Filling the Gap in Southern Europe—Diversity of Cryphonectria parasitica and Associated Mycovirus (Cryphonectria hypovirus 1) in Montenegro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Sample Cultivation
2.3. Isolation of Nucleic Acids
2.4. Molecular vic Genotyping
2.5. Mating Type Determination
2.6. CHV1 Detection
2.7. Data Analysis
2.8. Sequence Analysis
3. Results
3.1. Diversity of Cryphonectria parasitica Vegetative Compatibility Types
3.2. Diversity of Cryphonectria parasitica Mating Types
3.3. CHV1 Prevalence and Diversity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rossman, A.Y. The impact of invasive fungi on agricultural ecosystems in the United States. Biol. Invasions 2009, 11, 97–107. [Google Scholar] [CrossRef]
- Panzavolta, T.; Bracalini, M.; Benigno, A.; Moricca, S. Alien Invasive Pathogens and Pests Harming Trees, Forests, and Plantations: Pathways, Global Consequences and Management. Forests 2021, 12, 1364. [Google Scholar] [CrossRef]
- Global Invasive Species Database. Available online: http://www.iucngisd.org/gisd/speciesname/Cryphonectria+parasitica (accessed on 24 January 2022).
- Rigling, D.; Prospero, S. Cryphonectria parasitica, the causal agent of chestnut blight: Invasion history, population biology and disease control. Mol. Plant Pathol. 2018, 19, 7–20. [Google Scholar] [CrossRef] [Green Version]
- Rubio, S.; Barnes, A.; Webb, K.; Hodgetts, J. A real-time PCR assay for improved rapid, specific detection of Cryphonectria parasitica. Ann. Appl. Biol. 2017, 171, 52–61. [Google Scholar] [CrossRef]
- Dennert, F.; Rigling, D.; Meyer, J.B.; Schefer, C.; Augustiny, E.; Prospero, S. Testing the pathogenic potential of Cryphonectria parasitica and related species on three common European Fagaceae. Front. For. Glob. Chang. 2020, 3, 52. [Google Scholar] [CrossRef]
- Anagnostakis, S.L. The Amereican chestnut: New hope for a fallen giant. Connect. Agric. Exp. Stn. 1978, 777, 1–9. [Google Scholar]
- Franić, I.; Prospero, S.; Hartmann, M.; Allan, E.; Auger-Rozenberg, M.; Grünwald, N.J.; Kenis, M.; Roques, A.; Schneider, S.; Sniezko, R.; et al. Are traded forest tree seeds a potential source of nonnative pests? Ecol. Appl. 2019, 29, e01971. [Google Scholar] [CrossRef] [Green Version]
- Ramsfield, T.D.; Bentz, B.J.; Faccoli, M.; Jactel, H.; Brockerhoff, E.G. Forest health in a changing world: Effects of globalization and climate change on forest insect and pathogen impacts. Forestry 2016, 89, 245–252. [Google Scholar] [CrossRef]
- Hillman, B.I.; Suzuki, N. Viruses of the chestnut blight fungus, Cryphonectria parasitica. Adv. Virus Res. 2004, 63, 423–472. [Google Scholar] [CrossRef]
- Robin, C.; Lanz, S.; Soutrenon, A.; Rigling, D. Dominance of natural over released biological control agents of the chestnut blight fungus Cryphonectria parasitica in south-eastern France is associated with fitness-related traits. Biol. Control 2010, 53, 55–61. [Google Scholar] [CrossRef]
- Caten, C.E. Vegetative incompatibility and cytoplasmic infection in fungi. J. Gen. Microbiol. 1972, 72, 221–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortesi, P.; Milgroom, M.G. Genetics of vegetative incompatibility in Cryphonectria parasitica. Appl. Environ. Microbiol. 1998, 64, 2988–2994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robin, C.; Anziani, C.; Cortesi, P. Relationship between biological control, incidence of hypovirulence, and diversity of vegetative compatibility types of Cryphonectria parasitica in France. Phytopathology 2000, 90, 730–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heiniger, U.; Rigling, D. Biological control of chestnut blight in Europe. Annu. Rev. Phytopathol. 1994, 32, 581–599. [Google Scholar] [CrossRef]
- Milgroom, M.G.; Cortesi, P. Analysis of population structure of the chestnut blight fungus based on vegetative incompatibility genotypes. Proc. Natl. Acad. Sci. USA 1999, 96, 10518–10523. [Google Scholar] [CrossRef] [Green Version]
- Prospero, S.; Conedera, M.; Heiniger, U.; Rigling, D. Saprophytic activity and sporulation of Cryphonectria parasitica on dead chestnut wood in forests with naturally established hypovirulence. Phytopathology 2006, 96, 1337–1344. [Google Scholar] [CrossRef] [Green Version]
- Bragança, H.; Simões, S.; Onofre, N.; Tenreiro, R.; Rigling, D. Cryphonectria parasitica in Portugal: Diversity of vegetative compatibility types, mating types, and occurrence of hypovirulence. For. Pathol. 2007, 37, 391–402. [Google Scholar] [CrossRef]
- Radócz, L. Study of subpopulations of the chestnut blight (Cryphonectria parasitica) fungus in the Carpathian basin. For. Snow Landsc. Res. 2001, 76, 368–372. [Google Scholar]
- Peters, F.S.; Busskamp, J.; Prospero, S.; Rigling, D.; Metzler, B. Genetic diversification of the chestnut blight fungus Cryphonectria parasitica and its associated hypovirus in Germany. Fungal Biol. 2014, 118, 193–210. [Google Scholar] [CrossRef]
- Perlerou, C.; Diamandis, S. Identification and geographic distribution of vegetative compatibility types of Cryphonectria parasitica and occurrence of hypovirulence in Greece. For. Pathol. 2006, 36, 413–421. [Google Scholar] [CrossRef]
- Liu, Y.C.; Milgroom, M.G. High diversity of vegetative compatibility types in Cryphonectria parasitica in Japan and China. Mycologia 2007, 99, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Graves, A.H. Relative blight resistance in species and hybrids of Castanea. Phytopathology 1950, 40, 1125–1131. [Google Scholar]
- Ježić, M.; Schwarz, J.M.; Prospero, S.; Sotirovski, K.; Risteski, M.; Ćurković-Perica, M.; Nuskern, L.; Krstin, L.; Katanić, Z.; Malenicić, E.; et al. Temporal and spatial genetic population structure of Cryphonectria parasitica and its associated hypovirus across an invasive range of chestnut blight in Europe. Phytopathology 2021, 111, 1327–1337. [Google Scholar] [CrossRef]
- Odalović, A.; Prenkić, R.; Dubak, D.; Jovančević, M.; Čizmović, M.; Radunović, M. Effect of ecological conditions on expression of biopomological characteristics of chestnut (Castanea sativa Mill.) in natural populations of Montenegro. Genetika 2013, 45, 251–260. [Google Scholar] [CrossRef]
- Dubak, D. Rak pitomog kestena u Crnoj Gori. In Proceedings of the VIII Savetovanje o Zaštiti Bilja [Chestnut Blight in Montenegro. In VIII Counceling on Plant Protection, Book of Abstracts (Author’s Transl)], Zlatibor, Serbia, 27 November–1 December 2006; Vukša, P., Ed.; Društvo za zaštitu bilja Srbije, Beograd: Zlatibor, Serbia, 2006; pp. 127–128. [Google Scholar]
- Petrović, D.; Hadžiablahović, S.; Vuksanović, S.; Mačić, V.; Lakušić, D. Katalog Tipova Staništa Crne Gore Značajnih za Evropsku uniju (Catalogue of Habitat Types of EU Importance of Montenegro); Ministry of Sustainable Development and Tourismus: Podgorica, Montenegro; Beograd, Serbia; Zagreb, Croatia, 2012.
- Roganović, D.; Kasom, G.; Ćirović, R.; Caković, D.; Jovičević, M.; Življević-Roganović, M.; Brajović, T.; Radusinović, S.; Tepavčević, V. Prirodne Vrijednosti Vrmca [Natural Values of Vrmac (Author’s Translation)]; Roganović, D., Ed.; Opština Tivat; Kulturno zavičajno udruženje Napredak Gornja Lastva; Expeditio-Centar za Održivi Prostorni Razvoj: Tivat, Montenegro, 2015. [Google Scholar]
- Ježić, M.; Mlinarec, J.; Vuković, R.; Katanić, Z.; Krstin, L.; Nuskern, L.; Poljak, I.; Idžojtić, M.; Tkalec, M.; Ćurković-Perica, M. Changes in Cryphonectria parasitica populations affect natural biological control of chestnut blight. Phytopathology 2018, 108, 870–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Short, D.P.G.; Double, M.; Nuss, D.L.; Stauder, C.M.; MacDonald, W.; Kasson, M.T. Multilocus PCR assays elucidate vegetative incompatibility gene profiles of Cryphonectria parasitica in the United States. Appl. Environ. Microbiol. 2015, 81, 5736–5742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mlinarec, J.; Ježić, M.; Ćosić, J.; Ćurković-Perica, M. Multilocus PCR assay reveals high diversity of vegetative compatibility types in populations of Cryphonectria parasitica in Croatia. Plant Pathol. 2018, 67, 741–749. [Google Scholar] [CrossRef]
- Marra, R.E.; Milgroom, M.G. PCR amplification of the mating-type idiomorphs in Cryphonectria parasitica. Mol. Ecol. 1999, 8, 1947–1950. [Google Scholar] [CrossRef]
- Krstin, L.; Novak-Agbaba, S.; Rigling, D.; Ćurković-Perica, M. Diversity of vegetative compatibility types and mating types of Cryphonectria parasitica in Slovenia and occurrence of associated Cryphonectria hypovirus 1. Plant Pathol. 2011, 60, 752–761. [Google Scholar] [CrossRef]
- Gobbin, D.; Hoegger, P.J.; Heiniger, U.; Rigling, D. Sequence variation and evolution of Cryphonectria hypovirus 1 (CHV-1) in Europe. Virus Res. 2003, 97, 39–46. [Google Scholar] [CrossRef]
- Bryner, S.F.; Rigling, D.; Brunner, P.C. Invasion history and demographic pattern of Cryphonectria hypovirus 1 across European populations of the chestnut blight fungus. Ecol. Evol. 2012, 2, 3227–3241. [Google Scholar] [CrossRef] [PubMed]
- Allemann, C.; Hoegger, P.J.; Heiniger, U.; Rigling, D. Genetic variation of Cryphonectria hypoviruses (CHV1) in Europe, assessed using restriction fragment length polymorphism (RFLP) markers. Mol. Ecol. 1999, 8, 843–854. [Google Scholar] [CrossRef] [PubMed]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Paleontol. Electron. 2001, 4, 9. [Google Scholar]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozas, J.; Ferrer-Mata, A.; Sanchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sanchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Tamura, K.; Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar] [CrossRef]
- Bandelt, H.J.; Forster, P.; Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 1999, 16, 37–48. [Google Scholar] [CrossRef]
- Karadžić, D.; Radulović, Z.; Sikora, K.; Stanivuković, Z.; Golubović Ćurguz, V.; Oszako, T.; Milenković, I. Characterisation and pathogenicity of Cryphonectria parasitica on sweet chestnut and sessile oak trees in Serbia. Plant Prot. Sci. 2019, 55, 191–201. [Google Scholar] [CrossRef]
- Myteberi, I.F.; Lushaj, A.B.; Keča, N.; Lushaj, A.B.; Lushaj, B.M. Diversity of Cryphonectria parasitica, hypovirulence, and possibilities for biocontrol of chestnut canker in Albania. Int. J. Microbiol. Res. Rev. 2013, 1, 11–21. [Google Scholar]
- Krstin, L.; Novak-Agbaba, S.; Rigling, D.; Krajačić, M.; Ćurković-Perica, M. Chestnut blight fungus in Croatia: Diversity of vegetative compatibility types, mating types and genetic variability of associated Cryphonectria hypovirus 1. Plant Pathol. 2008, 57, 1086–1096. [Google Scholar] [CrossRef]
- Trestic, T.; Uscuplic, M.; Colinas, C.; Rolland, G.; Giraud, A.; Robin, C. Vegetative compatibility type diversity of Cryphonectria parasitica populations in Bosnia-Herzegovina, Spain and France. For. Snow Landsc. Res. 2001, 76, 391–396. [Google Scholar]
- Sotirovski, K.; Papazova-Anakieva, I.; Grunwald, N.J.; Milgroom, M.G. Low diversity of vegetative compatibility types and mating type of Cryphonectria parasitica in the southern Balkans. Plant Pathol. 2004, 53, 325–333. [Google Scholar] [CrossRef]
- Milgroom, M.G.; Sotirovski, K.; Spica, D.; Davis, J.E.; Brewer, M.T.; Milev, M.; Cortesi, P. Clonal population structure of the chestnut blight fungus in expanding ranges in southeastern Europe. Mol. Ecol. 2008, 17, 4446–4458. [Google Scholar] [CrossRef] [PubMed]
- Adamčíková, K.; Ondrušková, E.; Kádasi-Horáková, M.; Botu, M.; Kobza, M.; Achim, G. Distribution and population structure of the chestnut blight fungus in Romania. Plant Prot. Sci. 2016, 51, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Cortesi, P.; Rigling, D.; Heiniger, U. Comparison of vegetative compatibility types in Italian and Swiss subpopulations of Cryphonectria parasitica. Eur. J. For. Pathol. 1998, 28, 167–176. [Google Scholar] [CrossRef]
- Hoegger, P.J.; Rigling, D.; Holdenrieder, O.; Heiniger, U. Genetic structure of newly established populations of Cryphonectria parasitica. Mycol. Res. 2000, 104, 1108–1116. [Google Scholar] [CrossRef]
- Montenegro, D.; Aguín, O.; Sainz, M.J.; Hermida, M.; Mansilla, J.P. Diversity of vegetative compatibility types, distribution of mating types and occurrence of hypovirulence of Cryphonectria parasitica in chestnut stands in NW Spain. For. Ecol. Manag. 2008, 256, 973–980. [Google Scholar] [CrossRef]
- Bissegger, M.; Rigling, D.; Heiniger, U. Population structure and disease development of Cryphonectria parasitica in European chestnut forests in the presence of natural hypovirulence. Phytopathology 1997, 87, 50–59. [Google Scholar] [CrossRef] [Green Version]
- Sotirovski, K.; Milgroom, M.G.; Rigling, D.; Heiniger, U. Occurrence of Cryphonectria hypovirus 1 in the chestnut blight fungus in Macedonia. For. Pathol. 2006, 36, 136–143. [Google Scholar] [CrossRef]
- Zamora, P.; Martín, A.B.; Rigling, D.; Diez, J.J. Diversity of Cryphonectria parasitica in western Spain and identification of hypovirus-infected isolates. For. Pathol. 2012, 42, 412–419. [Google Scholar] [CrossRef]
- Krstin, L.; Katanić, Z.; Repar, J.; Ježić, M.; Kobaš, A.; Ćurković-Perica, M. Genetic diversity of Cryphonectria hypovirus 1, a biocontrol agent of chestnut blight, in Croatia and Slovenia. Microb. Ecol. 2020, 79, 148–163. [Google Scholar] [CrossRef] [PubMed]
- Mlinarec, J.; Nuskern, L.; Ježić, M.; Rigling, D.; Ćurković-Perica, M. Molecular evolution and invasion pattern of Cryphonectria hypovirus 1 in Europe: Mutation rate, and selection pressure differ between genome domains. Virology 2018, 514, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Castellini, A.; Palmieri, A.; Pirazzoli, A. Economic aspects of the chestnut market in Italy. Paper read at 1st European Congress on Chestnut–Castanea 2009, at Cuneo. In Proceedings of the Paper Read at 1st European Congress on Chestnut–Castanea 2009, Torino, Cuneo, Italy, 13 October 2009. [Google Scholar]
Country | Sample (Accession Number) * | Sampling Year |
---|---|---|
Bosnia and Herzegovina (BiH) | Iv5 (JX970117), Iv7 (JX970119), Iv21 (JX970129), Iv31 (JX970133), Iv48 (JX970143), Ka6 (JX970080, Ka9 (JX970082), Ka14 (JX970087), Ka20 (JX970092), Ka49 (JX970113) | 2008–2010 [35] |
North Macedonia (MCD) | Ra1 (JX969931), Ra6 (JX969934), Ra25 (JX969942), Ra35 (JX969950), Ra69 (JX969979) | 2008–2010 [35] |
kal_2A_1_F (MT799064), kal_4A_2_F (MT799065), kal_12A_1 (MT799066), kal_13B_2 (MT799067), kal_17A_rep (MT799068), kal_20B_2 (MT799069), kal_25A_rep (MT799070), kal_28A_2 (MT799071), kal_28B_3 (MT799072), kal_29A_3 (MT799073), kal_31A_rep (MT799074), kal_31B_3_R (MT799075), kal_35A_2 (MT799076), kal_35B_1 (MT799077), kal_38A_2 (MT799078), smo_1B_3 (MT799079), smo_18A_2_rep (MT799080), smo_20B_3 (MT799081), smo_31B_3A (MT799082), smo_32B_1 (MT799083), smo_41B_3 (MT799084) | 2014 [24] | |
Croatia (CRO) | ks_01_A2 (MT799046), ks_01_B1 (MT799047), ks_03_A3 (MT799048), ks_04_A1 (MT799049), ks_07_B2 (MT799050), ks_11_A2 (MT799051), ks_15_C2 (MT799052), ks_18_A2 (MT799053), ks_18_C2 (MT799054), ks_20_B3 (MT799055), ks_20_C3 (MT799056), oz_04_C2 (MT799057), oz_06_C3 (MT799058), oz_08_B2 (MT799059), oz_10_B2 (MT799060), oz_14_B2 (MT799061), oz_16_A2 (MT799062), oz_18_B1 (MT799063) | 2014 [24] |
Montenegro (MNE) | BK-K_16-1 (ON180782, ON180803), BK-K_16-2 (ON180783, ON180804), BK-K_30-1 (ON180784, ON180805), BK-S_01-2 (ON180785, ON180806), BK-S_07-1 (ON180786, ON180807), BK-S_07-2 (ON180787, ON180808), BK-S_07-3 (ON180788, ON180809), BK-S_29-3 (ON180789, ON180810), LS-K_03-3 (ON180790, ON180811), LS-K_04b-1 (ON180791, ON180812), LS-K_09-2 (ON180792, ON180813), LS-O_04-3 (ON180793, ON180814), LS-O_05-1 (ON180794, ON180815), LS-O_05-3 (ON180795, ON180816), LS-O_06-1 (ON180796, ON180817), LS-O_06-2 (ON180797, ON180818), LS-O_07-2 (ON180798, ON180819), LS-O_09-2 (ON180799, ON180820), LS-O_09-3 (ON180800, ON180821), LS-O_14-1 (ON180801, ON180822), LS-O_14-2 (ON180802, ON180823) | 2019–2020 (this research) |
POPULATION | Cankers Sampled | Cankers Isolated a | Multiple Isolates/Different vc Types b | N c | EU-1 d | EU-2 d | EU-4 d | EU-5 d | EU-6 d | EU-8 d | EU-10 d | EU-11 d | EU-12 d | EU-17 d | EU-22 d | Vc Types |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bay of Kotor—Kostanjica | 30 | 14 (46.7%) | 5/2 | 20 | 5 (25.0) | 1 (5.0) | 1 (5.0) | 13 (65.0) | 4 | |||||||
Bay of Kotor—Stoliv | 31 | 19 (61.3%) | 3/1 | 23 | 9 (39.1) | 1 (4.3) | 11 (47.8) | 1 (4.3) | 1 (4.3) | 5 | ||||||
Lake Skadar—Koštanjica | 21 | 10 (47.6%) | 1/1 | 11 | 1 (9.1) | 3 (27.3) | 2 (18.2) | 1 (9.1) | 4 (36.4) | 5 | ||||||
Lake Skadar—Ostros | 21 | 17 (81.0%) | 7/1 | 25 | 1 (4.0) | 1 (4.0) | 2 (8.0) | 2 (8.0) | 18 (72.0) | 1 (4.0) | 6 | |||||
TOTAL | 103 | 60 (58.3%) | 79 | 1 (1.3) | 14 (17.7) | 1 (1.3) | 4 (5.1) | 3 (3.8) | 2 (2.5) | 2 (2.5) | 3 (3.8) | 46 (58.2) | 2 (2.5) | 1 (1.3) |
Population Diversity Measures | Mating Type | |||||||
---|---|---|---|---|---|---|---|---|
POPULATION | N Polymorphic vic Loci | Max. N of vc Types a | H′b | E c | MAT1-1 | MAT1-2 | χ2 | p |
Bay of Kotor—Kostanjica | 3 | 8 | 0.93 (0.71–1.23) | 0.63 (0.51–0.86) | 11 | 9 | 0.2 | 0.654720846 |
Bay of Kotor—Stoliv | 3 | 8 | 1.13 (0.94–1.37) | 0.62 (0.58–0.83) | 21 | 2 | 15.70 | <0.0001 * |
Lake Skadar—Koštanjica | 5 | 32 | 1.47 (1.17–1.59) | 0.87 (0.71–0.98) | 5 | 6 | 0.09 | 0.763024601 |
Lake Skadar—Ostros | 6 | 64 | 1.03 (0.93–1.47) | 0.46 (0.42–0.73) | 23 | 2 | 17.64 | <0.0001 * |
Population | N Isolates (N Cankers) a | Positive Isolates (Positive Cankers) b | Prevalence per Isolate (Prevalence per Canker) (%) c | vc Types d |
---|---|---|---|---|
Bay of Kotor—Kostanjica | 20 (14) | 3 (2) | 15.0 (14.3) | EU-12 |
Bay of Kotor—Stoliv | 23 (19) | 5 (3) | 21.7 (15.8) | EU-2, EU-12, EU-17 |
Lake Skadar—Koštanjica | 11 (10) | 3 (3) | 27.3 (30.0) | EU-5, EU-6 |
Lake Skadar—Ostros | 25 (17) | 10 (6) | 40.0 (35.3) | EU-12 |
TOTAL | 79 (60) | 21 (14) | 26.6 (23.3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nuskern, L.; Stojanović, M.; Milanović-Litre, M.; Šibenik, T.; Ježić, M.; Poljak, I.; Ćurković-Perica, M. Filling the Gap in Southern Europe—Diversity of Cryphonectria parasitica and Associated Mycovirus (Cryphonectria hypovirus 1) in Montenegro. J. Fungi 2022, 8, 552. https://doi.org/10.3390/jof8060552
Nuskern L, Stojanović M, Milanović-Litre M, Šibenik T, Ježić M, Poljak I, Ćurković-Perica M. Filling the Gap in Southern Europe—Diversity of Cryphonectria parasitica and Associated Mycovirus (Cryphonectria hypovirus 1) in Montenegro. Journal of Fungi. 2022; 8(6):552. https://doi.org/10.3390/jof8060552
Chicago/Turabian StyleNuskern, Lucija, Milena Stojanović, Marija Milanović-Litre, Tena Šibenik, Marin Ježić, Igor Poljak, and Mirna Ćurković-Perica. 2022. "Filling the Gap in Southern Europe—Diversity of Cryphonectria parasitica and Associated Mycovirus (Cryphonectria hypovirus 1) in Montenegro" Journal of Fungi 8, no. 6: 552. https://doi.org/10.3390/jof8060552
APA StyleNuskern, L., Stojanović, M., Milanović-Litre, M., Šibenik, T., Ježić, M., Poljak, I., & Ćurković-Perica, M. (2022). Filling the Gap in Southern Europe—Diversity of Cryphonectria parasitica and Associated Mycovirus (Cryphonectria hypovirus 1) in Montenegro. Journal of Fungi, 8(6), 552. https://doi.org/10.3390/jof8060552