Metabolomics Analysis and Antioxidant Potential of Endophytic Diaporthe fraxini ED2 Grown in Different Culture Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Strain
2.2. Fermentation and Extraction
2.3. Total Phenolic Content (TPC)
2.4. Total Flavonoid Content (TFC)
2.5. DPPH Free-Radical Scavenging Activity Assay
- abs0 = absorbance of negative control
- absextract = absorbance of extract
- IC50 AA = IC50 value of ascorbic acid
- IC50 E = IC50 value of extract
2.6. Ferric Reducing Antioxidant Power (FRAP) Assay
2.7. ABTS Cation-Radical Reduction Activity Assay
- abs0 = absorbance of negative control
- absextract = absorbance of extract
- IC50 T = IC50 value of Trolox
- IC50 E = IC50 value of extract
2.8. Statistical Analysis
2.9. LC-HRMS Metabolomic Analysis
2.10. Multivariate Data Analysis (MVDA)
3. Results and Discussion
3.1. Effects of Culture Medium Supplementation on TPC and TFC
3.2. Effects of Culture Medium Supplementation on DPPH and ABTS Radical Scavenging and FRAP Reducing Activities
3.3. LC-HRMS-Based Metabolomics Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAEA | Ascorbic acid equivalent antioxidant activity |
ABTS | 2,2-Azinobis (3-ethylbenzothiazoline-6-sulfonic acid |
DFC | D. fraxini cultured in yeast extract sucrose broth |
DFS | D. fraxini cultured in yeast extract sucrose broth supplemented with 5 mg/L rosmarinic acid |
DNP | Dictionary of Natural Products |
DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
FRAP | Ferric reducing antioxidant power |
GAE | Gallic acid equivalent |
HCA | Hierarchical cluster analysis |
HIV-1 | Human immunodeficiency virus type 1 |
LC-HRMS | Liquid chromatography-high resolution mass spectrometry |
MS | Mass spectrometry |
MVDA | Multivariate data analysis |
nM | Nanomolar |
PCs | Principal components |
PCA | Principal component analysis |
PDA | Potato dextrose agar |
PLS-DA | Partial least squares-discriminant analysis |
QE | Quercetin equivalent |
RT | Reverse transcriptase |
SD | Standard deviation |
TE | Trolox equivalent |
TEAA | Trolox equivalent antioxidant activity |
TFC | Total flavonoid content |
TPC | Total phenolic content |
TPTZ | 2,4,6-Tri(2-pyridyl)-1,3,5-triazine |
VIP | Variable importance in projection |
References
- Gouda, S.; Das, G.; Sen, S.K.; Shin, H.-S.; Patra, J.K. Endophytes: A Treasure House of Bioactive Compounds of Medicinal Importance. Front. Microbiol. 2016, 7, 1538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, B.; Li, J.; Ge, Q.; Khan, M.A.; Gong, J.; Mehmood, S.; Yuan, Y.; Gong, W. Endophytic fungi: From symbiosis to secondary metabolite communications or vice versa? Front. Plant Sci. 2021, 12, 791033. [Google Scholar] [CrossRef]
- Cruz, J.S.; da Silva, C.A.; Hamerski, L. Natural products from endophytic fungi associated with Rubiaceae species. J. Fungi 2020, 6, 128. [Google Scholar] [CrossRef]
- Strobel, G.; Daisy, B. Bioprospecting for Microbial Endophytes and Their Natural Products. Microbiol. Mol. Biol. Rev. 2003, 67, 491–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagarajan, K.; Ibrahim, B.; Bawadikji, A.A.; Lim, J.-W.; Tong, W.-Y.; Leong, C.-R.; Khaw, K.Y.; Tan, W.-N. Recent Developments in Metabolomics Studies of Endophytic Fungi. J. Fungi 2022, 8, 28. [Google Scholar] [CrossRef]
- Fadiji, A.E.; Babalola, O.O. Elucidating Mechanisms of Endophytes Used in Plant Protection and Other Bioactivities with Multifunctional Prospects. Front. Bioeng. Biotechnol. 2020, 8, 467. [Google Scholar] [CrossRef]
- Kusari, S.; Hertweck, C.; Spiteller, M. Chemical Ecology of Endophytic Fungi: Origins of Secondary Metabolites. Chem. Biol. 2012, 19, 792–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rai, N.; Kumari Keshri, P.; Verma, A.; Kamble, S.C.; Mishra, P.; Barik, S.; Kumar Singh, S.; Gautam, V. Plant associated fungal endophytes as a source of natural bioactive compounds. Mycology 2021, 12, 139–159. [Google Scholar] [CrossRef] [PubMed]
- Stierle, A.; Strobel, G.; Stierle, D.; Grothaus, P.; Bignami, G. The Search for a Taxol-Producing Microorganism Among the Endophytic Fungi of the Pacific Yew, Taxus brevifolia. J. Nat. Prod. 1995, 58, 1315–1324. [Google Scholar] [CrossRef]
- Ashraf, K.; Sultan, S.; Adam, A. Orthosiphon stamineus Benth. is an Outstanding Food Medicine: Review of Phytochemical and Pharmacological Activities. J. Pharm. Bioallied Sci. 2018, 10, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Xiao, C.; Xue, H.; Xiong, H.; Hang, Y.; Xu, J.; Lu, Y. A comparative study of the antioxidant and intestinal protective effects of extracts from different parts of Java tea (Orthosiphon stamineus). Food Sci. Nutr. 2018, 6, 579–584. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; Zhang, L.; Chen, X.; Zhang, H.; Xue, H.; Lu, Y.; Tang, J.; Lu, Y. Orthosiphon stamineus and rosmarinic acid reduce heat stress in laying hens. Livest. Sci. 2020, 240, 104124. [Google Scholar] [CrossRef]
- Yenn, T.W.; Ring, L.C.; Nee, T.W.; Khairuddean, M.; Zakaria, L.; Ibrahim, D. Endophytic Diaporthe sp. ED2 produces a novel anti-candidal ketone derivative. J. Microbiol. Biotechnol. 2017, 27, 1065–1070. [Google Scholar]
- Tejesvi, M.V.; Pirttilä, A.M. Potential of tree endophytes as sources for new drug compounds. In Endophytes of Forest Trees: Biology and Applications, Forestry Sciences; Pirttila, A.M., Frank, A.C., Eds.; Springer Science + Business Media: Berlin, Germany, 2011; pp. 295–311. [Google Scholar]
- Yang, Q.; Zhang, A.-H.; Miao, J.-H.; Sun, H.; Han, Y.; Yan, G.-L.; Wu, F.-F.; Wang, X.-J. Metabolomics biotechnology, applications, and future trends: A systematic review. RSC Adv. 2019, 9, 37245–37257. [Google Scholar] [CrossRef] [Green Version]
- Taylor, M.; Gill, E.L.D.; Vedam-Mai, V.; Yost, R.A. Mass spectrometry-based cellular metabolomics: Current approaches, applications, and future directions. Anal. Chem. 2021, 93, 546–566. [Google Scholar]
- Stuart, K.A.; Welsh, K.; Walker, M.C.; Edrada-Ebel, R. Metabolomic tools used in marine natural product drug discovery. Expert Opin. Drug Discov. 2020, 15, 499–522. [Google Scholar] [CrossRef]
- Bobo, G.; Davidov-Pardo, G.; Arroqui, C.; Vírseda, P.; Marín-Arroyo, M.R.; Navarro, M. Intra-laboratory validation of microplate methods for total phenolic content and antioxidant activity on polyphenolic extracts, and comparison with conventional spectrophotometric methods. J. Sci. Food Agric. 2015, 95, 204–209. [Google Scholar] [CrossRef]
- Horszwald, A.; Andlauer, W. Characterisation of bioactive compounds in berry juices by traditional photometric and modern microplate methods. J. Berry Res. 2011, 1, 189–199. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.S.; Brizola, V.R.A.; Granato, D. High-throughput assay comparison and standardization for metal chelating capacity screening: A proposal and application. Food Chem. 2017, 214, 515–522. [Google Scholar] [CrossRef]
- Van de Velde, F.; Tarola, A.M.; Güemes, D.; Pirovani, M.E. Bioactive Compounds and Antioxidant Capacity of Camarosa and Selva Strawberries (Fragaria x ananassa Duch.). Foods 2013, 2, 120–131. [Google Scholar] [CrossRef]
- Seo, C.-S.; Kim, O.S.; Kim, J.-H.; Shin, H.-K. Simultaneous quantification and antiatherosclerosis effect of the traditional Korean medicine, Hwangryunhaedok-tang. BMC Complement. Altern. Med. 2015, 15, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salek, R.M.; Steinbeck, C.; Viant, M.R.; Goodacre, R.; Dunn, W.B. The role of reporting standards for metabolite annotation and identification in metabolomic studies. GigaScience 2013, 2, 13. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.-É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef]
- El-Hawary, S.S.; Mohammed, R.; Bahr, H.S.; Attia, E.Z.; El-Katatny, M.H.; Abelyan, N.; Al-Sanea, M.M.; Moawad, A.S.; Abdelmohsen, U.R. Soybean-associated endophytic fungi as potential source for anti-COVID-19 metabolites supported by docking analysis. J. Appl. Microbiol. 2021, 131, 1193–1211. [Google Scholar] [CrossRef] [PubMed]
- Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal. Plants 2019, 8, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, A.; Gupta, P.; Rai, N.; Tiwari, R.K.; Kumar, A.; Salvi, P.; Kamble, S.C.; Singh, S.K.; Gautam, V. Assessment of Biological Activities of Fungal Endophytes Derived Bioactive Compounds Isolated from Amoora rohituka. J. Fungi 2022, 8, 285. [Google Scholar] [CrossRef]
- González-Palma, I.; Escalona-Buendía, H.B.; Ponce-Alquicira, E.; Téllez-Téllez, M.; Gupta, V.K.; Díaz-Godínez, G.; Soriano-Santos, J. Evaluation of the Antioxidant Activity of Aqueous and Methanol Extracts of Pleurotus ostreatus in Different Growth Stages. Front. Microbiol. 2016, 7, 1099. [Google Scholar] [CrossRef] [Green Version]
- Arora, P.; Wani, Z.A.; Ahmad, T.; Sultan, P.; Gupta, S.; Riyaz-Ul-Hassan, S. Community structure, spatial distribution, diversity and functional characterization of culturable endophytic fungi associated with Glycyrrhiza glabra L. Fungal Biol. 2019, 123, 373–383. [Google Scholar] [CrossRef]
- Griffin, S.P.; Bhagooli, R. Measuring antioxidant potential in corals using the FRAP assay. J. Exp. Mar. Biol. Ecol. 2004, 302, 201–211. [Google Scholar] [CrossRef]
- Dudonné, S.; Vitrac, X.; Coutière, P.; Woillez, M.; Mérillon, J.-M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef]
- Xiao, F.; Xu, T.; Lu, B.; Liu, R. Guidelines for antioxidant assays for food components. Food Front. 2020, 1, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Rivero-Cruz, J.F.; Granados-Pineda, J.; Pedraza-Chaverri, J.; Pérez-Rojas, J.M.; Kumar-Passari, A.; Diaz-Ruiz, G.; Rivero-Cruz, B.E. Phytochemical Constituents, Antioxidant, Cytotoxic, and Antimicrobial Activities of the Ethanolic Extract of Mexican Brown Propolis. Antioxidants 2020, 9, 70. [Google Scholar] [CrossRef] [Green Version]
- Rai, N.; Keshri, P.K.; Gupta, P.; Verma, A.; Kamble, S.C.; Singh, S.K.; Gautam, V. Bioprospecting of fungal endophytes from Oroxylum indicum (L.) Kurz with antioxidant and cytotoxic activity. PLoS ONE 2022, 17, e0264673. [Google Scholar] [CrossRef]
- Ilyasov, I.R.; Beloborodov, V.L.; Selivanova, I.A.; Terekhov, R.P. ABTS/PP Decolorization Assay of Antioxidant Capacity Reaction Pathways. Int. J. Mol. Sci. 2020, 21, 1131. [Google Scholar] [CrossRef] [Green Version]
- Sadeer, N.B.; Montesano, D.; Albrizio, S.; Zengin, G.; Mahomoodally, M.F. The versatility of antioxidant assays in food science and safety—Chemistry, applications, strengths, and limitations. Antioxidants 2020, 9, 709. [Google Scholar] [CrossRef]
- Zhou, J.; Diao, X.; Wang, T.; Chen, G.; Lin, Q.; Yang, X.; Xu, J. Phylogenetic diversity and antioxidant activities of culturable fungal endophytes associated with the mangrove species Rhizophora stylosa and R. mucronata in the South China Sea. PLoS ONE 2018, 13, e0197359. [Google Scholar] [CrossRef] [Green Version]
- Tanabe, K.; Hayashi, C.; Katahira, T.; Sasaki, K.; Igami, K. Multiblock metabolomics: An approach to elucidate whole-body metabolism with multiblock principal component analysis. Comput. Struct. Biotechnol. J. 2021, 19, 1956–1965. [Google Scholar] [CrossRef]
- Heinemann, J. Cluster Analysis of untargeted metabolomic experiments. In Microbial Metabolomics. Methods and Protocols; Baidoo, E.E.K., Ed.; Humana Press: New York, NY, USA, 2019; pp. 275–285. [Google Scholar]
- Kellogg, J.J.; Kvalheim, O.M.; Cech, N.B. Composite score analysis for unsupervised comparison and network visualization of metabolomics data. Anal. Chim. Acta 2020, 1095, 38–47. [Google Scholar] [CrossRef]
- Friedman, J.H.; Meulman, J.J. Clustering objects on subsets of attributes. J. R. Statist. Soc. B 2004, 66, 815–849. [Google Scholar] [CrossRef]
- Triastuti, A.; Haddad, M.; Barakat, F.; Mejia, K.; Rabouille, G.; Fabre, N.; Amasifuen, C.; Jargeat, P.; Vansteelandt, M. Dynamics of Chemical Diversity during Co-Cultures: An Integrative Time-Scale Metabolomics Study of Fungal Endophytes Cophinforma mamane and Fusarium solani. Chem. Biodivers. 2021, 18, e2000672. [Google Scholar] [CrossRef]
- Tawfike, A.F.; Abbott, G.; Young, L.; Edrada-Ebel, R. Metabolomic-Guided Isolation of Bioactive Natural Products from Curvularia sp., an Endophytic Fungus of Terminalia laxiflora. Planta Med. 2018, 84, 182–190. [Google Scholar] [CrossRef] [Green Version]
- Aminu, M.; Ahmad, N.A. Complex Chemical Data Classification and Discrimination Using Locality Preserving Partial Least Squares Discriminant Analysis. ACS Omega 2020, 5, 26601–26610. [Google Scholar] [CrossRef] [PubMed]
- Tatum, J.; Berry, R. Six new flavonoids from Citrus. Phytochemistry 1972, 11, 2283–2288. [Google Scholar] [CrossRef]
- Matthijs, S.; Tehrani, K.A.; Laus, G.; Jackson, R.; Cooper, R.M.; Cornelis, P. Thioquinolobactin, a Pseudomonas siderophore with antifungal and anti-Pythium activity. Environ. Microbiol. 2007, 9, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Rivera, C.; Piñeyro, E.; Giral, F. Dehydroacetic acid in anthers of Solandra nitida (Solanaceae). Experientia 1976, 32, 1490. [Google Scholar] [CrossRef]
- Weid, M.; Ziegler, J.; Kutchan, T.M. The roles of latex and the vascular bundle in morphine biosynthesis in the opium poppy, Papaver somniferum. Proc. Natl. Acad. Sci. USA 2004, 101, 13957–13962. [Google Scholar] [CrossRef] [Green Version]
- Avent, A.G.; Hanson, J.R.; Truneh, A. Two pyrones from Gliocladium vermoesenii. Phytochemistry 1992, 31, 1065–1066. [Google Scholar] [CrossRef]
- Geiseler, O.; Podlech, J. Total synthesis of infectopyrone, aplysiopsenes A–C, ent-aplysiopsene D, phomapyrones A and D, 8,9-dehydroxylarone, and nectriapyrone. Tetrahedron 2012, 68, 7280–7287. [Google Scholar] [CrossRef]
- Lee, M.; Nohta, H.; Ohtsubo, K.; Yoo, B.; Ohkura, Y. Determination of L-3,4-dihydroxyphenylalanine in plasma and urine by high-performance liquid chromatography with fluorescence detection. Chem. Pharm. Bull. 1987, 35, 235–240. [Google Scholar] [CrossRef] [Green Version]
- Kenig, M.; Vandamme, E.; Abraham, E.P. The Mode of Action of Bacilysin and Anticapsin and Biochemical Properties of Bacilysin-resistant Mutants. J. Gen. Microbiol. 1976, 94, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Stintzing, F.; Schliemann, W. Pigments of fly Agaric (Amanita muscaria). Z. Naturforsch. 2007, 62, 779–785. [Google Scholar] [CrossRef]
- Loyola, L.A.; Pedreros, S.; Morales, G. P-hydroxyacetophenone derivatives from senecio graveolens. Phytochemistry 1985, 24, 1600–1602. [Google Scholar] [CrossRef]
- Heilmann, J.; Mayr, S.; Brun, R.; Rali, T.; Sticher, O. Antiprotozoal Activity and Cytotoxicity of Novel 1,7-Dioxadispiro[5.1.5.2] pentadeca-9,12-dien-11-one Derivatives from Amomum aculeatum. Helv. Chim. Acta 2000, 83, 2939–2945. [Google Scholar] [CrossRef]
- Loya, S.; Tal, R.; Hizi, A.; Issacs, S.; Kashman, Y.; Loya, Y. Hexaprenoid Hydroquinones, Novel Inhibitors of the Reverse Transcriptase of Human Immunodeficiency Virus Type 1. J. Nat. Prod. 1993, 56, 2120–2125. [Google Scholar] [CrossRef]
- Muharini, R.; Díaz, A.; Ebrahim, W.; Mándi, A.; Kurtán, T.; Rehberg, N.; Kalscheuer, R.; Hartmann, R.; Orfali, R.S.; Lin, W.; et al. Antibacterial and Cytotoxic Phenolic Metabolites from the Fruits of Amorpha fruticosa. J. Nat. Prod. 2017, 80, 169–180. [Google Scholar] [CrossRef]
- Flores-Vallejo, R.D.C.; Folch-Mallol, J.L.; Sharma, A.; Cardoso-Taketa, A.; Alvarez-Berber, L.; Villarreal, M.L. ITS2 ribotyping, in vitro anti-inflammatory screening, and metabolic profiling of fungal endophytes from the Mexican species Crescentia alata Kunth. South Afr. J. Bot. 2020, 134, 213–224. [Google Scholar] [CrossRef]
Extract | DPPH (μg AAE/mg Extract) | FRAP (μg AAE/mg Extract) | ABTS (μg TE/mg Extract) |
---|---|---|---|
DFC | 9.71 ± 2.64 | 53.88 ± 4.31 | 37.77 ± 6.13 |
DFS | 332.20 ± 51.07 * | 188.41 ± 18.67 * | 1159.44 ± 67.70 * |
No. | Retention Time | [M+H]+ | Molecular Mass | Mass Error (mDa) | Molecular Formula | Putative Identification | |
---|---|---|---|---|---|---|---|
Observed | Calculated | ||||||
1. | 12.61 | 403.1392 | 402.1319 | 402.1315 | 0.4 | C21H22O8 | Hexamethylquercetagetin |
2. | 12.24 | 236.0371 | 235.0298 | 235.0303 | −0.5 | C11H9NO3S | Thioquinolactobactin |
3. | 7.27 | 169.0491 | 168.0418 | 168.0423 | −0.5 | C8H8O4 | 3-Acetyl-4-hydroxy-6-methyl-2H-pyran-2-one |
4. | 9.81 | 372.1440 | 371.1367 | 371.1369 | −0.2 | C20H21NO6 | N-Methyl-14-O-demethylepiporphyroxine |
5. | 22.16 | 566.4646 | - | - | - | - | Unknown |
6. | 7.00 | 183.0647 | 182.0574 | 182.0579 | −0.5 | C9H10O4 | Vermopyrone |
7. | 7.00 | 198.0751 | 197.0678 | 197.0688 | −1.0 | C9H11NO4 | 2-Amino-3-(3,4-dihydroxyphenyl)propanoic acid |
8. | 20.71 | 538.4414 | - | - | - | - | Unknown |
9. | 7.00 | 200.0914 | 199.0842 | 199.0845 | -0.3 | C9H13NO4 | α-Amino-5-oxo-7-oxabicyclo[4.1.0]heptane-2-propanoic acid |
10. | 17.24 | 594.4886 | - | - | - | - | Unknown |
11. | 10.76 | 310.1064 | 309.0991 | 309.0961 | 3.0 | C13H15N3O6 | 12-Decarboxy-4′,5′-dihydromuscaaurin I |
12. | 7.00 | 165.0541 | 164.0468 | 164.0473 | −0.5 | C9H8O3 | 5-Acetyl-2-hydroxybenzaldehyde |
13. | 17.24 | 419.3124 | 418.3051 | 418.3083 | −3.2 | C26H42O4 | Aculeatin A |
14. | 23.46 | 535.4095 | 534.4022 | 534.4073 | −5.1 | C36H54O3 | Toxicol B |
15. | 12.25 | 395.1111 | 394.1038 | 394.1053 | −1.5 | C22H18O7 | 3-O-Demethyldehydroamorphigenin |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, W.-N.; Nagarajan, K.; Lim, V.; Azizi, J.; Khaw, K.-Y.; Tong, W.-Y.; Leong, C.-R.; Chear, N.J.-Y. Metabolomics Analysis and Antioxidant Potential of Endophytic Diaporthe fraxini ED2 Grown in Different Culture Media. J. Fungi 2022, 8, 519. https://doi.org/10.3390/jof8050519
Tan W-N, Nagarajan K, Lim V, Azizi J, Khaw K-Y, Tong W-Y, Leong C-R, Chear NJ-Y. Metabolomics Analysis and Antioxidant Potential of Endophytic Diaporthe fraxini ED2 Grown in Different Culture Media. Journal of Fungi. 2022; 8(5):519. https://doi.org/10.3390/jof8050519
Chicago/Turabian StyleTan, Wen-Nee, Kashvintha Nagarajan, Vuanghao Lim, Juzaili Azizi, Kooi-Yeong Khaw, Woei-Yenn Tong, Chean-Ring Leong, and Nelson Jeng-Yeou Chear. 2022. "Metabolomics Analysis and Antioxidant Potential of Endophytic Diaporthe fraxini ED2 Grown in Different Culture Media" Journal of Fungi 8, no. 5: 519. https://doi.org/10.3390/jof8050519
APA StyleTan, W. -N., Nagarajan, K., Lim, V., Azizi, J., Khaw, K. -Y., Tong, W. -Y., Leong, C. -R., & Chear, N. J. -Y. (2022). Metabolomics Analysis and Antioxidant Potential of Endophytic Diaporthe fraxini ED2 Grown in Different Culture Media. Journal of Fungi, 8(5), 519. https://doi.org/10.3390/jof8050519