of silver nanoparticles synthesised using marine fungus Cladosporium halotolerans. Appl. Nanosci. 2021. [Google Scholar] [CrossRef]
- Elamawi, R.M.; Al-Harbi, R.E.; Hendi, A.A. Biosynthesis and characterisation of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt. J. Biol. Pest Control. 2018, 28, 28. [Google Scholar] [CrossRef] [Green Version]
- Husseiny, S.M.; Salah, T.A.; Anter, H.A. Biosynthesis of size controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities. Beni-Suef Univ. J. Basic Appl. Sci. 2015, 4, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Shahzad, A.; Saeed, H.; Iqtedar, M.; Hussain, S.Z.; Kaleem, A.; Abdullah, R.; Sharif, S.; Naz, S.; Saleem, F.; Aihetasham, A.; et al. Size-Controlled Production of Silver Nanoparticles by Aspergillus fumigatus BTCB10: Likely Antibacterial and Cytotoxic Effects. J. Nanomater. 2019, 2019, 5168698. [Google Scholar] [CrossRef] [Green Version]
- Dada, A.O.; Adekola, F.A.; Dada, F.E.; Adelani-Akande, A.T.; Bello, M.O.; Okonkwo, C.R.; Inyinbor, A.A.; Oluyori, A.P.; Olayanju, A.; Ajanaku, K.O.; et al. Silver nanoparticle synthesis by Acalypha wilkesiana extract: Phytochemical screening, characterization, influence of operational parameters, and preliminary antibacterial testing. Heliyon 2019, 5, e02517. [Google Scholar] [CrossRef] [Green Version]
- Marciniak, L.; Nowak, M.; Trojanowska, A.; Tylkowski, B.; Jastrzab, R. The Effect of pH on the Size of Silver Nanoparticles Obtained in the Reduction Reaction with Citric and Malic Acids. Materials 2020, 13, 5444. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Ridolfo, R.; Tavakoli, S.; Junnuthula, V.; Williams, D.S.; Urtti, A.; Van Hest, J.C.M. Exploring the Impact of Morphology on the Properties of Biodegradable Nanoparticles and Their Diffusion in Complex Biological Medium. Biomacromolecules 2020, 22, 126–133. [Google Scholar] [CrossRef]
Species | Growth Phase | Stress Phase | |
---|---|---|---|
Mycelia (g) | FCF Extract pH | FCF Extract pH | |
C. bantiana | 7.0 | 5.4 | 7.9 |
P. antarcticum | 10.4 | 6.5 | 7.1 |
T. versicolor | 9.3 | 7.2 | 7.9 |
T. martiale | 8.8 | 5.2 | 7.7 |
U. isabellina | 7.4 | 7.8 | 7.8 |
B. adusta | 4.5 | 5.3 | 8.3 |
Species | AgNPs | ||
---|---|---|---|
pH | Wavelength (nm) Mean ± St. Dev | Absorbance Mean ± St. Dev | |
C. bantiana | 6 | Nd 1 | Nd 1 |
9 | 413 ± 1.018 | 0.706 ± 0.013 | |
12 | 411 ± 1.018 | 1.479 ± 0.019 | |
P. antarcticum | 6 | 390 ± 2.828 | 0.449 ± 0.013 |
9 | 415 ± 1.414 | 0.746 ± 0.020 | |
12 | 410 ± 0.000 | 1.523 ± 0.028 | |
T. versicolor | 6 | 390 ± 4.000 | 0.729 ± 0.036 |
9 | 392 ± 0.000 | 1.019 ± 0.018 | |
12 | 394 ± 0.000 | 1.016 ± 0.046 | |
T. martiale | 6 | Nd 1 | Nd 1 |
9 | 404 ± 0.000 | 0.892 ± 0.028 | |
12 | 405 ± 1.414 | 1.010 ± 0.029 | |
U. isabellina | 6 | Nd 1 | Nd 1 |
9 | 415 ± 1.155 | 0.833 ± 0.018 | |
12 | 410 ± 0.000 | 1.599 ± 0.087 | |
B. adusta | 6 | Nd 1 | Nd 1 |
9 | Nd 1 | Nd 1 | |
12 | Nd 1 | Nd 1 |
Species | pH | AgNP Size (nm) Mean ± St. Dev | Highest Percentage within the Size Range |
---|---|---|---|
C. bantiana | 6 | Nm 1 | Nm 1 |
9 | 7.019 ± 4.494 | 41.0% (4–7.99 nm) | |
12 | 3.062 ± 1.423 | 94.5% (0–3.99 nm) | |
P. antarcticum | 6 | 16.811 ± 8.580 | 25.0% (16–19.99 nm) |
9 | 7.884 ± 4.183 | 50.5% (4–7.99 nm) | |
12 | 5.943 ± 2.364 | 76.5% (4–7.99 nm) | |
T. versicolor | 6 | 6.526 ± 1.459 | 78.0% (4–7.99 nm) |
9 | 7.336 ± 6.707 | 48.0% (0–3.99 nm) | |
12 | 4.816 ± 3.503 | 65.0% (0–3.99 nm) | |
T. martiale | 6 | Nm 1 | Nm 1 |
9 | 3.214 ± 2.654 | 70.0% (0–3.99 nm) | |
12 | 4.051 ± 2.640 | 86.5% (0–3.99 nm) | |
U. isabellina | 6 | Nm 1 | Nm 1 |
9 | 4.239 ± 2.920 | 67.5% (0–3.99 nm) | |
12 | 3.676 ± 1.818 | 78.5% (0–3.99 nm) | |
B. adusta | 6 | Nm1 | Nm 1 |
9 | Nm1 | Nm 1 | |
12 | Nm1 | Nm 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves, M.F.; Murray, P.G. Biological Synthesis of Monodisperse Uniform-Size Silver Nanoparticles (AgNPs) by Fungal Cell-Free Extracts at Elevated Temperature and pH. J. Fungi 2022, 8, 439. https://doi.org/10.3390/jof8050439
Alves MF, Murray PG. Biological Synthesis of Monodisperse Uniform-Size Silver Nanoparticles (AgNPs) by Fungal Cell-Free Extracts at Elevated Temperature and pH. Journal of Fungi. 2022; 8(5):439. https://doi.org/10.3390/jof8050439
Chicago/Turabian StyleAlves, Mariana Fuinhas, and Patrick G. Murray. 2022. "Biological Synthesis of Monodisperse Uniform-Size Silver Nanoparticles (AgNPs) by Fungal Cell-Free Extracts at Elevated Temperature and pH" Journal of Fungi 8, no. 5: 439. https://doi.org/10.3390/jof8050439
APA StyleAlves, M. F., & Murray, P. G. (2022). Biological Synthesis of Monodisperse Uniform-Size Silver Nanoparticles (AgNPs) by Fungal Cell-Free Extracts at Elevated Temperature and pH. Journal of Fungi, 8(5), 439. https://doi.org/10.3390/jof8050439