Next Article in Journal
Diversity and Metabolic Activity of Fungi Causing Biodeterioration of Canvas Paintings
Next Article in Special Issue
Beyond Domestic Cats: Environmental Detection of Sporothrix brasiliensis DNA in a Hyperendemic Area of Sporotrichosis in Rio de Janeiro State, Brazil
Previous Article in Journal
MaOpy2, a Transmembrane Protein, Is Involved in Stress Tolerances and Pathogenicity and Negatively Regulates Conidial Yield by Shifting the Conidiation Pattern in Metarhizium acridum
Previous Article in Special Issue
Pulmonary Sporotrichosis Caused by Sporothrix brasiliensis: A 22-Year, Single-Center, Retrospective Cohort Study
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Epidemiology of Clinical Sporotrichosis in the Americas in the Last Ten Years

by
Rigoberto Hernández-Castro
1,†,
Rodolfo Pinto-Almazán
2,3,†,
Roberto Arenas
4,5,†,
Carlos Daniel Sánchez-Cárdenas
6,
Víctor Manuel Espinosa-Hernández
7,
Karla Yaeko Sierra-Maeda
1,
Esther Conde-Cuevas
7,
Eder R. Juárez-Durán
4,
Juan Xicohtencatl-Cortes
8,
Erika Margarita Carrillo-Casas
9,
Jimmy Steven-Velásquez
10,
Erick Martínez-Herrera
2,5,* and
Carmen Rodríguez-Cerdeira
5,11,12,*
1
Departamento de Ecología de Agentes Patógenos, Hospital General “Dr. Manuel Gea González”, Ciudad de México 14080, Mexico
2
Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico
3
Noncommunicable Diseases Research Group, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico
4
Sección de Micología, Hospital General “Dr. Manuel Gea González”, Tlalpan, Ciudad de México 14080, Mexico
5
Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
6
Servicio de Dermatología, Centro Médico Nacional La Raza, Paseo de las Jacarandas S/N, La Raza, Azcapotzalco, Ciudad de México 02990, Mexico
7
Maestría en Ciencias de la Salud, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico
8
Laboratorio de Bacteriología Intestinal, Hospital Infantil de México “Dr. Federico Gómez”, Ciudad de México 06720, Mexico
9
Departamento de Biología Molecular e Histocompatibilidad, Hospital General “Dr. Manuel Gea González”, Tlalpan, Ciudad de México 14080, Mexico
10
Hospital General San Juan de Dios, 1ra Avenida “A” 10-50, zona 1, Ciudad de Guatemala 01001, Guatemala
11
Dermatology Department, Hospital Vithas Vigo and University of Vigo, 36206 Vigo, Spain
12
Campus Universitario, University of Vigo, 36310 Vigo, Spain
*
Authors to whom correspondence should be addressed.
These authors contributed equally to this work.
J. Fungi 2022, 8(6), 588; https://doi.org/10.3390/jof8060588
Submission received: 14 April 2022 / Revised: 24 May 2022 / Accepted: 24 May 2022 / Published: 30 May 2022
(This article belongs to the Special Issue Sporothrix and Sporotrichosis 2.0)

Abstract

:
Background: Sporotrichosis is a fungal infection caused by species of the Sporothrix genus. Presently, the prevalence of sporotrichosis in the Americas is unknown, so this study aims to analyze the cases reported in the past 10 years. Methods: An advanced search was conducted from 2012 to 2022 in English and Spanish in PUBMED, SciELO, and Cochrane, with the terms: “sporotrichosis”, “lymphocutaneous sporotrichosis”, “fixed sporotrichosis”, “mycosis”, “Sporothrix spp.”, “Sporothrix complex”, “S. schenckii sensu stricto”, “S. schenckii sensu lato”, “S. globose”, “S. brasiliensis”, “S. luriei”. Sporotrichosis is a fungal infection caused by species of the Sporothrix genus associated with “pathogenicity” or “epidemiology”. Results: A total of 124 articles were found in the Americas, corresponding to 12,568 patients. Of these, 87.38% of cases were reported in South America, 11.62% in North America, and 1.00% in Central America and the Caribbean. Brazil, Peru, and Mexico had the highest number of cases. The most prevalent etiological agents were S. schenckii complex/Sporothrix spp. (52.91%), S. schenckii (42.38%), others (4.68%), and Not Determined (ND) (0.03%). The most frequent form of the disease was lymphocutaneous infection; however, the infection type was not determined in 5639 cases. Among the diagnostic methods, culture was the most used. Conclusions: There is a high occurrence of cases reported in the literature. South America is the region with the highest number of reports because of its environment (climate, inhalation of spores, etc.), zoonotic transmission (scratches and sneezes from contaminated animals), and possible traumatic inoculation due to outdoor activities (agriculture, gardening, and related occupations). Molecular diagnosis has not been sufficiently developed due to its high cost.

1. Introduction

Sporotrichosis is a fungal infection caused by thermo-dimorphic fungi species of the Sporothrix genus. Previously, the classification of the species of sporotrichosis was conducted through the classification of the Sporothrix schenckii complex, which included Sporothrix schenckii sensu stricto, Sporothrix brasiliensis (S. brasiliensis), Sporothrix globosa (S. globosa), Sporothrix luriei (S. lurieri), Sporothrix pallida (S. pallida), Sporothrix mexicana (S. mexicana), and Sporothrix chilensis (S. chilensis) [1,2]. However, since 2016, the taxonomical classification of Sporothrix has been changed into a clinical clade that includes Sporothrix schenckii, S. globosa, S. brasiliensis, and S. luriei. On some occasions, the species of the environmental clade, such as S. pallida, S. mexicana, and S. chilensis may cause infection upon contact with an individual [1,2,3,4]. The infections occur mainly cutaneously or subcutaneously with lymphatic involvement [1,2,3,4]. This infection has been considered the most frequent subcutaneous mycosis in Latin America [2]. Such infections can be difficult to diagnose with the naked eye since they can be similar to infiltrative or ulcerative lesions from vascular and inflammatory disorders [1,3].
For this subcutaneous infection to develop, a direct trauma must occur first. For example, inoculation occurs when the skin is punctured by plants with thorns, gardeners are a classic case of this. Also, inoculation can occur through fomites that contact contaminated soil. For instance, people who wear sandals can suffer trauma from stones, firewood, or thorns with fungal spores on their surface [2,3]. With all the above, it can be inferred that this type of fungal infection is associated with regions where the main livelihood is agriculture, that is, in environments where the climate is tropical and subtropical. Another form of transmission, which has been increasing in recent times in some regions of the continent such as Brazil, Argentina, Paraguay, and Panama, has been reported to result from scratches, bites, pecks, and stings from different animals [1,2,3,4].
There are several techniques for detecting sporotrichosis, including Sabouraud dextrose agar cultures, lactophenol blue or erythromycin staining, histopathological studies, and PCR sequencing, among others [5,6,7] (Figure 1).
As for the clinical forms of sporotrichosis, various types have been described, such as the lymphocutaneous, fixed cutaneous, and, as mentioned earlier, the disseminated or hematogenous forms where both organs and tissues can be affected [5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28]. The latter is the rarest because the recommended antifungal regimens are usually effective; however, in patients with alterations in cellular immunity, these infections can spread [2,3,4].

2. Materials and Methods

An advanced search was conducted in English and Spanish languages in the engines Medical Literature Analysis and Retrieval System Online (MEDLINE/PUBMED), Scientific Electronic Library Online (SciELO), and Cochrane Database. Because the systematic review was performed for the 10 last years (2012–2022), both taxonomical classifications were used. The applied terms were “sporotrichosis”, “lymphocutaneous sporotrichosis”, “fixed sporotrichosis”, “Sporothrix spp.” and “Sporothrix schenckii complex”, “S. schenckii sensu stricto”, and “S. schenckii sensu lato”, Sporothrix schenckii, (Sporothrix schenckii), Sporothrix brasiliensis (S. brasiliensis), Sporothrix globosa (S. globosa), Sporothrix luriei (S. lurieri), Sporothrix pallida (S. pallida), Sporothrix mexicana (S. mexicana), and Sporothrix chilensis (S. chilensis) associated with “pathogenicity” or “epidemiology”. The total number of articles found was 243. The review was performed based on the preferred reporting items for systematic reviews and meta-analyses (PRISMA) (Figure 2). After reading the titles and reviewing the complete text, the most relevant papers to develop this article were identified. At the end of the selection process, 127 articles were chosen. The review was performed based on the preferred reporting items for systematic reviews and meta-analyses (PRISMA).

3. Epidemiology of Sporotrichosis in North America

A total of 48 publications related to sporotrichosis were found in North America [5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52]. There were 1460 patients in total associated with infection caused by species of the genus Sporothrix. According to the previous classification, it was found that in Canada, only two case reports were found, one from Ontario and the other from Toronto [5,6]. In the US, 27 reports containing 1 clinical case were found (81.5% S. schenckii, 18.5% Sporothrix spp., S. schenckii complex, and S. schenckii sensu lato) [7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33]. Of these, seven cases came from California, three from Oklahoma, two cases from Kansas, Texas, Arizona, Minnesota, and Florida, one case from Michigan, Nebraska, Oregon, Pennsylvania, and finally, one case without a specific city or region. In Mexico, there were 19 reports registered with 1431 reported cases (84.7% Sporothrix spp., 14.47% S. schenckii, 0.55% S. globosa, 0.21% S. schenckii sensu stricto, 0.07% S. mexicana) [34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52]. Jalisco reported 1060 cases, Guerrero 150, Nayarit 23, Zacatecas 21, Michoacan 20, Guanajuato 14, Oaxaca 9, Puebla, and San Luis Potosí 8 each, Mexico City 6, Chihuahua, Nuevo León, Querétaro, and Veracruz 2 each, Baja California, Durango, State of Mexico, and Morelos 1 each, and 99 cases were reported with an unspecified city (Table 1). When classifying according to the current taxonomy [1,2,3,4], we can mention that in Canada, 50% of the sporotrichosis was due to S. schenckii and 50% to Sporothrix spp. [5,6]. In the US, it was reported that Sporothrix spp. (85.19%) and S. schenckii (14.81%) were responsible for this pathology [7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33]. Finally, in Mexico, 85.05% were due to Sporothrix spp., 14.33% S. schenckii, 0.55% S. globosa, and 0.07% S. mexicana [34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52].
The most frequent variety reported was lymphocutaneous with 956 cases, followed by fixed cutaneous with 388 cases, and the disseminated form with 83 [5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52]. A lymphocutaneous presentation evolved into a disseminated after 10 months. The least frequent varieties were the disseminated cutaneous with 16 cases, disseminated cutaneous with affected mucous membranes and arthritis with 3 cases each, and the pulmonary form with 2 cases. Finally, lymphadenitis, meningitis, laryngotracheal joint, visceral fungemia, visceral infection associated with fungemia, an atypical presentation, and a visceral presentation with fungemia and mucosal involvement were only reported in one case each. The most common reported etiological agent with the new taxonomical classification was Sporothrix spp. with 85.00% (1241/1460), followed by S. schenckii with 14.38% (210/1460), S. globosa with 0.54% (8/1460), and S. mexicana with 0.068% (1/1460) [5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52].
In terms of the diagnosis, fungal culture was the most frequently used diagnostic methodology with 33/48, followed by histopathological examination with 20/48. It is worth noting that the histopathological examination was always accompanied by fungal cultures. PCR sequencing was the third method used in 11/48 studies. For this diagnostic tool, the Calmodulin gene was used in 7 cases, the ITS1-2 region in 3 cases, and an unspecified gene in 1 case. Also, the MALDI-TOF and the agglutination latex test were used for diagnosis in two reports. Finally, the use of the Sporotrichin Skin Test and physical examination was mentioned in one report, and one case was reported without describing the employed diagnostic method [5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52].

4. Epidemiology of Sporotrichosis in Central America and the Caribbean

Only 8 publications with 126 cases of sporotrichosis were found in Central America and the Caribbean [53,54,55,56,57,58,59,60]. In the only article found from Costa Rica during the search period, 57 isolates were analyzed in San José, finding the presence of 2 species: S. schenckii sensu stricto (93%), S. brasiliensis (3.5%), and Sporothix spp. (3.5%) [53]. On the other hand, there were 3 reports in Guatemala with 65 cases (98.5% Sporothrix spp. and 1.5% S. schenckii sensu stricto), with all cases being from Guatemala City [54,55,56]. Finally, reports of a single case were found in Honduras (Tegucigalpa); the agent responsible for the infection was S. schenckii, and in Panama (Correa District), the agent was not determined [57,58]. In the Caribbean, only two reports of S. schenckii sensu lato from Cuba were found [59,60]. Regarding the new taxonomic classification, it was determined that in Costa Rica, 93% of the cases were caused by S. schenckii, 3.5% by S. brasiliensis, and 3.5% by Sporothix spp. [53]. Meanwhile, in Guatemala, the main pathogenic agent was Sporothrix spp. with 98.5% and S. schenckii with 1.5% [54,55,56]. In Honduras and Panama, it was observed that the agent Sporothrix spp. was responsible for sporotrichosis, with one case per country (100%) [57,58]. In Cuba, there were two reports of a case due to Sporothrix spp., which represents 100% [59,60].
The most frequently reported form was lymphocutaneous with 39 cases (30.95%), followed by fixed cutaneous with 26 (20.63%), the disseminated form with 2 (1.59%), 1 case of chancre (0.79%), and 58 ND cases (46.03%) [53,54,55,56,57,58,59,60]. The most common etiological agents noted were Sporothrix spp. with 55.56% (70/126), S. schenckii with 42.85% (54/126), and S. brasiliensis with 1.59% (2/126) [53,54,55,56,57,58,59,60].
Regarding diagnosis, fungal culture was used as a diagnostic method in all articles (8/8), followed by histopathological examination (5/8). In this case, also, the histopathological examination was always accompanied by fungal cultures. PCR sequencing (2/8) employing the calmodulin gene in one article and the ITS1-2 region in the other was also used as a diagnostic tool. Lastly, diagnosis with microscopy using lactophenol blue was mentioned in two reports (Table 2) [53,54,55,56,57,58,59,60].

5. Epidemiology of Sporotrichosis in South America

A total of 68 publications with 11,050 cases of sporotrichosis were found in South America [61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131]. Of these, 4 reports were found in Argentina during the analyzed period with 38 cases, of which 9 were caused by S. schenckii sensu stricto (23.68%), 26 by S. brasiliensis (68.52%), 1 by S. globosa (2.6%), 1 by S. schenckii (2.6%), and 1 by S. schenckii complex (2.6%) [61,62,63,64]. Brazil reported 42 articles with 5546 analyzed cases [65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106], identifying Sporothrix spp. and S. schenckii complex as the causative agent in 4906 cases (88.46%), S. schenckii in 302 (5.45%), S. brasiliensis in 125 (2.25%), Sporothrix sensu lato in 110 (1.98%), S. globosa plus S. schenckii in 91 cases (1.64%) Sporothrix sensu stricto in 5 (0.09%), S. globosa in 4 (0.07%), and S. mexicana in 3 (0.05%) during the studied period. In Colombia, 4 reports were found, adding up to 50 cases [56,107,108,109].S. Schenckii sensu stricto was identified in 22 cases (44.00%), Sporothrix spp. in 15 (30.00%), S. globosa in 12 (24.00%) and S. schenckii sensu lato in 1 (2.00%). Likewise, in Chile, 3 reported cases detected Sporothrix spp. in 1 (33.33%), S. globosa in 1 (33,33%), and Sporothrix pallida in 1 (33.33%) [110,111,112]. A total of 13 cases of Sporothrix spp. and S. schenckii complex (100%) were reported in Paraguay [113,114]. In Peru, from 4792 cases, S. schenckii was found in 4656 (97.16%), Sporothrix spp. and the Sporothrix complex in 116 (2.42%), S. schenkii sensu stricto in 19 (0.40%), and Sporothrix sensu lato in 1 (0.02%) [115,116,117,118,119,120,121,122,123]. There was 1 report of 157 cases of Sporothrix spp. (100%) found in Uruguay [124]. Finally, there were 4 reports from Venezuela with 452 cases of Sporothrix spp., and the Sporothrix complex was found in 220 of those cases (48.67%), S. schenckii sensu lato in 130 (28.76%), S. schenckii in 42 (9.29%), S. schenckii sensu stricto in 17 (3.76%), S. globosa in 39 (8.63%), 1 case of Ophiostoma stenoceras (0.22%) and 3 cases were ND (0.66%) [125,126,127,128].
Regarding the new taxonomic classification, in Argentina, 26.31% were S. schenckii, 68.42% S. brasiliensis, 2.63% S. globosa, and 2.63% Sporothrix spp. [61,62,63,64]. In Brazil, the main pathogenic agent was Sporothrix spp. with 95.56%, S. brasiliensis 2.25%, S. globosa plus S. schenckii 1.64%, S. schenckii 0.41%, S. globosa 0.07%, and S. mexicana 0.05% [65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106]. In Colombia, S. schenckii 44.00%, Sporothrix spp. 32.00%, and S. globosa 24.00% were the principal mycotic agents [56,107,108,109]. Regarding Chile, the pathogenic agents were Sporothrix spp., S. globose, and S. pallida (33.33% each) [110,111,112]. In Paraguay, the unique agent found was Sporothrix spp. (100%) [113,114]. For Peru, the most important pathogenic agents were Sporothrix spp. (99.54%), and S. schenckii (0.46%) [115,116,117,118,119,120,121,122,123]. In Uruguay, 100% of the cases were due to Sporothrix spp. (100%) [124]. In Venezuela, Sporothrix spp. (80.04%), S. schenckii (13.38%), and S. globose (6.57%) were the types of Sporothrix agents [125,126,127,128].
The most frequent types of disease were lymphocutaneous with 3293 cases (29.47%), fixed cutaneous with 1947 (17.43%), disseminated cutaneous with 34 (0.30%), systemic form with 18 (0.16%), and others with 177 cases (1.60%). However, there were 5702 cases (51.04%) with undetermined types from all the cases diagnosed as sporotrichosis [56,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128].
The most common reported etiological agent with the new taxonomical classification was Sporothrix spp. with 95.12% (10,511/11,050), followed by S. schenckii with 1.23% (136/11,050), S. brasiliensis with 2.27% (251/11,050), S. globosa plus S. schenckii with 0.82% (91/11,050), S. globosa with 0.52% (57/11,050), S. mexicana 0.027% (3/11,050), and S. pallida with 0.009% (1/11,050) [56,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120].
With reference to diagnosis, fungal culture was used as a diagnostic methodology in almost all articles (67/71), followed by PCR sequencing (26/71), where the calmodulin gene (15/23), the ITS 1-2 region (6/23), and other genes (15/23) were used. Other types of diagnoses (12/71) were applied, such as direct microscopy (19/71), histopathological examination, always accompanied by fungal culture (18/71), and microscopy with lactophenol blue (9/71) (Table 3).

6. Discussion

A total of 124 publications were found with reports related to sporotrichosis in the Americas in the last 10 years, with 12,636 patients associated with infection caused by species of the genus Sporothrix. Interestingly, it was observed that 87.45% (11,050) of these cases were reported in South America, 11.55% (1460) in North America, and 1.00% (126) in Central America and the Caribbean [5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128]. The countries that presented the highest number of cases during the analyzed period were Brazil (5546—43.89%), Peru (4792—37.92%), and Mexico (1431—11.32%). It should be noted that in the case of Brazil and Peru, there were various reports with several cases from a time period ranging from 25 to 50 years [66,67,75,86]. As previously mentioned, sporotrichosis is a disease caused by a thermodymorphic fungus of the genus Sporothrix. It is known that this subcutaneous disease, although cosmopolitan, generally occurs in both tropical and subtropical regions. The latter could explain, in some part, the high prevalence in Latin America, being endemic in this region [1,2,3,4,129]. However, three countries (Brazil, Peru, and Mexico) have specific characteristics that increase the number of cases. In Brazil and adjacent countries (for example, Argentina and Paraguay), an increasing number of cases have been associated with zoonotic infection, mainly from infected cats through scratches or sneezes [3,4]. Since the zoonotic transmission of S. brasiliensis is the most important form of communication, it is recommended that hygienic measures be taken regarding domestic animals such as cats, rodents, etc., due to possible infections. If it is diagnosed in animals, it must be treated immediately, and gloves must be used when handling animals with injuries [2,3,4].
In Mexico, sporotrichosis is considered endemic and an occupational disease due to the different sources of infection. The climate of some regions in Mexico is perfect for the characteristics of this type of mycosis to increase its incidence. Although tropical and subtropical climates are preferred by this fungus, in this country, the cold and dry seasons are the contagion peaks of these pathological agents. The states that are more affected are Mexico City, Puebla, Jalisco, Michoacan, the State of Mexico, and Guanajuato. In these states, agriculture is one of the most important economic activities, which explains the high incidence of the Sporothrix contagion [130]. Thus, the principal recommendation in this region is the use of gloves or long-sleeved clothing when carrying out work activities where these species are endemic.
Regarding the etiological agents responsible for the types of sporotrichosis, it is important to specify that they were referred to both in the table and in the text in the way they were named in the articles that were analyzed. Since most of them were written and published before the changes in taxonomical classification, they do not consider the clinical and environmental clades classification instead of the Sporothrix schenckii complex.
As for the etiological agent of sporotrichosis, the most prevalent, according to the reports with the old taxonomical classification, were S. schenckii complex and Sporothrix spp. with 6624 cases (52.41%), S. schenckii with 5302 (41.95%), S. schenckii sensu lato with 245 (1.94%), S. schenckii sensu stricto with 147 (1.16%), S. brasiliensis with 153 (1.21%), S. globosa plus S. Schenckii sensu stricto with 91 (0.72%), S. globosa with 65 (0.51%), S. mexicana with 4 (0.03%), S. pallida 1 (0.008%), Ophiostoma stenoceras 1 (0.008%), and 4 ND cases (0.032%). It is worth mentioning that, although there are other species, such as Sporothrix luriei, there were no reports found in the studied period in the Americas [1,131].
Likewise, within the systematic review, Ophiostoma stenoceras appears, which in the taxonomic classification of Sporothrix is represented in its sexual state, in the year the report was made. Nevertheless, in 2016, Beer et al. concluded through phylogenetic analyzes that the genus Sporothrix was different from the genus Ophiostoma, but that was before considering its sexual state. Officially, the sexual status of Sporothrix is not known, and in this case, Ophiostoma stenoceras was included according to the regulations that governed the taxonomy before the divorce between the two genders occurred [132].
After analyzing the articles to carry out the classification according to the new taxonomy, we found that the most common reported etiological agent was Sporothrix spp. with 94.34% (11,922/12,636), followed by S. schenckii with 3.16% (400/12,636), S. brasiliensis with 1.21% (153/12,636), S. globosa plus S. schenckii with 0.72% (91/12,636), S. globosa with 0.51% (65/12,636), S. mexicana 0.03% (4/12,636), and S. pallida with 0.007% (1/12,636) [61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128].
On the other hand, the most frequent type of sporotrichosis was the lymphocutaneous with 4288 cases, followed by the fixed cutaneous with 2340 cases, the disseminated or systemic with 103, the disseminated cutaneous with 52 cases, other with 215 cases, and 5760 cases were ND. By being a subcutaneous mycosis, the lymphocutaneous form is the most frequent one because sporotrichosis mainly affects the lymph nodes of the skin and the subcutaneous tissue, producing ulcers and thereby affecting the lymphocutaneous system [133]. The infection begins in the form of an inoculation chancre. Subsequently, erythematous nodular lesions arise, which follow the trajectory of the lymphatic vessels, mainly affecting the face and upper and lower limbs. Another common form is the fixed cutaneous, which occupies the second place in the Americas to the present date. This type is of a fixed form at the inoculation site of the fungus, affecting mainly children, and it is observed as a verrucous plaque. Its presence demonstrates a high immunity response from the patient. Being a disease of this body region, it has a low prevalence in other organs or tissues. However, the disseminated or hematogenous form may be cutaneous or systemic [5,6,7,8]. Systemic sporotrichosis can cause respiratory and lung disorders, osteomyelitis, arthritis, and meningitis. It is important to note that the type of condition affecting the patients (5760 cases) was not mentioned in several of the reported cases analyzed in this publication.
Concerning diagnosis, various methods, both phenotypic and genotypic, have been used to detect the infection caused by this etiological agent [129]. Within the phenotypic methods, we can name (1) mycological cultures. This technique seeks the growth of the colony in a radial form (approximately 3 to 4 days) with a creamy consistency, and subsequently, the development of mycelium is observed for its identification (Gold Standard). Finally, it is suggested to perform a lactophenol blue staining to observe the microconidia in a sympodial arrangement along the mycelium. (2) serological diagnosis using sporotricine and immunodiffusion tests, immunoelectrophoresis, latex agglutination, etc. (3) histopathological diagnosis, an excisional biopsy of the nodular lesion is performed that may show granulomatous and necrotizing dermatitis, which can be stained with Hematoxylin and Eosin (HE) Schiff’s Periodic Acid (PAS), or Grocott-Gomori Methenamine Silver (MSG) to confirm the presence of asteroid bodies [5,6,7,8].
Nonetheless, genotypic identification tests are preferred since phenotypic techniques have disadvantages, such as being laborious, presenting variable results from the clinical field, and requiring many samples to reach a diagnosis. Therefore, different PCR techniques have been used for genotypic identification tests utilizing diverse genetic or molecular markers that have been developed [5].
In this systematic review, the culture turned out to be the most used diagnostic method throughout the continent, being performed in 107 of the 127 articles reviewed. Histopathological examination was the second most used diagnostic technique, found in 43 publications. In addition, PCR sequencing was used 38 times, direct microscopy 21 times, and microscopy with lactophenol blue was reported in 9 articles. Lastly, other techniques were used to detect sporotrichosis; however, these were not utilized routinely.

Author Contributions

R.H.-C., R.P.-A., R.A. and E.M.-H. designed the study and wrote the manuscript, contributing equally to the accomplishment of the work; R.P.-A., C.R.-C., C.D.S.-C., V.M.E.-H. and E.R.J.-D. contributed to the writing of the manuscript; K.Y.S.-M., E.M.-H., C.R.-C., E.C.-C., J.X.-C. and E.M.C.-C. planned, extracted data, wrote, and critically reviewed the manuscript; R.H-C., J.S.-V., C.R.-C. and E.M.-H. wrote and critically reviewed the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Lopes-Bezerra, L.M.; Mora-Montes, H.M.; Zhang, Y.; Nino-Vega, G.; Rodrigues, A.M.; de Camargo, Z.P.; de Hoog, S. Sporotrichosis between 1898 and 2017: The evolution of knowledge on a changeable disease and on emerging etiological agents. Med. Mycol. 2018, 56, S126–S143. [Google Scholar] [CrossRef] [PubMed]
  2. Rabello, V.B.S.; Almeida, M.A.; Bernardes-Engemann, A.R.; Almeida-Paes, R.; de Macedo, P.M.; Zancopé-Oliveira, R.M. The Historical Burden of Sporotrichosis in Brazil: A Systematic Review of Cases Reported from 1907 to 2020. Braz. J. Microbiol. 2022, 53, 231–244. [Google Scholar] [CrossRef] [PubMed]
  3. Rodrigues, A.M.; Della Terra, P.P.; Gremião, I.D.; Pereira, S.A.; Orofino-Costa, R.; de Camargo, Z.P. The threat of emerging and re-emerging pathogenic Sporothrix species. Mycopathologia 2020, 185, 813–842. [Google Scholar] [CrossRef] [PubMed]
  4. Gremião, I.D.F.; Evangelista Oliveira, M.M.; Monteiro de Miranda, L.H.; Saraiva Freitas, D.F.; Peraira, S.A. Geographic Expansion of Sporotrichosis, Brazil. Emergy Infect. Dis. 2020, 26, 621–662. [Google Scholar] [CrossRef] [Green Version]
  5. Bunce, P.E.; Yang, L.; Chun, S.; Zhang, S.X.; Trinkaus, M.A.; Matukas, L.M. Disseminated sporotrichosis in a patient with hairy cell leukemia treated with amphotericin B and posaconazole. Med. Mycol. 2012, 50, 197–201. [Google Scholar] [CrossRef] [Green Version]
  6. Tai, F.; Jakubovic, H.; Alabdulrazzaq, S.; Alavi, A. A case of sporotrichosis infection mimicking pyoderma gangrenosum and the role of tissue culture in diagnosis: A case report. SAGE Open Med. Case Rep. 2020, 8, 2050313X20919600. [Google Scholar] [CrossRef]
  7. Hayfron, K.; Wiedeman, J.A. A 7-year-old girl with ulcerative lesion after a rodent bite. Pediatr. Infect. Dis. J. 2010, 29, 185–193. [Google Scholar] [CrossRef]
  8. Kamal, A.; Orenstein, R. Disseminated sporotrichosis. J. Hosp. Med. 2010, 5, E29–E30. [Google Scholar] [CrossRef]
  9. Lyengar, S.S.; Khan, J.A.; Brusco, M.; FitzSimmons, C.J. Cutaneous Sporothrix schenckii of the human eyelid. Ophthalmic Plast. Reconstr. Surg. 2010, 26, 305–306. [Google Scholar] [CrossRef]
  10. Milby, A.H.; Pappas, N.D.; O’Donnell, J.; Bozentka, D.J. Sporotrichosis of the upper extremity. Orthopedics 2010, 33, 1–3. [Google Scholar]
  11. Assi, M.; Lakkis, I.E.; Wheat, L.J. Cross-reactivity in the Histoplasma antigen enzyme immunoassay caused by sporotrichosis. Clin. Vaccine Immunol. 2011, 18, 1781–1782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  12. Parekh, P.K.; Butler, D.F. What is your diagnosis? Periorbital granulomatous plaque. Pediatr. Dermatol. 2011, 28, 457–458. [Google Scholar] [CrossRef] [PubMed]
  13. Rees, R.K.; Swartzberg, J.E. Feline-transmitted sporotrichosis: A case study from California. Dermatol. Online. J. 2011, 17, 2. [Google Scholar] [CrossRef] [PubMed]
  14. Sharon, V.R.; Kim, J.; Sudhakar, S.; Fung, M.A.; Maniar, A. Disseminated cutaneous sporotrichosis. Lancet Infect. Dis. 2013, 13, 95. [Google Scholar] [CrossRef]
  15. Adnan, M.M.; Fierro-Fine, A.; Zhao, L.; Khalil, M.O. Metastic melanoma masquerading as disseminated sporotrichosis. J. Community Support. Oncol. 2014, 12, 339–340. [Google Scholar] [CrossRef]
  16. Trotter, J.R.; Sriaroon, P.; Berman, D.; Petrovic, A.; Leiding, J.W. Sporothrix schenckii lymphadentitis in a male with X-linked chronic granulomatous disease. J. Clin. Immunol. 2014, 34, 49–52. [Google Scholar] [CrossRef]
  17. Bahr, N.C.; Janssen, K.; Billings, J.; Loor, G.; Green, J.S. Respiratory failure due to possible donor-derived Sporothrix schenckii infection in a lung transplant recipient. Case Rep. Infect. Dis. 2015, 2015, 925718. [Google Scholar]
  18. Hassan, K.; Turker, T.; Zangeneh, T. Disseminated sporotrichosis in an immunocompetent patient. Case Rep. Plast. Surg. Hand Surg. 2016, 3, 44–47. [Google Scholar] [CrossRef] [Green Version]
  19. Lederer, H.T.; Sullivan, E.; Crum-Cianflone, N.F. Sporotrichosis as an unusual case of osteomyelitis: A case report and review of the literature. Med. Mycol. Case Rep. 2016, 11, 31–35. [Google Scholar] [CrossRef]
  20. Aronowitz, P.B.; Gilroy, M.; Christiansen, K.N. Disseminated Sporotrichosis with Osteolytic Bone Involvement. J. Gen. Intern. Med. 2017, 32, 1063. [Google Scholar] [CrossRef] [Green Version]
  21. Charles, K.; Lowe, L.; Shuman, E.; Cha, K.B. Painful linear ulcers: A case of cutaneous sporotrichosis mimicking pyoderma gangrenosum. JAAD Case Rep. 2017, 3, 519–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  22. Hessler, C.; Kauffman, C.A.; Chow, F.C. The upside of bias: A case of chronic meningitis due to Sporothrix schenckii in an immunocompetent host. Neurohospitalist 2017, 7, 30–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  23. Barbaryan, A.; El Atrouni, W.; Bailuc, S.; Jones, M.W.; Bhakta, M.; Mahmoud, K.H.; Mirrakhimov, A.E. Isolated Sporothrix schenckii monoarthritis. Case Rep. Infect. Dis. 2018, 2018, 9037657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  24. Farooqui, S.M.; Youness, H. The Infection Returns: A case of pulmonary sporotrichosis relapse after chemotherapy. Case Rep. Med. 2018, 2018, 1384029. [Google Scholar] [CrossRef] [Green Version]
  25. Patel, R.; Busby, L.P.; Motamedi, D. Delayed diagnosis in a case of smoldering sporotrichal monoarthropathy. J. Radiol. Case Rep. 2019, 13, 17–23. [Google Scholar] [CrossRef]
  26. Saeed, L.; Weber, R.J.; Puryear, S.B.; Bahrani, E.; Peluso, M.J.; Babik, J.M.; Haemel, A.; Coates, S.J. Disseminated cutaneous and osteoarticular sporotrichosis mimicking pyoderma gangrenosum. Open Forum Infect. Dis. 2019, 6, ofz395. [Google Scholar] [CrossRef]
  27. White, M.; Adams, L.; Phan, C.; Erdag, G.; Totten, M.; Lee, R.; Lu, X.; Mehta, S.; Miller, L.S.; Zhang, S.X. Disseminated sporotrichosis following iatrogenic immunosuppression for suspected pyoderma gangrenosum. Lancet Infect. Dis. 2019, 19, e385–e391. [Google Scholar] [CrossRef]
  28. Kaadan, M.I.; Dennis, M.; Desai, N.; Yadavalli, G.; Lederer, P. One health education for future physicians: A case report of cat-transmitted sporotrichosis. Open Forum Infect. Dis. 2020, 7, ofaa049. [Google Scholar] [CrossRef]
  29. Parker, N.; Strong, N.; Pichetsurnthorn, P.; Lalich, D.; Moore, T. Disseminated sporotrichosis with brain abscesses in an HIV-Infected patient. Cureus 2020, 12, e8016. [Google Scholar] [CrossRef]
  30. Shah, D.; Kim, A.E.; Elbadri, S.; Desai, B.; Ganti, L. An uncommon rash in the emergency department: Sporothrix Schenckii. Cureus 2021, 13, e16125. [Google Scholar] [CrossRef]
  31. Wellington, T.; Hauschild, J.; Krauland, K.J.; Verwiebe, E.G.; Markelz, A.E. Sporotrichosis in a U.S. Army basic trainee. Mil. Med. 2021, usab463. [Google Scholar] [CrossRef] [PubMed]
  32. Zambrano, A.I.; Church, E.C.; McKay, K.M.; Carnes, S.K.; Morse, R.J.; Leveque, T.K.; Roxby, A.C. A disfiguring rash. Open Forum Infect. Dis. 2021, 8, ofab332. [Google Scholar] [CrossRef] [PubMed]
  33. Kenny, H.; Dougherty, M.; Churnin, I.; Early, S.; Gupta, A.; McGarey, P.O., Jr. Chronic laryngotracheal granulomatous disease secondary to Sporothrix schenckii in an immunocompromised patient. Ann. Otol. Rhinol. Laryngol. 2022, 34894211073002. [Google Scholar] [CrossRef] [PubMed]
  34. Gutierrez-Morales, J.L.; Domínguez Romero, R.; Morales Esponda, M.; Rossiere Echazaleta, N.L.; Reyes Bonifant, G.; Santos Ramírez, A. Esporotricosis micematoide con invasión a médula espinal. Rev. Mex. Neuroci. 2011, 12, 50–54. [Google Scholar]
  35. Romero-Cabello, R.; Bonifaz, A.; Romero-Feregrino, R.; Sánchez, C.J.; Linares, Y.; Zavala, J.T.; Romero, L.C.; Romero-Feregrino, R.; Vega, J.T. Disseminated sporotrichosis. BMJ Case Rep. 2011, 2011, bcr1020103404. [Google Scholar] [CrossRef] [Green Version]
  36. Rojas-Padilla, R.; Pastrana, R.; Toledo, M.; Valencia, A.; Mena, C.; Bonifaz, A. Esporotricosis cutánea linfangítica por mordedura de araña. Dermatol. Rev. Mex. 2013, 57, 479–484. [Google Scholar]
  37. Espinoza-Hernández, C.J.; Jesús-Silva, A.; Toussaint-Caire, S.; Arenas, R. Disseminated sporotrichosis with cutaneous and testicular involvement. Actas Dermosifiliogr. 2014, 105, 204–206. [Google Scholar] [CrossRef]
  38. Chávez-López, G.; Estrada-Castañón, R.; Estrada-Chávez, G.; Vega-Memije, M.E.; Moreno-Coutiño, G. Esporotricosis cutánea diseminada: Un caso de la región de la montaña del estado de Guerrero, México. Dermatol. Rev. Mex. 2015, 59, 228–232. [Google Scholar]
  39. Cotino Sánchez, A.; Torres-Alvarez, B.; Gurrola Morales, T.; Méndez Martínez, S.; Saucedo Gárate, M.; Castanedo-Cazares, J.P. Mycosis fungoides-like lesions in a patient with diffuse cutaneous sporotrichosis. Rev. Iberoam. Micol. 2015, 32, 200–203. [Google Scholar] [CrossRef]
  40. Bonifaz, A.; Tirado-Sánchez, A.; Paredes-Solís, V.; Cepeda-Valdés, R.; González, G.M.; Treviño-Rangel, R.J.; Fierro-Arias, L. Cutaneous disseminated sporotrichosis: Clinical experience of 24 cases. J. Eur. Acad. Dermatol. Venereol. 2018, 32, e77–e79. [Google Scholar] [CrossRef]
  41. Bonifaz, A.; Toriello, C.; Araiza, J.; Ramírez-Soto, M.C.; Tirado-Sánchez, A. Sporotrichin skin test for the diagnosis of sporotrichosis. J. Fungi 2018, 4, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  42. Estrada-Castañón, R.; Chávez-López, G.; Estrada-Chávez, G.; Bonifaz, A. Report of 73 cases of cutaneous sporotrichosis in Mexico. An. Bras. Dermatol. 2018, 93, 907–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  43. Ochoa-Reyes, J.; Ramos-Martínez, E.; Treviño-Rangel, R.; González, G.M.; Bonifaz, A. Auricular sporotrichosis. Atypical case report simulating bacterial cellulitis. Rev. Chil. Infectol. 2018, 35, 83–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  44. Puebla-Miranda, M.; Vásquez-Ramírez, M.; González-Ibarra, M.; Torres-López, I.H. Esporotricosis. Reporte de un caso ocupacional. Rev. Hosp. Jua. Mex. 2018, 85, 246–250. [Google Scholar]
  45. Rangel-Gamboa, L.; Martinez-Hernandez, F.; Maravilla, P.; Flisser, A. A population genetics analysis in clinical isolates of Sporothrix schenckii based on calmodulin and calcium/calmodulin-dependent kinase partial gene sequences. Mycoses 2018, 61, 383–392. [Google Scholar] [CrossRef]
  46. Rojas, O.C.; Bonifaz, A.; Campos, C.; Treviño-Rangel, R.J.; González-Álvarez, R.; González, G.M. Molecular identification, antifungal susceptibility, and geographic origin of clinical Strains of Sporothrix schenckii complex in Mexico. J. Fungi 2018, 4, 86. [Google Scholar] [CrossRef] [Green Version]
  47. Estrada-Castañón, R.; Estrada-Chávez, G.; Chávez-López, M.G. Diagnosis and management of fungal neglected tropical diseases in community settings-mycetoma and sporotrichosis. Trop. Med. Infect. Dis. 2019, 4, 81. [Google Scholar] [CrossRef] [Green Version]
  48. Mayorga-Rodríguez, J.; Mayorga-Garibaldi, J.L.; Muñoz-Estrada, V.F.; De León Ramírez, R.M. Esporotricosis: Serie de 1134 casos en una zona endémica de México. Med. Cut. Ibero Lat. Am. 2019, 47, 24–28. [Google Scholar]
  49. Alvarez-Rivero, V.; Hernandez-Castro, R.; Moreno-Coutiño, G.; Lozano-Platonoff, A. Disseminated sporotrichosis: An important differential diagnosis for venous ulcers. Adv. Skin. Wound Care 2020, 33, 1–3. [Google Scholar] [CrossRef]
  50. Bonifaz, A.; Morales-Peña, N.; Tirado-Sánchez, A.; Jiménez-Mendoza, D.R.; Treviño-Rangel, R.J.; González, G.M. Atypical sporotrichosis related to Sporothrix mexicana. Mycopathologia 2020, 185, 733–735. [Google Scholar] [CrossRef]
  51. Bonifaz, A.; Tirado-Sánchez, A.; Araiza, J.; Treviño-Rangel, R.; González, G.M. Deep mycoses and pseudomycoses of the foot: A single-center retrospective study of 160 cases, in a tertiary-care center in Mexico. Foot 2021, 46, 101770. [Google Scholar] [CrossRef] [PubMed]
  52. Martínez-Herrera, E.; Arenas, R.; Hernández-Castro, R.; Frías-De-León, M.G.; Rodríguez-Cerdeira, C. Uncommon clinical presentations of sporotrichosis: A two-case report. Pathogens 2021, 10, 1249. [Google Scholar] [CrossRef] [PubMed]
  53. Lozada-Alvarado, S.; Salas-Campos, I.; Uribe-Lorío, L.; Gross, N.T. Molecular and Biochemical Identification and In Vitro Susceptibility to Itraconazole of Costa Rican Clinical Isolates of the Sporothrix schenckii Complex. Acta Sci. Microbiol. 2020, 3, 116–123. [Google Scholar] [CrossRef]
  54. Román-Carrillo, M.; Porres-Paredes, S.; Orozco, R.; Argueta, V. Cutaneous Sporotrichosis. Case report. Rev. Médica Gt Colmedegua 2018, 157, 90–92. [Google Scholar]
  55. Sánchez-Cárdenas, C.D.; Porras-López, C.; Morales-Ezquivel, O.; Frías-De-León, M.G.; Juárez-Durán, E.R.; Arenas, R.; Martínez-Herrera, E. Sporotrichosis: Epidemiological, clinical and mycological study of 53 cases in Guatemala. Life Sci. Press 2018, 2, 66–69. [Google Scholar] [CrossRef]
  56. Flórez-Muñoz, S.V.; Alzate, J.F.; Mesa-Arango, A.C. Molecular Identification and Antifungal Susceptibility of Clinical Isolates of Sporothrix schenckii Complex in Medellin, Colombia. Mycopathologia 2019, 184, 53–63. [Google Scholar] [CrossRef]
  57. Medina, R.; Flores, J.; Luque, M.T. Sporotrichosis in an Adolescent Patient. Honduras Pediátrica 2021, 34, 32–33. [Google Scholar] [CrossRef]
  58. Rios, M.E.; Suarez, M.D.; Moreno, J.; Vallee, J.; Moreno, J.P. Zoonotic Sporotrichosis Related to Cat Contact: First Case Report from Panama in Central America. Cureus 2018, 10, e2906. [Google Scholar] [CrossRef] [Green Version]
  59. Fernandez, M.C.; Reyes, N.; Gonzalez, J.C.; Montesino, M.; Apaulasa, K. Sporotrichosis. A propos of a case. Rev. Cubana Med. Trop. 2016, 68, 171–178. [Google Scholar]
  60. Pérez-Morales, L.; Iglesias-López, M.; Quiñones-Cherta, O.; Reyes-Rodríguez, I. Microbiological Isolation of Sporothrix Schenckii in an Immunocompromised Patient. A Case Report. Rev. Cienc. Médicas Cienfuegos 2014, 12, 662–669. [Google Scholar]
  61. Rojas, F.D.; Fernández, M.S.; Lucchelli, J.M.; Lombardi, D.; Malet, J.; Vetrisano, M.E.; Cattana, M.E.; de los Ángeles Sosa, M.; Giusiano, G. Cavitary Pulmonary Sporotrichosis: Case Report and Literature Review. Mycopathologia 2017, 182, 1119–1123. [Google Scholar] [CrossRef] [PubMed]
  62. Etchecopaz, A.; Toscanini, M.A.; Gisbert, A.; Mas, J.; Scarpa, M.; Iovannitti, C.A.; Bendezú, K.; Nusblat, A.D.; Iachini, R.; Cuestas, M.L. Sporothrix brasiliensis: A review of an emerging south american fungal pathogen, its related disease, presentation and spread in Argentina. J. Fungi 2021, 7, 170. [Google Scholar] [CrossRef] [PubMed]
  63. Córdoba, S.; Isla, G.; Szusz, W.; Vivot, W.; Hevia, A.; Davel, G.; Canteros, C.E. Molecular identification and susceptibility profile of Sporothrix schenckii sensu lato isolated in Argentina. Mycoses 2018, 61, 441–448. [Google Scholar] [CrossRef] [PubMed]
  64. Picollo, M.; Epelbaum, C.; Bustos, A.C.; Carnovale, S.; Rosanova, M.T. Lymphocutaneous sporotrichosis in a pediatric patient, a case report. Rev. Chil. Infectol. 2021, 38, 811–815. [Google Scholar] [CrossRef] [PubMed]
  65. Alzuguir, C.L.C.; Pereira, S.A.; Magalhães, M.A.F.M.; Almeida-Paes, R.; Freitas, D.F.S.; Oliveira, L.F.A.; Pimentel, M.I.F. Geo-epidemiology and socioeconomic aspects of human sporotrichosis in the municipality of Duque de Caxias, Rio de Janeiro, Brazil, between 2007 and 2016. Trans. R. Soc. Trop. Med. Hyg. 2020, 114, 99–106. [Google Scholar] [CrossRef]
  66. Almeida-Paes, R.; de Oliveira, M.M.E.; Freitas, D.F.S.; do Valle, A.C.F.; Zancopé-Oliveira, R.M.; Gutierrez-Galhardo, M.C. Sporotrichosis in Rio de Janeiro, Brazil: Sporothrix brasiliensis Is Associated with Atypical Clinical Presentations. PLoS Negl. Trop. Dis. 2014, 8, e309. [Google Scholar] [CrossRef] [Green Version]
  67. Freitas, D.F.S.; do Valle, A.C.F.; da Silva, M.B.T.; Campos, D.P.; Lyra, M.R.; De Souza, R.V.; Veloso, V.G.; Zancopé-Oliveira, R.M.; Bastos, F.I.; Galhardo, M.C.G. Sporotrichosis: An Emerging Neglected Opportunistic Infection in HIV-Infected Patients in Rio de Janeiro, Brazil. PLoS Negl. Trop. Dis. 2014, 8, e3110. [Google Scholar] [CrossRef]
  68. Freitas, D.F.S.; de Siqueira Hoagland, B.; do Valle, A.C.F.; Fraga, B.B.; de Barros, M.B.; de Oliveira Schubach, A.; de Almeida-Paes, R.; Cuzzi, T.; Rosalino, C.M.V.; Zancopé-Oliveira, R.M.; et al. Sporotrichosis in HIV-infected patients: Report of 21 cases of endemic sporotrichosis in Rio de Janeiro, Brazil. Med. Mycol. 2012, 50, 170–178. [Google Scholar] [CrossRef] [Green Version]
  69. Arinelli, A.; Aleixo, A.L.Q.D.C.; Freitas, D.F.S.; Valle, A.C.F.D.; Almeida-Paes, R.; Gutierrez-Galhardo, M.C.; Curi, A.L.L. Ocular Sporotrichosis: 26 Cases with Bulbar Involvement in a Hyperendemic Area of Zoonotic Transmission. Ocul. Immunol. Inflamm. 2020, 28, 764–771. [Google Scholar] [CrossRef]
  70. Pereira, M.A.; Freitas, R.J.; Nascimento, S.B.; Pantaleão, L.; Vilar, E.G. Sporotrichosis: A Clinicopathologic Study of 89 Consecutive Cases, Literature Review, and New Insights About Their Differential Diagnosis. Am. J. Dermatopathol. 2020, 42, 751–755. [Google Scholar] [CrossRef]
  71. Rocha, I.D.C.B.; Della Terra, P.P.; de Oliveira, R.C.; Zanotti, R.L.; Falqueto, A.; de Camargo, Z.P.; Rodrigues, A.M.; Goncalves, S.S. Molecular-based assessment of diversity and population structure of Sporothrix spp. clinical isolates from Espírito Santo-Brazil. Mycoses 2021, 64, 420–427. [Google Scholar] [CrossRef] [PubMed]
  72. Caus, A.L.O.; Zanotti, R.L.; Faccini-Martínez, Á.A.; Paterlini, G.V.; Falqueto, A. Epidemiological and clinical aspects of sporotrichosis in Espírito Santo State, southeast Brazil: A study of three decades (1982–2012). Am. J. Trop. Med. Hyg. 2019, 100, 706–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  73. Poester, V.R.; Mattei, A.S.; Madrid, I.M.; Pereira, J.T.B.; Klafke, G.B.; Sanchotene, K.O.; Brandolt, T.M.; Xavier, M.O. Sporotrichosis in Southern Brazil, towards an epidemic? Zoonoses Public Health 2018, 65, 815–821. [Google Scholar] [CrossRef] [PubMed]
  74. Benvegnú, A.M.; Dallazzem, L.N.D.; Chemello, R.M.L.; Beber, A.A.C.; Chemello, D. Case series of sporotrichosis at a teaching hospital in Brazil. Rev. Soc. Bras. Med. Trop. 2020, 53, e20190509. [Google Scholar] [CrossRef] [PubMed]
  75. Grisolia, J.C.; Santos, L.A.; Coelho, L.M.L.; Silva, R.R.; de Camargo, Z.P.; Velloso, T.R.G.; Coelho, L.F.; Chavasco, J.K.; Malaquias, L.C.C. Seroepidemiological survey on sporotrichosis-infection in rural areas of the south of Minas Gerais State, Brazil. Braz. J. Microbiol. 2021, 52, 41–47. [Google Scholar] [CrossRef]
  76. Filho, J.E.; dos Santos, I.B.; Reis, C.M.S.; Patané, J.S.L.; Paredes, V.; Bernardes, J.P.R.A.; Poggiani, S.D.S.C.; Castro, T.D.C.B.; Gomez, O.M.; Pereira, S.A.; et al. A novel Sporothrix brasiliensis genomic variant in Midwestern Brazil: Evidence for an older and wider sporotrichosis epidemic. Emerg. Microbes Infect. 2020, 9, 2515–2525. [Google Scholar] [CrossRef]
  77. Marques, G.F.; Martins, A.L.G.P.; Sousa, J.M.P.; Brandão, L.S.G.; Wachholz, P.A.; Masuda, P.Y. Characterization of sporotrichosis cases treated in a dermatologic teaching unit in the State of São Paulo-Brazil, 2003–2013. Bras. Dermatol. 2015, 90, 273–275. [Google Scholar] [CrossRef] [Green Version]
  78. Veasey, J.; Neto, M.; Ruiz, L.; Zaitz, C. Clinical and laboratory profile of urban sporotrichosis in a tertiary hospital in the city of São Paulo. Bras. Dermatol. 2021, 96, 243–245. [Google Scholar] [CrossRef]
  79. Ferreira, L.C.; Barroso, P.F.; Tonomura, E.; Akiti, T.; Rodrigues, K.M. Osteomyelitis caused by Sporothrix schenckii in an immunocompetent patient. Rev. Soc. Bras. Med. Trop. 2016, 49, 527–529. [Google Scholar] [CrossRef] [Green Version]
  80. Matos, A.M.F.; Moreira, L.M.; Barczewski, B.F.; De Matos, L.X.; De Oliveira, J.B.V.; Pimentel, M.I.F.; Almeida-Paes, R.; Oliveira, M.G.; Pinto, T.C.A.; Lima, N.; et al. Identification by MALDI-TOF MS of Sporothrix brasiliensis Isolated from a Subconjunctival Infiltrative Lesion in an Immunocompetent Patient. Microorganisms 2020, 8, 22. [Google Scholar] [CrossRef] [Green Version]
  81. do Monte Alves, M.; Pipolo Milan, E.; da Silva-Rocha, W.P.; Soares de Sena da Costa, A.; Araújo Maciel, B.; Cavalcante Vale, P.H.; de Albuquerque, P.R.; Lopes Lima, S.; Salles de Azevedo Melo, A.; Messias Rodrigues, A.; et al. Fatal pulmonary sporotrichosis caused by Sporothrix brasiliensis in Northeast Brazil. PLoS Negl. Trop. Dis. 2020, 14, e0008141. [Google Scholar] [CrossRef] [PubMed]
  82. Xavier, J.R.B.; Waller, S.B.; Osório, L.D.G.; Vives, P.S.; Albano, A.P.N.; de Aguiar, E.S.V.; Ferreira, M.R.A.; da Conceição, F.R.; de Faria, R.O.; Meireles, M.C.A.; et al. Human sporotrichosis outbreak caused by Sporothrix brasiliensis in a veterinary hospital in Southern Brazil. J. Mycol. Med. 2021, 31, 101163. [Google Scholar] [CrossRef] [PubMed]
  83. de Sá Menezes Carvalho, G.; Verrinder Veasey, J. Immunoreactive cutaneous sporotrichosis. Bras. Dermatol. 2020, 95, 737–739. [Google Scholar] [CrossRef] [PubMed]
  84. Lacerda Filho, A.M.; Cavalcante, C.M.; Da Silva, A.B.; Inácio, C.P.; de Lima-Neto, R.G.; De Andrade, M.C.L.; Magalhães, O.M.C.; Dos Santos, F.D.A.G.; Neves, R.P. High-Virulence Cat-Transmitted Ocular Sporotrichosis. Mycopathologia 2019, 184, 547–549. [Google Scholar] [CrossRef] [PubMed]
  85. de Moura Barros, N.; de Souza Pessoa, A.; Martins Brotas, A. Systemic sporotrichosis in an alcoholic patient. Bras. Dermatol. 2020, 95, 376–378. [Google Scholar] [CrossRef]
  86. Lemes, L.R.; Veasey, J.V.; Soutto-Mayor, S.; Contin-Proenca, C. Ocular involvement in sporotrichosis: Report of two cases in children. Bras. Derm. 2021, 96, 349–351. [Google Scholar] [CrossRef]
  87. Henckens, N.F.T.; Rovers, J.F.J.; van Dommelen, L.; Bovenschen, H.J. Can cats cause colossal contagious cutaneous carbuncles? Derm. Online J. 2021, 27. [Google Scholar] [CrossRef]
  88. Lora Barraza, L.; Bissoli Tolomelli, J.; Graça Cunha, C.; Bernardes Filho, F.; Towersey, L.; Hay, R.; Casz Schechtman, R.; da Costa Nery, J.A. Facial Cutaneous Sporotrichosis in a Boy. J. Emerg. Med. 2019, 56, 222–223. [Google Scholar] [CrossRef]
  89. de Freitas Valente, M.; Bertazzoli Diogo, A.; Culau Merlo, V.F.; Pereira Pegas, J.R. Disseminated cutaneous sporotrichosis: Unusual presentation in an alcoholic patient. Rev. Inst. Med. Trop. São Paulo 2020, 62, e60. [Google Scholar] [CrossRef]
  90. Crestani, L.; de Castro e Souza, B.; Kakizaki, P.; Sakai-Valente, N.Y. Therapeutic failure with itraconazole in sporotrichosis due to bariatric surgery. Bras. Derm. 2020, 95, 241–243. [Google Scholar] [CrossRef]
  91. Arantes-Ferreira, G.S.; Watanabe, A.L.C.; Trevizoli, N.C.; Jorge, F.M.F.; Cajá, G.O.N.; Diaz, L.G.G.; Meireles, L.P.; Araújo, M.C.C.L. Disseminated Sporotrichosis in a Liver Transplant Patient: A Case Report. Transpl. Proc. 2019, 51, 1621–1624. [Google Scholar] [CrossRef] [PubMed]
  92. Fichman, V.; Valle, A.C.F.D.; de Macedo, P.M.; Freitas, D.F.S.; Oliveira, M.M.E.; Almeida-Paes, R.; Gutierrez-Galhardo, M.C. Cryosurgery for the treatment of cutaneous sporotrichosis in four pregnant women. PLoS Negl. Trop. Dis. 2018, 12, e0006434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  93. Biancardi, A.L.; Freitas, D.F.; Vitor, R.D.; Andrade, H.B.; de Oliveira, M.M.; do Valle, A.C.; Zancope-Oliveira, R.M.; Galhardo, M.C.; Curi, A.L. Multifocal choroiditis in disseminated sporotrichosis in patients with HIV/AIDS. Retin. Cases Brief Rep. 2017, 11, 67–70. [Google Scholar] [CrossRef] [PubMed]
  94. Fischman-Gompertz, O.; Rodrigues, A.M.; Fernandes, G.F.; Bentubo, H.D.L.; Pires de Camargo, Z.; Petri, V. Atypical Clinical Presentation of Sporotrichosis Caused by Sporothrix globosa Resistant to Itraconazole. Am. J. Trop. Med. Hyg. 2016, 94, 1218–1222. [Google Scholar] [CrossRef]
  95. Aparecida-Grazziotin, N.; Gonçalves, I.L.; Todeschini, D.; Grazziotin-Vedana, L.; Canello-Todeschini, C.M.; Grazziotin, C. Squamous cell carcinoma subsequent to scarring caused by sporotrichosis: A case report. Rev. Iberoam. Micol. 2019, 36, 83–85. [Google Scholar] [CrossRef]
  96. Ribeiro, B.N.; Ribeiro, R.N.; Penna, C.R.; Frota, A.C. Bone involvement by Sporothrix schenckii in an immunocompetent child. Pediatr. Radiol. 2015, 45, 1427–3140. [Google Scholar] [CrossRef]
  97. Freitas, D.F.; Santos, S.S.; Almeida-Paes, R.; de Oliveira, M.M.; do Valle, A.C.; Gutierrez-Galhardo, M.C.; Zancopé-Oliveira, R.M.; Nosanchuk, J.D. Increase in virulence of Sporothrix brasiliensis over five years in a patient with chronic disseminated sporotrichosis. Virulence 2015, 6, 112–120. [Google Scholar] [CrossRef] [Green Version]
  98. Nassif, P.W.; Granado, I.R.; Ferraz, J.S.; Souza, R.; Nassif, A.E. Atypical presentation of cutaneous sporotrichosis in an alcoholic patient. Dermatol. Online J. 2012, 18, 12. [Google Scholar]
  99. Falqueto, A.; Bravim-Maifrede, S.; Araujo-Ribeiro, M. Unusual clinical presentation of sporotrichosis in three members of one family. Intern. J. Dermatol. 2012, 51, 434–438. [Google Scholar] [CrossRef]
  100. Marques-de-Macedo, P.; Sztajnbok, D.C.N.; Camargo, Z.P.; Rodrigues, A.M.; Lopes-Bezerra, L.M.; Bernardes-Engemann, A.R.; Orofino-Costa, R. Dacryocystitis due to Sporothrix brasiliensis: A case report of a successful clinical and serological outcome with low-dose potassium iodide treatment and oculoplastic surgery. Br. J. Dermatol. 2015, 172, 1116–1119. [Google Scholar] [CrossRef]
  101. Fichman, V.; Saraiva-Freitas, D.F.; Marques-de-Macedo, P.; Francesconi-do-Valle, A.C.; Almeida-Silva, F.; Zancopé-Oliveira, R.M.; Almeida-Paes, R.; Gutierrez-Galhardo, M.C. Sporotrichosis After Tattooing Caused by Sporothrix. Bras. Mycopathol. 2022, 187, 137–139. [Google Scholar] [CrossRef] [PubMed]
  102. Nepomuceno Araújo, M.J.C.L.; Nihei, C.H.; Rodrigues, A.M.; Higashino, H.; Ponzio, V.; Campos Pignatari, A.C.; Barcellos, M.A.; Braga, O.; Duayer, I.F. Case Report: Invasive Sinusitis due to Sporothrix Brasiliensis in a Renal Transplant Recipient. Am. J. Trop. Med. Hyg. 2021, 105, 1218–1221. [Google Scholar] [CrossRef]
  103. Lima, M.A.; Vallier, R.; Silva, M.M. Sporothrix brasiliensis meningitis in an immunocompetent patient. Pract. Neurol. 2021, 21, 241–242. [Google Scholar] [CrossRef]
  104. Veasey, J.V.; Carvalho, G.S.M.; Ruiz, L.R.B.; Neves-Neto, M.F.; Zaitz, C. Epidemiological and geographical distribution profile of urban sporotrichosis in the city of São Paulo. Bras. Derm. 2022, 97, 228–230. [Google Scholar] [CrossRef]
  105. Antonio, L.D.F.; Pimentel, M.I.F.; Lyra, M.R.; Madeira, M.D.F.; Miranda, L.D.F.C.; Paes, R.A.; Brito-Santos, F.; Carvalho, M.H.G.F.; Schubach, A.D.O. Sporothrix schenckii Sensu Lato identification in fragments of skin lesion cultured in NNN medium for differential diagnosis of cutaneous leishmaniasis. Diagn. Microbiol. Infect. Dis. 2017, 87, 118–120. [Google Scholar] [CrossRef] [PubMed]
  106. Rodrigues, A.M.; de Hoog, S.; de Camargo, Z.P. Emergence of pathogenicity in the Sporothrix schenckii complex. Med Mycol. 2013, 51, 405–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  107. Alvarado, Z.; Pereira, C. Fungal diseases in children and adolescents in a referral centre in Bogota, Colombia. Mycoses 2018, 61, 543–548. [Google Scholar] [CrossRef]
  108. Macías, P.; Ordóñez, J.; Arenas, C.M.; Rodríguez, G. An eighteen-year-old man with tropical verrucous syndrome: Leishmaniasis vs, sporotrichosis. Biomedica 2021, 41, 240–246. [Google Scholar] [CrossRef]
  109. Arenas-Soto, C.M.; Téllez-Kling, A.M.; Alvarado-Álvarez, Z.L. A Lesion on the Ear Resulting From Infection Acquired in the Tropics. Actas Dermosifiliogr. 2016, 107, 599–600. [Google Scholar] [CrossRef]
  110. Niklitschek, S.; Porras, N.; González, S.; Romero, W. Sporotrichosis. Med. Clin. 2015, 145, 418. [Google Scholar] [CrossRef]
  111. Cruz, R.; Vieille, P.; Oschilewski, D. Sporothrix globosa isolation related to a case of lymphocutaneous sporotrichosis. Rev. Chil. Infectol. 2012, 4, 401–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  112. Cruz-Choappa, R.M.; Vieille-Oyarzo, P.I.; Carvajal-Silva, L.C. Aislamiento de Sporothrix pallida complex en muestras clínicas y ambientales de Chile. Rev. Argent Microbiol. 2014, 46, 311–314. [Google Scholar] [CrossRef] [Green Version]
  113. García Duarte, J.M.; Wattiez Acosta, V.R.; Fornerón Viera, P.M.L.; Aldama Caballero, A.; Gorostiaga Matiauda1, G.A.; Rivelli de Oddone, V.B.; Pereira Brunelli, J.G. Sporotrichosis transmitted by domestic cat. A family case report. Rev. Del. Nacional. 2017, 9, 67–76. [Google Scholar] [CrossRef]
  114. Aguilar Fernández, G.; Araújo López, V. Mycosis and nocardiosis implantation: Sporotrichosis, Chromoblastomycosis, Mycetomas and Nocardiosis. Casuistics in the Central Laboratory of Public Health, Paraguay, period 1997–2019. Rev. Nac. 2020, 12, 1–13. [Google Scholar] [CrossRef]
  115. Ramirez-Soto, M.; Lizarraga-Trujillo, J. Granulomatous sporotrichosis: Report of two unusual cases. Rev. Chil. Infectol. 2013, 5, 548–553. [Google Scholar]
  116. Ramírez-Soto, M.C. Sporotrichosis in the Ocular Adnexa: 21 Cases in an Endemic Area in Peru and Review of the Literature. Am. J. Ophthalmol. 2016, 162, 173–179.e3. [Google Scholar] [CrossRef]
  117. Ramírez-Soto, M.C.; Malaga, G. Subcutaneous mycoses in Peru: A systematic review and meta-analysis for the burden of disease. Int. J. Dermatol. 2017, 56, 1037–1045. [Google Scholar] [CrossRef]
  118. Ramírez-Soto, M.C.; Andagua-Castro, J.; Lizárraga-Trujillo, J. Palpebral sporotrichosis in a 6-year-old child. Int. J. Dermatol. 2016, 55, e625–e626. [Google Scholar] [CrossRef]
  119. Wolff, D.; Feldt, T.; Reifenberger, J.; Sebald, H.; Bogdana, C. The brief case: Cutaneous sporotrichosis in an immunocompetent patient after travel to Peru. J. Clin. Microbiol. 2018, 56, e01958-17. [Google Scholar] [CrossRef] [Green Version]
  120. Rueda, M.; Torres, N.; Bravo, F. Disseminated cutaneous sporotrichosis: An unusual case. Derm. Online J. 2018, 24. [Google Scholar] [CrossRef]
  121. Oyarce, J.A.; García, C.; Alave, J.; Bustamante, B. Epidemiological clinical and laboratory characterization of sporotrichosis in patients of a tertiary care hospital in Lima, Peru, from 1991 to 2014. Rev. Chil. Infectol. 2016, 3, 315–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  122. Schwalb, A.; Carcamo, P.M.; Seas, C. Lymphocutaneous Sporotrichosis. Am. J. Trop. Med. Hyg. 2022, 106, 758–759. [Google Scholar] [CrossRef] [PubMed]
  123. Solorzano, S.; Ramirez, R.; Cabada, M.M.; Montoya, M.; Cazorla, E. Disseminated cutaneous sporotrichosis with joint involvement in a woman with type 2 diabetes. Rev. Peru Med. Exp. Salud Publica 2015, 32, 187–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  124. Cabeza, E.; Arrillaga, A.; Dalcín, L.; Carbia, M.; Arteta, Z.; Perera, P. Clinical and Epidemiological Characteristics of Sporotrichosis in Reference Center of Uruguay. J. Fungi 2022, 8, 322. [Google Scholar] [CrossRef] [PubMed]
  125. Barreto, L.; Velásquez, G.; Mendoza, M.; Camacho, E.; Goncalves, E.; Rodríguez, S.; Niño-Vega, G.A. Geographical distribution and ecological niche modeling of the etiological agents of human sporotrichosis in Venezuela. Braz. J. Microbiol. 2021, 52, 63–71. [Google Scholar] [CrossRef]
  126. Mata-Essayag, S.; Delgado, A.; Colella, M.T.; Landaeta-Nezer, M.E.; Rosello, A.; de Salazar, C.P.; Olaizola, C.; Hartung, C.; Magaldi, S.; Velasquez, E. Epidemiology of sporotrichosis in Venezuela. Int. J. Dermatol. 2013, 52, 974–980. [Google Scholar] [CrossRef]
  127. Martínez-Méndez, D.; Hernández-Valles, R.; Alvarado, P.; Mendoza, M. Mycoses In Venezuela: Working Groups in Mycology Reported Cases (1984–2010). Rev. Iberoam. Micol. 2013, 30, 39–46. [Google Scholar]
  128. Camacho, E.; León-Navarro, I.; Rodríguez-Brito, S.; Mendoza, M.; Niño-Vega, G.A. Molecular epidemiology of human sporotrichosis in Venezuela reveals high frequency of Sporothrix globose. BMC Infect Dis. 2015, 15, 94. [Google Scholar] [CrossRef]
  129. Orofino-Costa, R.; Marques-de-Macedo, P.; Messias-Rodrigues, A.; Bernardes-Engemann, A.R. Sporotrichosis: An update on epidemiology, etiopathogenesis, laboratory and clinical therapeutics. Bras. Dermatol. 2017, 92, 606–620. [Google Scholar] [CrossRef]
  130. Rimma, Z.; Hernández Hernández, F. Sporotrichosis: The most frequent subcutaneous mycosis in Mexico. Rev. Fac. Med. 2019, 62, 48–55. [Google Scholar]
  131. Chakrabarti, A.; Bonifaz, A.; Gutierrez-Galhardo, M.C.; Mochizuki, T.; Li, S. Global epidemiology of sporotrichosis. Med. Mycol. 2015, 53, 3–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  132. de Beer, Z.W.; Duong, T.A.; Wingfield, M.J. The divorce of Sporothrix and Ophiostoma: Solution to a problematic relationship. Stud. Mycol. 2016, 83, 165–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  133. Toriello, C.; Brunner-Mendoza, C.; Ruiz-Baca, E.; Duarte-Escalante, E.; Pérez-Mejía, A.; Reyes-Montes, M.R. Sporotrichosis in Mexico. Braz. J. Microbiol. 2021, 52, 49–62. [Google Scholar] [CrossRef] [PubMed]
Figure 1. Sporothrix spp. culture and erythromycin staining 40×.
Figure 1. Sporothrix spp. culture and erythromycin staining 40×.
Jof 08 00588 g001
Figure 2. Flowchart of the different phases of the systematic review.
Figure 2. Flowchart of the different phases of the systematic review.
Jof 08 00588 g002
Table 1. Epidemiology of Sporotrichosis in North America.
Table 1. Epidemiology of Sporotrichosis in North America.
RegionCountryCityNumber of Reported CasesVulnerable PopulationDiagnostic MethodType of SporotrichosisEtiological Agents
(%)
References
SexAge (Years)Taxonomy
Before 2017After 2017
North AmericaCanadaOntario1Male44PCR sequencing (ITS region)Disseminated S. schenckiiS. schenckii[5]
Toronto1Male78Fungal culture,
Biopsy (Histopathology)
Lymphocutaneous S. schenckii complexSporothrix spp.[6]
USACalifornia1Female7Fungal culture
Biopsy (Histopathology)
LymphocutaneousS. schenckiiSporothrix spp.[7]
Minnesota1Male61Fungal cultureDisseminatedS. schenckiiSporothrix spp.[8]
ND1Female87Fungal cultureLymphocutaneous on the eyelidS. schenckiiSporothrix spp.[9]
Pennsylvania1Male67Fungal culture
Biopsy (Histopathology)
LymphocutaneousS. schenckiiSporothrix spp.[10]
Texas1Male34Fungal culture
Biopsy (Histopathology)
DisseminatedSporothrix spp.Sporothrix spp.[11]
Texas1Male9Fungal culture
Biopsy (Histopathology)
Lymphocutaneous on the eyelidS. schenckiiSporothrix spp.[12]
California1Female41 Fungal cultureLymphocutaneousS. schenckiiSporothrix spp.[13]
Oregon1Male53Fungal cultureDisseminatedSporothrix spp.Sporothrix spp.[14]
Oklahoma1Male66Latex agglutination test DisseminatedS. schenckiiSporothrix spp.[15]
Florida1Male33 month-OldFungal culture
Biopsy (Histopathology)
Atypical lymphadenitisS. schenckiiSporothrix spp.[16]
Minnesota1Male49Fungal culturePulmonary sporotrichosisSporothrix spp.Sporothrix spp.[17]
Arizona1Male56Fungal cultureLymphocutaneous and disseminated (10 months later)S. schenckiiSporothrix spp.[18]
California1Male39Fungal culture Sporothrical arthritisS. schenckiiSporothrix spp.[19]
California1Male89Fungal culture
Biopsy (Histopathology)
DisseminatedS. schenckiiSporothrix spp.[20]
Michigan1Female57Fungal culture
Biopsy (Histopathology)
LymphocutaneousS. schenckiiSporothrix spp.[21]
California1Male34Latex agglutination test Chronic meningitisS. schenckiiSporothrix spp.[22]
Kansas1Male33Fungal culture
MALDI-TOF
Sporothrical arthritisS. schenckiiSporothrix schenckii[23]
Oklahoma1Male44Fungal culture
Biopsy (Histopathology)
Pulmonary sporotrichosisS. schenckii sensu latoSporothrix spp.[24]
California1Male41Fungal cultureSporothrical arthritisS. schenckiiSporothrix spp.[25]
California1Female35Fungal cultureDisseminatedS. schenckiiSporothrix spp.[26]
Nebraska1Male62Fungal culture
Biopsy (Histopathology)
DisseminatedS. schenckiiSporothrix spp.[27]
Boston1Female35MALDI-TOF Fixed cutaneousS. schenckiiS. schenckii[28]
Kansas1Male30Fungal culture
Biopsy (Histopathology)
DisseminatedS. schenckiiSporothrix spp.[29]
Florida1Male76History and physical examinationLymphocutaneousSporothrix spp.Sporothrix spp.[30]
Oklahoma1Male23Fungal cultureLymphocutaneousS. schenckii complexSporothrix spp.[31]
Washington1Female44Fungal culture
PCR sequencing (ITS 1–2)
DisseminatedS. schenckiiS. schenckii[32]
Arizona1Female72PCR DNA sequencingLaryngotracheal granulomatous diseaseS. schenckiiS. schenckii[33]
MexicoVeracruz1Male39Fungal culture
Biopsy (Histopathology)
AtypicalS. schenckiiSporothrix spp.[34]
Puebla1Male36Fungal culture
Biopsy (Histopathology)
DisseminatedS. schenckiiSporothrix spp.[35]
Oaxaca1Male13Fungal cultureLymphocutaneous on the left hand, forearm, and upper armSporothrix spp.Sporothrix spp.[36]
Mexico City1Male54Fungal culture
Biopsy (Histopathology)
Disseminated (Testicular involvement)S. schenckiiSporothrix spp.[37]
Guerrero1Female36Fungal culture
Biopsy (Histopathology)
Disseminated Sporothrix spp.Sporothrix spp.[38]
Durango1Male68Fungal culture
Biopsy (Histopathology)
Disseminated Sporothrix spp.Sporothrix spp.[39]
ND24Male
(16)
Female
(8)
Average: 35.5PCR sequencing (calmodulin gene)Cutaneous disseminated
16 (66.7%)
Cutaneous disseminated + Mucosal
3 (12.5%)
Joint
1 (4.1%)
Visceral
1 (4.1%)
Fungaemia
1 (4.1%)
Mucosal + Visceral + Fungemia:
1 (4.1%)
Visceral + Fungaemia
1 (4.1%)
S. schenckii
23 (95.5%).
S. globosa
1 (4.5%)
S. schenckii
23 (95.5%).
S. globosa
1 (4.5%)
[40]
ND55Male
(34)
ND
Female
(18)
Sporotrichin Skin Test
Fungal culture
Lymphocutaneous 32 (58.2%)
Fixed cutaneous
19 (34.5%)
Disseminated
4 (7.3%)
S. schenckii
54 (98%)
S. globosa
1 (2%)
S. schenckii
54 (98%)
S. globosa
1 (2%)
[41]
Guerrero73Male
(33)
Female
(40)
Average: 25.8Fungal culture
Biopsy (Histopathology)
Lymphocutaneous: 41 (56.16%)
Fixed cutaneous
24 (32.87%)
Disseminated
8 (10.95%)
S. schenckiiS. schenckii[42]
Chihuahua1Female84Multiplex PCR (Calmodulin gene)Fixed cutaneous (Auricular sporotrichosis)S. schenckii (sensu stricto)S. schenckii[43]
Baja California1Male23Fungal culture
Biopsy (Histopathology)
LymphocutaneousS. schenckiiSporothrix spp.[44]
San Luis Potosi 8
Puebla 3
Mexico City 2
Queretaro 2
Guanajuato 2
Jalisco 1
Zacatecas 1
Michoacan 1
Morelos 1
State of Mexico 1
22ND PCR sequencing (Calmodulin and calcium-calmodulin-dependent kinase genes)Lymphocutaneous: 17 (77.3%)
Fixed cutaneous
4 (18.2%)
Disseminated
1 (4.5%)
S. schenckii:
18 (81.8%)
S. globosa
4 (18.2%)
S. schenckii:
18 (81.8%)
S. globosa
4 (18.2%)
[45]
Puebla 4
Nuevo Leon 2
Oaxaca 6
Mexico City 3
Jalisco 2
17ND PCR sequencing (Calmodulin gene)Lymphocutaneous: 16 (94.11%)
Disseminated: 1 (5.88%)
S. schenckii:
16 (94.11%)
S. globosa
1 (5.88%)
S. schenckii:
16 (94.11%)
S. globosa
1 (5.88%)
[46]
Guerrero76Male (35)
Female
(41)
<18: 37
>18: 39
Fungal culture
Biopsy (Histopathology)
Lymphocutaneous 43 (56.8%)
Fixed cutaneous
24 (32.3%)
Disseminated
8 (11%)
Sporothrix spp.Sporothrix spp.[47]
Jalisco 1057
Nayarit 23
Zacatecas 20
Michoacan 19
Guanajuato 12
Veracruz 1
Chihuahua 1
1134Male
(669)
Female
(465)
NDLymphocutaneous: 782 (69%)
Fixed cutaneous:
308 (27.2%)
Disseminated
44 (38.8%)
S. schenckii complexSporothrix spp.[48]
ND1Male45PCR sequencing (Calmodulin gene)DisseminatedS. schenckii complexS. schenckii[49]
ND1Male56Fungal Culture
Biopsy (Histopathology)
PCR sequencing (ITS and calmodulin gene)
Fixed cutaneous sporotrichosis
S. mexicanaS. mexicana[50]
ND18Male
(10)
Female
(8)
NDPCR sequencing (ITS regions)Lymphocutaneous 13 (72.2%)
Fixed cutaneous
5 (27.8%)
S. schenckii
17 (94.4%)
S. globosa: 1 (5.6%)
S. schenckii
17 (94.4%)
S. globosa: 1 (5.6%)
[51]
Oaxaca2Male 61Multiplex PCR (Calmodulin gene)Fixed cutaneous
1 (50%)
Disseminated
1 (50%)
S. schenckii sensu strictoS. schenckii[52]
Male21
ND: Not Determined.
Table 2. Epidemiology of Sporotrichosis in Central America and the Caribbean.
Table 2. Epidemiology of Sporotrichosis in Central America and the Caribbean.
RegionCountryCityNumber of Reported CasesVulnerable PopulationDiagnostic MethodType of SporotrichosisEtiological Agents
(%)
References
SexAge (Years)Taxonomy
Before 2017After 2017
Central AmericaCosta RicaSan José57
(1994–2015)
No data Direct microscopy, culture, PCR (enzymatic restriction and sequencing of the calmodulin gen) NDS. schenckii sensu stricto
53 (93%)
S. brasiliensis
2 (3.5%)
Sporothrix spp.
2 (3.5%)
S. schenckii
53 (93%)
S. brasiliensis
2 (3.5%)
Sporothrix spp.
2 (3.5%)
[53]
GuatemalaGuatemala City11Male 7
Female 4
Average 49 yearsFungal culture,
Histopathology
Fixed cutaneous
9 (81.8%)
Lymphocutaneous
2 (18.2%)
Sporothrix spp. (100%)Sporothrix spp. (100%)[54]
Guatemala City53
(2007–2016)
Male 33
Female 20
Average 44.1 yearsFungal culture,
microscope with Lactophenol
cotton blue
Lymphocutaneous 33 (62.2%)
Fixed cutaneous
17 (32.1%)
Disseminated
2 (3.8%)
Chancre
1 (1.9%)
Sporothrix schenckii complex.
(100%)
Sporothrix spp.
(100%)
[55]
Guatemala City1ND Fungal culture, PCR sequencing (ITS 1- 2 and β
-tubulin)
NDSporothrix schenckii sensu strictoSporothrix schenckii[56]
HondurasTegucigalpa1Male 114 years
Fungal cultureLymphocutaneous
1 (100%)
S. schenckiiSporothrix spp.[57]
PanamáChorrera District1Male 134 yearsClinical,
Direct Microscopy, Fungal culture.
Lymphocutaneous
1 (100%)
NDSporothrix spp.[58]
CaribbeanCubaPinar del Río1Female 157 yearsHistopathology
Fungal culture
LymphocutaneousSporothrix schenckii sensu lato
(100%)
Sporothrix spp.
(100%)
[59]
Cumanayagüa1Male67Histopathology,
Fungal culture,
Microscopy with lactophenol cotton blue
LymphocutaneousSporothrix schenckii
sensu lato
(100%)
Sporothrix spp.
(100%)
[60]
ND: Not Determined.
Table 3. Epidemiology of Sporotrichosis in South America.
Table 3. Epidemiology of Sporotrichosis in South America.
RegionCountryCityNumber of Reported CasesVulnerable PopulationDiagnostic MethodType of SporotrichosisEtiological Agents
(%)
References
Sex (Number of Cases)Age (Years)Taxonomy
Before 2017After 2017
South AmericaArgentinaProvincia de Chaco1Female65Bronchoalveolar lavage (BAL),
Giemsa stain
Fungal culture
PCR sequencing (ITS 1–2)
PulmonaryS. schenckiiS. schenckii[61]
Buenos Aires16Male (4)
Female
(10)
ND
(7)
Average 32.5 Fungal culture and PCR sequencing (Calmodulin gene)Lymphocutaneous
33 (42.9%)
Fixed cutaneous
17 (19.0%)
ND (38.1%)
S. brasiliensisS. brasiliensis[62]
Misiones1Fungal culture and PCR sequencing (Calmodulin gene)
El Calafate4Fungal culture, PCR sequencing (Calmodulin gene) and histopathology
Buenos Aires15ND Fungal culture (agar potato dextrose and brain heart infusion agar)
PCR sequencing (Calmodulin gene)
NDS. schenckii sensu stricto
9 (56.5%)
S. brasiliensis
5 (34.7%)
S. globosa
1 (8.7%)
S. schenckii
9 (56.5%)
S. brasiliensis
5 (34.7%)
S. globosa
1 (8.7%)
[63]
Buenos Aires1Female5Direct microscopy, Fungal culture (Sabouraud agar), HistopalologyLymphocutaneousS. schenckii complexSporothrix spp.[64]
BrazilRio de Janeiro
(Duque de Caxias)
827 from 2007–2016Female (541)
Male (286)
42Fungal cultureNDSporothrix spp.Sporothrix spp.[65]
Rio de Janeiro ND Teresópolis ND1563
(1999–2008 = 50 (3.20%))
Male
(16)
Female
(34)
Average 47Direct microscopy, Fungal culture, PCR sequencing (calmodulin gene)Lymphocutaneous
24 (48%)
Fixed cutaneous
15 (30%)
Disseminated cutaneous
6 (12%)
disseminated (involving internal tissues)
5 (10%)
S. brasiliensis 45 45 (90%)
S. schenckii sensu stricto 5 (10%)
S. brasiliensis 45 (90%)
S. schenckii 5 (10%)
[66]
Rio de JaneiroGroup 1
48 (1.33%)
Group 2
3570 (98.67%)
1987–2013
Group 1 HIV patients
Male
33
Female
15
Group 2 Immunocompetent patients
Male
(1102)
Female
(2468)
Average: 38.4
Averag: 46.3
Direct microscopy, Fungal culture.NDSporothrix spp.Sporothrix spp. [67]
Rio de Janeiro21/1750 cases in HIV patients (1.2%) from 1999–2009Male
(16)
Female
(5)
Average: 41.2Direct microscopy, Fungal culture, HistopathologyLymphocutaneous
7 (33.3%)
Disseminated
7 (33.3%)
widespread cutaneous
5 (23.8%)
fixed cutaneous
2 (9.5%)
S. schenckii sensu latoSporothrix spp.[68]
Rio de Janeiro 16
Duque de Caxias 6
São João de Meriti 2
São Gonçalo 1 Maricá 1
26 from 2007–2017Female
(19)
Male
(7)
Average: 25
Direct microscopic, Fungal culturePrimary ocular
21 (80.8%)
Associated cutaneous disease (3 lymphocutaneous, 1 the fixed cutaneous and 1 the disseminated
5 (19.2%)
Sporothrix spp.Sporothrix spp.[69]
Rio de Janeiro86 from 2009–2017Male
(26)
Female
(60)
Average: 36.3
Average: 46
Fungal culture
Histopathology
NDSporothrix spp.Sporothrix spp.[70]
Espíritu Santo73 from 2016–2019Male
Female
NDFungal culture, Microscopy with lactophenol cotton blue,
PCR sequencing (Calmodulin gene and Mating type (MAT) gene)
NDS. brasiliensis 55 (76%)
S. schenckii sensu stricto
18 (24%)
S. brasiliensis 55 (76%)
S. schenckii
18 (24%)
[71]
Espíritu Santo 171 cases from 1982–2012Male
(138)
Female
(33)
Average: 33.42Fungal culture NDSporothrix spp.Sporothrix spp.[72]
Rio Grande do Sul83 from 2010–2016ND Fungal cultureNDSporothrix spp.Sporothrix spp.[73]
Rio Grande do Sul43 from 2006–2015Male
(31)
Female
(7)
Average: 43Fungal cultureLymphocutaneous
22 (51%)
Fixed cutaneous
14 (32.5%)
Disseminated cutaneous
1 (2.5%)
ND
6 (14%)
Sporothrix spp.Sporothrix spp.[74]
Minas Gerais282Male
(153)
Female
(129)
Average: 42.52Fungal culture,
Sporotrichin test, Histophatology, Production of S. schenckii antigens, Enzyme-linked immunosorbent assay
NDS. schenckiiSporothrix spp.[75]
Brasilia91 from 1993–2018 Male
(64)
Female
(27)
NDDirect microscopy, Fungal culture, PCR sequencing (Calmodulin gene)Lymphocutaneous
34 (37.36%)
Cutaneous fixed
6 (6.59%)
Disseminated
5 (5.49%)
ND
46 (50.55%)
S. globosa (ND)
S. schenckii
(ND)
S. globosa (ND)
S. schenckii
(ND)
[76]
São Paulo25 from 2003–2013. Male
(18)
Female
(7)
Average: 42.48Fungal culture
Histopathology
Lymphocutaneous
20 (80%)
Fixed cutaneous
5 (20%)
S. schencki sensu latoSporothrix spp.[77]
São Paulo20 from 2012–2020Male
(9)
Female
(11)
Average: 2.2Direct microscopy, Fungal culture, HistopathologyLymphocutaneous
10 (50%)
Multiple-inoculation
5 (25%)
Fixed-cutaneous
3 (15%)
Ocular-mucosal
2 (10%)
Sporothrix spp.Sporothrix spp.[78]
Rio de Janeiro1Male 35Direct microscopy, fungal cultureOsteomyelitisS. schenckii complexSporothrix spp.[79]
Rio de Janeiro1Female68Direct microscopy (KOH), fungal culture (Sabouraud Dextrose Agar 2%, and Mycosel Agar, Brain Heart Infusion Agar, Potato Dextrose Agar), Lactophenol Cotton Blue and MALDI-TOF MSOcularS. brasiliensisS. brasiliensis[80]
Rio Grande do Norte1Male50Direct microscopy (KOH), fungal culture (Mycosel Agar), PCR sequencing >(Calmodulin gene)Pulmonary S. brasiliensisS. brasiliensis[81]
Pelotas7ND Gram-stain microscopy, fungal culture (Sabouraud-dextrose agar added with chloramphenicol and Mycosel), PCR sequencing (ITS1 and ITS4 and Calmodulin gene)Lymphocutaneous
4 (57.1%)
Ocular
3 (42.9%)
S. brasiliensisS. brasiliensis[82]
São Paulo1Female12Histopatology (Grocott stainin), fungal culture. Immunoreactive cutaneousSporothrix spp.Sporothrix spp.[83]
Recife1Male25Histopatology (hematoxylin–eosin straining), fungal culture (Sabouraud dextrose agar with chloramphenicol), PCR sequencing (using the species-specific primers Sbra-F and Sbra-R and Calmodulin gene)Ocular S. brasilienisS. brasilienis[84]
Rio de Janeiro1Male44Fungal cultureDisseminatedSporothrix spp.Sporothrix spp.[85]
São Paulo2Male3 and 12Fungal cultureOcular Sporothrix spp.Sporothrix spp.[86]
ND1Female45Histopathology,
Fungal culture (Sabouraud dextrose agar), PCR sequencing (Whole genome sequencing)
Cutaneos carbuncleS. brasiliensisS. brasiliensis[87]
Rio de Janeiro1Male11Fungal culture (Sabouraud’s dextrose agar), Culture microscopy with Lactofenol blue Facial CutaneousSporothrix spp.Sporothrix spp.[88]
Guarulhos, Sao Paulo1Male56Fungal culture, Histopathology (Peryodic Acid Schiff staining), Disseminated Sporothrix spp.Sporothrix spp.[89]
São Paulo1Female 39Fungal culture (Sabouraud agar)LymphocutaneousSporothrix spp.Sporothrix spp.[90]
Brasilia1Male26Fungal cultureDisseminated Sporothrix spp.Sporothrix spp.[91]
Rio de Janeiro4 from 2006–2016Female
Age ranged from 18–34
Average 25Fungal culture, PCR sequencing (Primer T3B fingerprintig assay)Fixed cutaneous
2 (50%)
Lymphocutaneous
2 (50%)
Sporothrix spp. 2 (50%)
S. brasiliensis 2 (50%)
Sporothrix spp. 2 (50%)
S. brasiliensis 2 (50%)
[92]
Rio de Janeiro3 from 2006 to 2013Male
Age ranged from 25–43
Average 32Fungal culture, PCR sequencing (primer T3B fingerprinting assay )Disseminated 3S. brasiliensisS. brasiliensis[93]
Rio de Janeiro1Male66Direct microscopy, fungal culture (Sabouraud dextrose agar, potato dextrose agar, corn meal agar and and brain heart infusion agar), Histopatology, PCR sequencing (Calmodulin gene)LymphocutaneousS. globosaS. globosa[94]
Palmeira das Missões1Male73Fungal cultureNDS. schenckii complexSporothrix spp.[95]
Rio de Janeiro1Male 5Fungal culture and HistopatologyOsteoarticular S. schenckiiSporothrix spp.[96]
Rio de Janeiro1Male61Fungal culture, PCR sequencing (primer T3B fingerprinting assay)DisseminatedS. brasiliensisS. brasiliensis[97]
ND1Male49Fungal cultureDisseminatedS. schenckiiSporothrix spp.[98]
Espírito Santo3Female30 and 10Direct microscopy (KOH), fungal culture (Sabouraud Dextrose agar and Mycosel agar®), assimilation of sugar testChancre
3
S. brasiliensisS. brasiliensis[99]
Male14
Rio de Janeiro1Female9PCR sequencing (calmodulina gene)DacryocystitisS. brasiliensisS. brasiliensis[100]
Rio de Janeiro2Female22 and 27Fungal culture, PCR sequencing (Calmodulina gene)Fixed CutaneousS. brasiliensisS. brasiliensis[101]
Rio de Janeiro1Male6Fungal culture, PCR sequencingInvasive SinusitisS. brasiliensisS. brasiliensis[102]
Rio de Janeiro1Male 56Fungal culture, PCR sequencing Meningitis, LymphocutaneousS. brasiliensisS. brasiliensis[103]
São Paulo20 from 2012–2020Male
9 (45%)
Age ranged from
2–81
mean 32.2 ± 25.10
Fungal cultureNDSporothrix spp.Sporothrix spp.[104]
Females
11 (55%)
Rio de Janeiro64 from 2013–2015ND Fungal culture (Sabouraud Dextrosa Agar, Mycosel )Lymphocutaneous 43 (67%)
Fixed cutaneous 21 (33%)
S. schenckii
sensu lato
Sporothrix spp.[105]
Minas Gerais 1
Ceará 1
Goiás 1
Pernambuco2
São Paulo 1
6ND Fungal culture (Potato Dextrose agar, Corn Meal agar), Carbohydrate assimilation tests, PCR sequiencing (calmodulin gene)Lymphocutaneous 2 (33.3%) Disseminated 1 (16.7%)
ND 3 (50%)
Sporothrix mexicana 3 (50%) Sporothrix globosa 3 (50%)Sporothrix mexicana 3 (50%) Sporothrix globosa 3 (50%)[106]
ColombiaAntioquia34ND Fungal culture, PCR sequencing (ITS 1–2 and β-tubulin)NDS. schenckii sensu stricto
22 (65.7%)
S. globosa
12 (34.2%)
S. schenckii
22 (65.7%)
S. globosa
12 (34.3%)
[56]
Bogotá2.28%
(14 cases/612 patients)
Male
ND
Female
ND
Between: 0–18Fungal cultureNDSporothrix spp.Sporothrix spp.[107]
Casanare1Male18Fungal culture, Histopathology VerrucoseSporothrix spp.Sporothrix spp.[108]
Marandúa1Female48Fungal culture,
Histopathology
Fixed cutaneousS. schenckii sensu latoSporothrix spp.[109]
ChileSantiago1Male54HistopathologyLymphocutaneous Sporothrix spp.Sporothrix spp.[110]
Valparaíso1Female75 Fungal culture
Direct microscopy, Sugar assimilation (sucrose)
Lymphocutaneous Sporothrix globosaSporothrix globosa[111]
Viña del Mar1Female64Direct microscopy, Fungal culture (Sabouraud with cycloheximide and potato dextrose agar) nitrogen-based agar, sequencing (D1/D2 region of the fungal 26S rRNA gene, it region; a partial fragment of the β-tubulin gene; ITS 1 and 2; and the 5.8S gene (SU)).OnychomycosisSporothrix pallidaSporothrix pallida[112]
ParaguayItá2Male
Male
52Histopathology (Peryodic Acid Schiff),
Fungal culture, direct microscopy with Giensa strein
Lymphocutaneous
1 (50%)
Fixed cutaneous
1 (50%)
Sporothrix spp.Sporothrix spp.[113]
Cordillera 2
Guairá, Central 2
Misiones 2
San Pedro 2
Caaguazú 1
11 from
1997–2019.
Male
10
Female
1
Mean Age: 37,6 ± 20
Range: 24–69
Direct microscopy (KOH 10%), fungal culture (Sabouraud agar with glucose 2%, potato dextrose agar with chloramphenicol), Lymphocutaneous
11 (100%)
Sporothrix schenckii complexSporothrix spp.[114]
PerúApurímac2Female65Direct microscopy,
Giemsa stain
Culture
Microscopy with lactophenol cotton blue,
Carbohydrate assimilation test (sucrose and raffinose) in nitrogen base
Fixed cutaneousS. schenckiiS. schenckii[115]
Female67
Apurímac21Male
(12)
Female
(9)
Average: 9Fungal cultureLymphocutaneous
13 (62%)
Fixed cutaneous
8 (38%)
Sporothrix spp.Sporothrix spp.[116]
Apurímac
2850
57
(15/100,000)

Male
1734
Female
1255
NDFungal culture,
Microscopy with lactophenol cotton blue and PCR sequencing
Lymphocutaneous
2942 (63%)
Fixed cutaneous
1728 (37%)
S. schenckii
4651 (99.6%)
S. schenckii sensu stricto
19 (0.4%)
Sporothrix spp. 4651 (99.6%)
S. schenckii
19 (0.4%)
[117]
Cajamarca
1500
30
(3/100,000)
La Libertad
100
4
(0.5/100,000)
Cusco
200
2
(0.2/100,000)
Otras regiones
20
≤1 (0.1/100,000)
Abancay1Male6Fungal cultureLymphocutaneousSporothrix spp.Sporothrix spp.[118]
Lima1Male23Fungal Culture
Microscopy with lactophenol blue,
MALDI-TOF MS,
PCR sequencing (D1/D2 region of the fungal 26S rRNA gene)
Fixed cutaneousS. schenckiiS. schenckii[119]
Lima1Male42Histopathology, Microscopy,
Fungal Culture
Disseminated cutaneousS. schenkii sensu latoSporothrix spp.[120]
Cajamarca94 from 1991 to 2014Males
(67)
Female
(27)
Average: 36Direct microscopy, Gram and Giemsa stain,
Fungal culture,
Histopathology
Lymphocutaneous
44 (47%)
Fixed cutaneous
37 (39%)
Disseminated cutaneous
11 (12%)
Extra-cutaneous
1 (1%)
ND
1 (1%)
S. schenckiiSporothrix spp.[121]
Apurímac
Amazonas
Ancash1Male 58Fungal cultureLymphocutaneous S. schenckiiSporothrix spp.[122]
Cusco1Female53Fungal culture (Sabouraud)Disseminated S. schenckiiSporothrix spp.[123]
UruguayTacuarembó 10
Cerro Largo 9
Canelones 9
Montevideo 5
Rocha 4
Paysandú 3
Flores 3
Río Negro 2
Colonia 2
Artigas 1
Rivera 1
Maldonado 1
Soriano 1
Non-registered 20
157 from 1983 to 2020Male (152)13–79 age rangeGram staining and culture in SabouraudNodular
Lymphatic
120 (76.4%)
Fixed
cutaneous
30 (19.1%)
ND
7 (4.5%)
Sporothrix spp.Sporothrix spp.[124]
Female (5)
VenezuelaCaracas68ND Fungal culture, PCR sequencing (Calmodulin locus and ITS regions)NDS. schenckii
42 (62%)
S. globosa
26 (38%)
S. schenckii
42 (62%)
S. globosa
26 (38%)
[125]
Aragua 55 Miranda 32
Other states 46
133 from
1963–2019
Male
(95)
Female
(38)
0–15
15–30
>30
Direct microscopy
Fungal culture
Lymphocutaneous 84 (63.15%) Fixed cutaneous 48 (36.09%) Cornea 1 (0.7%)S. schenckii sensu lato
130 (97.7%)
ND
3 (2.3%)
Sporothrix spp.[126]
Bolívar 140.55%
(220 cases/39,806 patients)
ND25–45 yearsMicroscopy and fungal culture NDSporothrix spp.Sporothrix spp.[127]
Caracas 160
Carabobo 6
Falcón 3
Lara 5
Mérida 1
Monagas 24
Sucre 1
Táchira 2
Zulia 4
Costal Range 2231 from 1973–2013Male 64%
Female 36%
Microscopy, fungal culture, pruebas bioquímicas, PCR sequencing (Calmodulin gene and ITS 4–5)Fixed cutaneous
18 (60%)
Lymphocutaneous
11 (36.33%)
Disseminated
1 (3.33)%
S. schenckii sensu stricto 17
S. globosa 13 and Ophiostoma stenoceras 1
S. schenckii 17 (56.67%)
S. globosa 13 (43.33%)
[128]
Andes 7
Plains 2
ND: Not Determined.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Hernández-Castro, R.; Pinto-Almazán, R.; Arenas, R.; Sánchez-Cárdenas, C.D.; Espinosa-Hernández, V.M.; Sierra-Maeda, K.Y.; Conde-Cuevas, E.; Juárez-Durán, E.R.; Xicohtencatl-Cortes, J.; Carrillo-Casas, E.M.; et al. Epidemiology of Clinical Sporotrichosis in the Americas in the Last Ten Years. J. Fungi 2022, 8, 588. https://doi.org/10.3390/jof8060588

AMA Style

Hernández-Castro R, Pinto-Almazán R, Arenas R, Sánchez-Cárdenas CD, Espinosa-Hernández VM, Sierra-Maeda KY, Conde-Cuevas E, Juárez-Durán ER, Xicohtencatl-Cortes J, Carrillo-Casas EM, et al. Epidemiology of Clinical Sporotrichosis in the Americas in the Last Ten Years. Journal of Fungi. 2022; 8(6):588. https://doi.org/10.3390/jof8060588

Chicago/Turabian Style

Hernández-Castro, Rigoberto, Rodolfo Pinto-Almazán, Roberto Arenas, Carlos Daniel Sánchez-Cárdenas, Víctor Manuel Espinosa-Hernández, Karla Yaeko Sierra-Maeda, Esther Conde-Cuevas, Eder R. Juárez-Durán, Juan Xicohtencatl-Cortes, Erika Margarita Carrillo-Casas, and et al. 2022. "Epidemiology of Clinical Sporotrichosis in the Americas in the Last Ten Years" Journal of Fungi 8, no. 6: 588. https://doi.org/10.3390/jof8060588

APA Style

Hernández-Castro, R., Pinto-Almazán, R., Arenas, R., Sánchez-Cárdenas, C. D., Espinosa-Hernández, V. M., Sierra-Maeda, K. Y., Conde-Cuevas, E., Juárez-Durán, E. R., Xicohtencatl-Cortes, J., Carrillo-Casas, E. M., Steven-Velásquez, J., Martínez-Herrera, E., & Rodríguez-Cerdeira, C. (2022). Epidemiology of Clinical Sporotrichosis in the Americas in the Last Ten Years. Journal of Fungi, 8(6), 588. https://doi.org/10.3390/jof8060588

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop