Comparative Research on Metabolites of Different Species of Epichloë Endophytes and Their Host Achnatherum sibiricum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seed Source
2.2. Isolation of Epichloë Endophytes
2.3. Plant Materials
2.4. Extraction and Derivatization of Metabolites
2.5. Metabolite Analysis by GC–MS
2.6. Statistical Analysis
3. Results
3.1. Metabolites of Epichloë Endophytes
3.2. Metabolites of A. sibiricum
3.3. Correlation of Metabolites in Epichloë Endophytes and the Host A. sibiricum
4. Discussion
4.1. Effect of Epichloë Endophyte Infection on Metabolites of Host A. sibiricum
4.2. Correlation of Metabolites between Epichloë Endophytes and the Host A. sibiricum
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carroll, G. Fungal endophytes in stems and leaves: From latent pathogen to mutualistic symbiont. Ecology 1988, 69, 2–9. [Google Scholar] [CrossRef]
- Clay, K. Clavicipitaceous endophyte of grasses: Their potential as biocontrol agents. Mycol. Res. 1989, 92, 1–12. [Google Scholar] [CrossRef]
- Gundel, P.E.; Martinrz-Ghersa, M.A.; Omacini, M.; Cuyeu, R.; Pagano, E.; Ríos, R.; Ghersa, C.M. Mutualism effectiveness and vertical transmission of symbiotic fungal endophyte in response to host genetic background. Evol. Appl. 2012, 5, 839–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karimi, S.; Mirlohi, A.; Sabzalian, M.R.; Tabatabaei, B.E.S.; Sharifnabi, B. Molecular evidence for Neotyphodium fungal endophyte variation and specificity with host grass species. Mycologia 2012, 104, 1281–1290. [Google Scholar] [CrossRef] [PubMed]
- Leuchtmann, A. Systematics, distribution, and host specificity of grass endophytes. Nat. Toxins 1993, 1, 150–162. [Google Scholar] [CrossRef]
- Vázquez-de-Aldana, B.R.; García-Ciudad, A.; García-Criado, B.; Vicente-Tavera, S.; Zabalgogeazcoa, I. Fungal endophyte (Epichloë festucae) alters the nutrient content of Festuca rubra regardless of water availability. PLoS ONE 2013, 8, e84539. [Google Scholar] [CrossRef]
- Vila-Aiub, M.M.; Gundel, P.E.; Ghersa, C.M. Fungal endophyte infection changes growth attributes in Lolium multiflorum Lam. Austral Ecol. 2005, 30, 49–57. [Google Scholar] [CrossRef]
- Liu, H.; Chen, W.; Zhou, Y.; Li, X.; Ren, A.Z.; Gao, Y.B. Effects of endophyte and arbuscular mycorrhizal fungi on growth of Leymus chinensis. Chin. J. Plant Ecol. 2015, 39, 477–485. [Google Scholar]
- Ravel, C.; Coury, C.; Coudret, A.; Charmet, G. Beneficial effects of Neotyphodium lolii on the growth and water status in perennial ryegrass cultivated under nitrogen deficiency or drought stress. Agronomies 1997, 17, 173–181. [Google Scholar] [CrossRef]
- Soleimani, M.; Hajabbasi, M.A.; Afyuni, M.; Mirlohi, A.; Borggaard, O.K.; Holm, P.E. Effect of endophytic fungi on cadmium tolerance and bioaccumulation by Festuca arundinacea and Festuca pratensis. Int. J. Phytoremediat. 2010, 12, 535–549. [Google Scholar] [CrossRef]
- Nagabhyru, P.; Dinkins, R.D.; Wood, C.L.; Bacon, C.W.; Schardl, C.L. Tall fescue endophyte effects on tolerance to water-deficit stress. BMC Plant Biol. 2013, 13, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Li, X.; Han, L.; Li, D.; Song, G. Epichloë endophyte infection improved drought and heat tolerance of tall fescue through altered antioxidant enzyme activity. Eur. J. Hortic. Sci. 2017, 82, 90–97. [Google Scholar] [CrossRef]
- Chen, T.X.; Johnson, R.; Chen, S.H.; Lv, H.; Zhou, J.L.; Li, C.J. Infection by the fungal endophyte Epichloë bromicola enhances the tolerance of wild barley (Hordeum brevisubulatum) to salt and alkali stresses. Plant Soil 2018, 428, 353–370. [Google Scholar] [CrossRef]
- Siegel, M.R.; Latch, G.C.; Bush, L.P.; Fannin, F.F.; Rowan, D.D.; Tapper, B.A.; Bacon, C.W.; Johnson, M.C. Fungal endophyte-infected grasses: Alkaloid accumulation and aphid response. J. Chem. Ecol. 1990, 16, 3301–3315. [Google Scholar] [CrossRef] [PubMed]
- Tian, P.; Nan, Z.B.; Li, C.J.; Spangenberg, G. Effect of the endophyte Neotyphodium lolii on susceptibility and host physiological response of perennial ryegrass to fungal pathogens. Eur. J. Plant Pathol. 2008, 122, 593–602. [Google Scholar] [CrossRef]
- Zhang, X.X. Physiological Effects of Rhopalosiphum padi on Achnatherum inebrians Keng Infected by Endophyte. Master’s Thesis, Lanzhou University, Lanzhou, China, 2008. [Google Scholar]
- Wang, X.Y.; Zhou, Y.; Ren, A.Z.; Gao, Y.B. Effect of endophyte infection on fungal disease resistance of Leymus chinensis. Acta Ecol. Sin. 2014, 34, 6789–6796. [Google Scholar]
- Clay, K.; Holah, J. Fungal endophyte symbiosis and plant diversity in successional fields. Science 1999, 285, 1742–1744. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Gao, Y.; Liu, H.; Gao, Y.B.; Heijden, M.G.A.V.D.; Ren, A.Z. Plant endophytes and arbuscular mycorrhizal fungi alter plant competition. Funct. Ecol. 2018, 32, 1168–1179. [Google Scholar] [CrossRef]
- Prestidge, R.A.; Gallagher, R.T. Lolitrem B—A stem weevil toxin isolated from Acremonium-infected ryegrass. Proc. N. Z. Weed Pest Control Conf. 1985, 38, 38–40. [Google Scholar] [CrossRef] [Green Version]
- Leuchtmann, A.; Schmidt, D.; Bush, L.P. Different Levels of protective alkaloids in grasses with stroma-forming and seed-transmitted Epichloë/Neotyphodium endophytes. J. Chenical Ecol. 2000, 26, 1025–1036. [Google Scholar] [CrossRef]
- Schardl, C.L.; Grossman, R.B.; Nagabhyru, P.; Faulkner, J.R.; Mallik, U.P. Loline alkaloids: Currencies of mutualism. Phytochemistry 2007, 68, 980–996. [Google Scholar] [CrossRef] [PubMed]
- Potter, D.A.; Stokes, J.T.; Redmond, C.T.; Schardl, C.L.; Panaccione, D.G. Contribution of ergot alkaloids to suppression of a grass-feeding caterpillar assessed with gene knockout endophytes in perennial ryegrass. Entomol. Exp. Appl. 2008, 126, 138–147. [Google Scholar] [CrossRef]
- Shymanovich, T.; Saari, S.; Lovin, M.E.; Jarmusch, A.K.; Jarmusch, S.A.; Musso, A.M.; Charlton, N.D.; Young, C.A.; Cech, N.B.; Faeth, S.H. Alkaloid variation among Epichloid endophytes of sleepygrass (Achnatherum robustum) and consequences for resistance to insect herbivores. J. Chem. Ecol. 2015, 41, 93–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finch, S.C.; Vlaming, J.B.; Sutherland, B.L.; Koten, C.V.; Mace, W.J.; Fletcher, L.R. Ergovaline does not alter the severity of ryegrass staggers induced by lolitrem B. N. Z. Vet. J. 2018, 66, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Soto-Barajas, M.C.; Vázquez-De-Aldana, B.R.; Álvarez, A.; Zabalgogeazcoa, I. Sympatric Epichloë species and chemotypic profiles in natural populations of Lolium perenne. Fungal Ecol. 2019, 39, 231–241. [Google Scholar] [CrossRef]
- Chen, L.; Li, X.Z.; Li, C.J.; Swoboda, G.A.; Schardl, C.L. Two distinct Epichloë species symbiotic with Achnatherum inebrians, drunken horse grass. Mycologia 2015, 107, 863–873. [Google Scholar] [CrossRef] [Green Version]
- Koshino, H.; Togiya, S.; Terada, S.; Yoshihara, T.; Sakamura, S.; Shimanuki, T.; Sato, T.; Tajimi, A. New fungitoxic sesquiterpenoids, Chokols A-G, from stromata of Epichloë typhina and the absolute configuration of chokol E. Biosci. Biotechnol. Biochem. 1989, 53, 789–796. [Google Scholar] [CrossRef]
- Koshino, H.; Yoshihara, T.; Okuno, M.; Sakamura, S.; Tajimi, A.; Shimanuki, T. Gamahonolides A, B, and Gamahorin, novel antifungal compounds from stromata of Epichloë typhina on Phleum pretense. Biosci. Biotechnol. Biochem. 1992, 56, 1096–1099. [Google Scholar] [CrossRef]
- Yue, Q.; Miller, C.J.; White, J.F.; Richardson, M.D. Isolation and characterization of fungal inhibitors from Epichloë festucae. J. Agric. Food Chem. 2000, 48, 4687–4692. [Google Scholar] [CrossRef]
- Seto, Y.; Takahashi, Y.; Matsuura, H.; Kogami, Y.; Yada, H. Novel cyclic peptide, epichlicin, from the endophytic fungus, Epichloë typhina. Biosci. Biotechnol. Biochem. 2007, 71, 1470–1475. [Google Scholar] [CrossRef] [Green Version]
- Song, Q.Y.; Nan, Z.B.; Gao, K.; Song, H.; Tian, P.; Zhang, X.X.; Li, C.J.; Xu, W.B.; Li, X.Z. Antifungal, phytotoxic, and cytotoxic activities of metabolites from Epichloë bromicola, a Fungus obtained from Elymus tangutorum grass. J. Agric. Food Chem. 2015, 63, 8787–8792. [Google Scholar] [CrossRef] [PubMed]
- Ren, A.; Gao, Y.; Li, X. Effect of fungal endophyte infection on some physiological characters of Lolium perenne under drought conditions. Chin. J. Appl. Environ. Biol. 2002, 8, 535–539. [Google Scholar]
- Wang, Z.; Li, C.; Jin, W.; Nan, Z. Effect of Neotyphodium Endophyte Infection on Salt Tolerance of Hordeum brevisubulatum (Trin.) Link. Acta Agrestia Sin. 2009, 17, 88–92. [Google Scholar]
- Hou, W.; Wang, J.; Christensen, M.J.; Liu, J.; Zhang, Y.; Liu, Y.; Cheng, C. Metabolomics insights into the mechanism by which Epichloë gansuensis endophyte increased Achnatherum inebrians tolerance to low nitrogen stress. Plant Soil 2021, 463, 487–508. [Google Scholar] [CrossRef]
- Pánka, D.; Piesik, D.; Jeske, M.; Baturo-Ciesniewska, A. Production of phenolics and the emission of volatile organic compounds by perennial ryegrass (Lolium perenne L.)/Neotyphodium lolii association as a response to infection by Fusarium poae. J. Plant Physiol. 2013, 170, 1010–1019. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.F. Neotyphodium lolii Endophyte Improves Drought Tolerance in Perennial Ryegrass (Lolium perenne. L) through Broadly Adjusting Its Metabolism. Ph.D. Thesis, Massey University, Manawatu, New Zealand, 2014. [Google Scholar]
- Wei, Y.K.; Gao, Y.B.; Xu, H.; Su, D.; Zhang, X.; Wang, Y.H.; Lin, F.; Chen, L.; Nie, L.Y.; Ren, A.Z. Occurrence of endophytes in grasses native to Northern China. Grass Forage Sci. 2006, 61, 422–429. [Google Scholar] [CrossRef]
- Jones, T.A.; Ralphs, M.H.; Gardner, D.R.; Chatterton, N.J. Cattle prefer endophyte-free robust needlegrass. J. Range Manag. 2000, 53, 427–431. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, H.; Li, C.; Nan, Z.; Li, F. Effects of feeding drunken horse grass infected with Epichloë gansuensis, endophyte on animal performance, clinical symptoms and physiological parameters in sheep. BMC Vet. Res. 2017, 13, 223. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.H.; Gao, Y.; Liu, H.; Zhou, Y.; Ren, A.Z.; Gao, Y.B. Effect of endophyte infection and clipping treatment on resistance and tolerance of Achnatherum sibiricum. Front. Microbiol. 2016, 7, 1988. [Google Scholar] [CrossRef] [Green Version]
- Ren, A.Z.; Li, X.; Han, R.; Yin, L.J.; Wei, M.Y.; Gao, Y.B. Benefits of a symbiotic association with endophytic fungi are subject to water and nutrient availability in Achnatherum sibiricum. Plant Soil 2011, 346, 363–374. [Google Scholar] [CrossRef]
- Shi, X.; Qin, T.; Liu, H.; Wu, M.; Li, J.; Shi, Y.; Gao, Y.; Ren, A. Endophytic fungi activated similar defense strategies of Achnatherum sibiricum host to different trophic types of pathogens. Front. Microbiol. 2020, 11, 1607. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ren, A.Z.; Wei, Y.K.; Li, C.; Liu, Z.J.; Gao, Y.B. Taxonomy, diversity and origins of symbiotic endophytes of Achnatherum sibiricum in the Inner Mongolia Steppe of China. FEMS Microbiol. Lett. 2009, 301, 12–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Han, R.; Ren, A.Z.; Gao, Y.B. Using high-temperature treatment to construct endophyte-free Achnatherum sibiricum. Microbiol. China 2010, 37, 1395–1400. [Google Scholar]
- Latch, G.C.; Christensen, M.J. Artificial infection of grasses with endophytes. Ann. Appl. Biol. 1985, 107, 17–24. [Google Scholar] [CrossRef]
- Lisec, J.; Schauer, N.; Kopka, J.; Willmitzer, L.; Fernie, A.R. Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat. Protoc. 2006, 1, 387–396. [Google Scholar] [CrossRef]
- Wang, C. Metabolic Research on the Interactions between Rice and Fungi Based on Derivation GC-MS Analysis. Master’s Thesis, Zhejiang University, Hangzhou, China, 2014. [Google Scholar]
- Dupont, P.Y.; Eaton, C.J.; Wargent, J.J.; Fechtner, S.; Solomon, P.; Schmid, J.; Day, R.C.; Scott, B.; Cox, M.P. Fungal endophyte infection of ryegrass reprograms host metabolism and alters development. New Phytol. 2015, 208, 1227–1240. [Google Scholar] [CrossRef]
- Pego, J.V.; Kortstee, A.J.; Huijser, C.; Smeekens, S.C.M. Photosynthesis, sugars and the regulation of gene expression. J. Exp. Bot. 2000, 51, 407–416. [Google Scholar] [CrossRef] [Green Version]
- Rolland, F.; Baena-Gonzalez, E.; Sheen, J. Sugar sensing and signaling in plants: Conserved and novel mechanisms. Annu. Rev. Plant Biol. 2006, 57, 675–709. [Google Scholar] [CrossRef] [Green Version]
- Couée, I.; Sulmon, C.; Gouesbet, G.; Amrani, A.E. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J. Exp. Bot. 2006, 57, 449–459. [Google Scholar] [CrossRef]
- Bolouri-Moghaddam, M.R.; Roy, K.L.; Xiang, L.; Rolland, F.; Ende, W.V.D. Sugar signalling and antioxidant network connections in plant cells. FEBS J. 2010, 277, 2022–2037. [Google Scholar] [CrossRef]
- Kano, A.; Fukumoto, T.; Ohtani, K.; Yoshihara, A.; Ohara, T.; Tajima, S.; Izumori, K.; Tanaka, K.; Ohkkouchi, T.; Ishida, Y.; et al. The rare sugar D-allose acts as a triggering molecule of rice defence via ROS generation. J. Exp. Bot. 2013, 64, 4939–4951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahima, H.A.; Abdellatif, Y.M.R. Effect of maltose and trehalose on growth, yield and some biochemical components of wheat plant under water stress. Ann. Agric. Sci. 2016, 61, 267–274. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.J.; Jiang, M.; Song, F.M. D-allose is a critical regulator of inducible plant immunity in tomato. Physiol. Mol. Plant Pathol. 2020, 111, 1–8. [Google Scholar] [CrossRef]
- Rasmussen, S.; Parsons, A.J.; Fraser, K.; Xue, H.; Newman, J.A. Metabolic profiles of Lolium perenne are differentially affected by nitrogen supply, carbohydrate content, and fungal endophyte infection. Plant Physiol. 2008, 146, 1440–1453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simmonds, M.S.J. Flavonoid–insect interactions: Recent advances in our knowledge. Phytochemistry 2003, 64, 21–30. [Google Scholar] [CrossRef]
- Maddox, C.E.; Laur, L.M.; Li, T. Antibacterial activity of phenolic compounds against the phytopathogen Xylella fastidiosa. Curr. Microbiol. 2010, 60, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Cheynier, V.; Comte, G.; Davies, K.M.; Lattanzio, V.; Martens, S. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol. Biochem. 2013, 72, 1–20. [Google Scholar] [CrossRef]
- Qawasmeh, A.; Obied, H.K.; Raman, A.; Wheatley, W. Influence of fungal endophyte infection on phenolic content and antioxidant activity in grasses: Interaction between Lolium perenne and different strains of Neotyphodium lolii. J. Agric. Food Chem. 2012, 60, 3381–3388. [Google Scholar] [CrossRef]
- Brigelius-Flohé, R.; Traber, M.G. Vitamin E: Function and metabolism. FASEB J. 1999, 13, 1145–1155. [Google Scholar] [CrossRef]
- Sun, C.Q.; O’Connor, C.J.; Roberton, A.M. Antibacterial actions of fatty acids and monoglycerides against Helicobacter pylori. FEMS Immunol. Med. Microbiol. 2003, 36, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Yara, A.; Yaeno, T.; Hasegawa, M.; Seto, H.; Montillet, J.; Kusumi, K.; Seo, S.; Iba, K. Disease resistance against Magnaporthe grisea is enhanced in transgenic rice with suppression of omega-3 fatty acid desaturases. Plant Cell Physiol. 2007, 48, 1263–1274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasternack, C. Jasmonates: An update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot. 2007, 100, 681–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meena, M.; Prasad, V.; Zehra, A.; Gupta, V.K.; Upadhyay, R.S. Mannitol metabolism during pathogenic fungal-host interactions under stressed conditions. Front. Microbiol. 2015, 6, 1019. [Google Scholar] [CrossRef] [Green Version]
- Patel, T.K.; Williamson, J.D. Mannitol in plants, fungi, and plant–fungal interactions. Trends Plant Sci. 2016, 21, 486–497. [Google Scholar] [CrossRef]
- Fernando, K.; Reddy, P.; Hettiarachchige, I.K.; Spangenberg, G.C.; Rochfort, S.J.; Guthridge, K.M. Novel antifungal activity of Lolium-associated Epichloë endophytes. Microorganisms 2020, 8, 955. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Y.; Gao, Y.; Li, C.; Zhang, J.; Fan, X.; Zhao, N.; Gao, Y.; Ren, A. Comparative Research on Metabolites of Different Species of Epichloë Endophytes and Their Host Achnatherum sibiricum. J. Fungi 2022, 8, 619. https://doi.org/10.3390/jof8060619
Deng Y, Gao Y, Li C, Zhang J, Fan X, Zhao N, Gao Y, Ren A. Comparative Research on Metabolites of Different Species of Epichloë Endophytes and Their Host Achnatherum sibiricum. Journal of Fungi. 2022; 8(6):619. https://doi.org/10.3390/jof8060619
Chicago/Turabian StyleDeng, Yongkang, Yuan Gao, Chenxi Li, Junzhen Zhang, Xiaowen Fan, Nianxi Zhao, Yubao Gao, and Anzhi Ren. 2022. "Comparative Research on Metabolites of Different Species of Epichloë Endophytes and Their Host Achnatherum sibiricum" Journal of Fungi 8, no. 6: 619. https://doi.org/10.3390/jof8060619
APA StyleDeng, Y., Gao, Y., Li, C., Zhang, J., Fan, X., Zhao, N., Gao, Y., & Ren, A. (2022). Comparative Research on Metabolites of Different Species of Epichloë Endophytes and Their Host Achnatherum sibiricum. Journal of Fungi, 8(6), 619. https://doi.org/10.3390/jof8060619