Development and Validation of an UHPLC-MS/MS Method for the Simultaneous Determination of 11 EU-Regulated Mycotoxins in Selected Cereals
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Method Development—UHPLC-MS/MS Optimization
3.2. Method Development—Sample Preparation
3.3. Method Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Perrone, G.; Ferrara, M.; Medina, A.; Pascale, M.; Magan, N. Toxigenic fungi and mycotoxins in a climate change scenario: Ecology, genomics, distribution, prediction and prevention of the risk. Microorganisms 2020, 8, 1496. [Google Scholar] [CrossRef] [PubMed]
- Kovač, M.; Bulaić, M.; Jakovljević, J.; Nevistić, A.; Rot, T.; Kovač, T.; Šarkanj, I.D.; Šarkanj, B. Mycotoxins, pesticide residues, and heavy metals analysis of croatian cereals. Microorganisms 2021, 9, 216. [Google Scholar] [CrossRef] [PubMed]
- Kovač, M.; Bulaić, M.; Nevistić, A.; Rot, T.; Babić, J.; Panjičko, M.; Kovač, T.; Šarkanj, B. Regulated Mycotoxin Occurrence and Co-Occurrence in Croatian Cereals. Toxins 2022, 14, 112. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, 364, 5–24. [Google Scholar]
- European Commission. Commission Recommendation of the 27 March 2013 on the presence of T-2 and HT-2 toxin in cereals and cereal products. Off. J. Eur. Union 2013, 91, 12–15. [Google Scholar]
- European Commission. Commission Recommendation of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding. Off. J. Eur. Union 2006, 229, 7–9. [Google Scholar]
- European Commission. Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on undesirable substances in animal feed. Off. J. Eur. Communities 2002, 31, 166–177. [Google Scholar]
- Sulyok, M.; Berthiller, F.; Krska, R.; Schuhmacher, R. Development and validation of a liquid chromatography/tandem mass spectrometric method for the determination of 39 mycotoxins in wheat and maize. Rapid Commun. Mass Spectrom. 2006, 20, 2649–2659. [Google Scholar] [CrossRef]
- Bennett, J.W.; Klich, M. Mycotoxins. Food Microbiol. Fundam. Front. 2003, 16, 497–516. [Google Scholar] [CrossRef] [Green Version]
- Gruber-Dorninger, C.; Novak, B.; Nagl, V.; Berthiller, F. Emerging Mycotoxins: Beyond Traditionally Determined Food Contaminants. J. Agric. Food Chem. 2017, 65, 7052–7070. [Google Scholar] [CrossRef]
- Kovalsky, P.; Kos, G.; Nährer, K.; Schwab, C.; Jenkins, T.; Schatzmayr, G.; Sulyok, M.; Krska, R. Co-Occurrence of Regulated, Masked and Emerging Mycotoxins and Secondary Metabolites in Finished Feed and Maize—An Extensive Survey. Toxins 2016, 8, 363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.H.; Hong, S.Y.; Kang, J.W.; Cho, S.M.; Lee, K.R.; An, T.K.; Lee, C.; Chung, S.H. Simultaneous determination of multi-mycotoxins in cereal grains collected from South Korea by LC/MS/MS. Toxins 2017, 9, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malachová, A.; Stránská, M.; Václavíková, M.; Elliott, C.T.; Black, C.; Meneely, J.; Hajšlová, J.; Ezekiel, C.N.; Schuhmacher, R.; Krska, R. Advanced LC–MS-based methods to study the co-occurrence and metabolization of multiple mycotoxins in cereals and cereal-based food. Anal. Bioanal. Chem. 2018, 410, 801–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulyok, M.; Krska, R.; Schuhmacher, R. A liquid chromatography/tandem mass spectrometric multi-mycotoxin method for the quantification of 87 analytes and its application to semi-quantitative screening of moldy food samples. Anal. Bioanal. Chem. 2007, 389, 1505–1523. [Google Scholar] [CrossRef] [PubMed]
- Varga, E.; Glauner, T.; Berthiller, F.; Krska, R.; Schuhmacher, R.; Sulyok, M. Development and validation of a (semi-)quantitative UHPLC-MS/MS method for the determination of 191 mycotoxins and other fungal metabolites in almonds, hazelnuts, peanuts and pistachios. Anal. Bioanal. Chem. 2013, 405, 5087–5104. [Google Scholar] [CrossRef] [Green Version]
- Malachová, A.; Sulyok, M.; Beltrán, E.; Berthiller, F.; Krska, R. Optimization and validation of a quantitative liquid chromatography–tandem mass spectrometric method covering 295 bacterial and fungal metabolites including all regulated mycotoxins in four model food matrices. J. Chromatogr. A 2014, 1362, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Sulyok, M.; Stadler, D.; Steiner, D.; Krska, R. Validation of an LC-MS/MS-based dilute-and-shoot approach for the quantification of >500 mycotoxins and other secondary metabolites in food crops: Challenges and solutions. Anal. Bioanal. Chem. 2020, 412, 2607–2620. [Google Scholar] [CrossRef] [Green Version]
- Berthiller, F.; Cramer, B.; Iha, M.H.; Krska, R.; Lattanzio, V.M.T.; MacDonald, S.; Malone, R.J.; Maragos, C.; Solfrizzo, M.; Stranska-Zachariasova, M.; et al. Developments in mycotoxin analysis: An update for 2016–2017. World Mycotoxin J. 2018, 11, 5–31. [Google Scholar] [CrossRef] [Green Version]
- Habler, K.; Gotthardt, M.; Schüler, J.; Rychlik, M. Multi-mycotoxin stable isotope dilution LC–MS/MS method for Fusarium toxins in beer. Food Chem. 2017, 218, 447–454. [Google Scholar] [CrossRef] [Green Version]
- Šarkanj, B.; Ezekiel, C.N.; Turner, P.C.; Abia, W.A.; Rychlik, M.; Krska, R.; Sulyok, M.; Warth, B. Ultra-sensitive, stable isotope assisted quantification of multiple urinary mycotoxin exposure biomarkers. Anal. Chim. Acta 2018, 1019, 84–92. [Google Scholar] [CrossRef]
- Sun, D.; Qiu, N.; Zhou, S.; Lyu, B.; Zhang, S.; Li, J.; Zhao, Y.; Wu, Y. Development of sensitive and reliable UPLC-MS/MS methods for food analysis of emerging mycotoxins in China total diet study. Toxins 2019, 11, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rämö, S.; Haapalainen, M.; Latvala, S. Development and Validation of a UHPLC-MS/MS Method for the Analysis of Fusarium mycotoxins in Onion. Food Anal. Methods 2021, 14, 1524–1536. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) No 401/2006 laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs. Off. J. Eur. Union 2006, 24, 1–42. [Google Scholar]
- European Commission. Commission Decision of 14 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Off. J. Eur. Communities 2002, 221, 8–36. [Google Scholar]
- Frenich, A.G.; Vidal, J.L.M.; Romero-González, R.; del Mar Aguilera-Luiz, M. Simple and high-throughput method for the multimycotoxin analysis in cereals and related foods by ultra-high performance liquid chromatography/tandem mass spectrometry. Food Chem. 2009, 117, 705–712. [Google Scholar] [CrossRef]
- Tittlemier, S.A.; Brunkhorst, J.; Cramer, B.; DeRosa, M.C.; Lattanzio, V.M.T.; Malone, R.; Maragos, C.; Stranska, M.; Sumarah, M.W. Developments in mycotoxin analysis: An update for 2019–2020. World Mycotoxin J. 2021, 14, 3–26. [Google Scholar] [CrossRef]
- Gosetti, F.; Mazzucco, E.; Zampieri, D.; Gennaro, M.C. Signal suppression/enhancement in high-performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2010, 1217, 3929–3937. [Google Scholar] [CrossRef]
- Arroyo-Manzanares, N.; De Ruyck, K.; Uka, V.; Gámiz-Gracia, L.; García-Campaña, A.M.; De Saeger, S.; Diana Di Mavungu, J. In-house validation of a rapid and efficient procedure for simultaneous determination of ergot alkaloids and other mycotoxins in wheat and maize. Anal. Bioanal. Chem. 2018, 410, 5567–5581. [Google Scholar] [CrossRef]
- Kafouris, D.; Christofidou, M.; Christodoulou, M.; Christou, E.; Ioannou-Kakouri, E. A validated UPLC-MS/MS multi-mycotoxin method for nuts and cereals: Results of the official control in Cyprus within the EU requirements. Food Agric. Immunol. 2017, 28, 90–108. [Google Scholar] [CrossRef]
- De Santis, B.; Debegnach, F.; Gregori, E.; Russo, S.; Marchegiani, F.; Moracci, G.; Brera, C. Development of a LC-MS/MS method for the multi-mycotoxin determination in composite cereal-based samples. Toxins 2017, 9, 169. [Google Scholar] [CrossRef] [Green Version]
- Juan, C.; Berrada, H.; Mañes, J.; Oueslati, S. Multi-mycotoxin determination in barley and derived products from Tunisia and estimation of their dietary intake. Food Chem. Toxicol. 2017, 103, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Lozowicka, B.; Iwaniuk, P.; Konecki, R.; Kaczynski, P.; Kuldybayev, N.; Dutbayev, Y. Impact of Diversified Chemical and Biostimulator Protection on Yield, Health Status, Mycotoxin Level, and Economic Profitability in Spring Wheat (Triticum aestivum L.). Cultivation 2022, 12, 258. [Google Scholar] [CrossRef]
- Carballo, D.; Font, G.; Ferrer, E.; Berrada, H. Evaluation of mycotoxin residues on ready-to-eat food by chromatographic methods coupled to mass spectrometry in tandem. Toxins 2018, 10, 243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Z.; Liu, N.; Yang, L.; Deng, Y.; Wang, J.; Song, S.; Lin, S.; Wu, A.; Zhou, Z.; Hou, J. Multi-mycotoxin analysis of animal feed and animal-derived food using LC–MS/MS system with timed and highly selective reaction monitoring. Anal. Bioanal. Chem. 2015, 407, 7359–7368. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.W.; Subrahmanyam, S.; Piletsky, S.A. Analytical methods for determination of mycotoxins: A review. Anal. Chim. Acta 2009, 632, 168–180. [Google Scholar] [CrossRef]
- Kovač, M.; Šubarić, D.; Bulaić, M.; Kovač, T.; Šarkanj, B. Yesterday masked, today modified; what do mycotoxins bring next? Arh. Hig. Rada Toksikol. 2018, 69, 196–214. [Google Scholar] [CrossRef] [Green Version]
- Dall’asta, C.; Mangia, M.; Berthiller, F.; Molinelli, A.; Sulyok, M.; Schuhmacher, R.; Krska, R.; Galaverna, G.; Dossena, A.; Marchelli, R. Difficulties in fumonisin determination: The issue of hidden fumonisins. Anal Bioanal. Chem. 2009, 395, 1335–1345. [Google Scholar] [CrossRef]
- Bittner, A.; Cramer, B.; Humpf, H.-U. Matrix Binding of Ochratoxin A during Roasting. J. Agric. Food Chem. 2013, 61, 12737–12743. [Google Scholar] [CrossRef]
- Tan, H.; Zhou, H.; Guo, T.; Zhang, Y.; Ma, L. Integrated multi-spectroscopic and molecular modeling techniques to study the formation mechanism of hidden zearalenone in maize. Food Chem. 2021, 351, 129286. [Google Scholar] [CrossRef]
1 | Time min | A% | B% | 2 | Time min | A% | B% | 3 | Time min | A% | B% | 4 | Time min | A% | B% |
0.0 | 98 | 2 | 0.0 | 95 | 5 | 0.0 | 95 | 5 | 0.0 | 75 * | 25 | ||||
1.5 | 98 | 2 | 6.0 | 50 | 50 | 6.0 | 50 | 50 | 3.0 | 25 | 75 | ||||
6.0 | 30 | 70 | 10.0 | 5 | 95 | 10.0 | 5 | 95 | 5.0 | 0 | 100 | ||||
6.1 | 10 | 90 | 11.5 | 5 | 95 | 15.0 | 5 | 95 | 6.5 | 0 | 100 | ||||
7.0 | 10 | 90 | 11.6 | 95 | 5 | 15.1 | 95 | 5 | 7.5 | 75 | 25 | ||||
7.1 | 98 | 2 | 14.0 | 95 | 5 | 18.0 | 95 | 5 | 8.5 | 75 | 25 | ||||
9.0 | 98 | 2 | |||||||||||||
0.5 mL/min | 0.3 mL/min | 0.3 mL/min | 0.35 mL/min |
Compound | Concentration Level µg/kg | Method Recovery (R) % | Precision Repeatability (RSDr) % |
---|---|---|---|
AFT (AFB1, AFB2, AFG1, AFG2) | <1 | 50–120 | 0.66 times Reproducibility (RSDR) derived from Horwitz equation at the concentration of interest |
1–10 | 70–110 | ||
>10 | 80–110 | ||
DON | >100 | 60–110 | ≤20 |
≥500 | 70–120 | ≤20 | |
FUM (FB1, FB2) | ≤500 | 60–120 | ≤30 |
>500 | 70–110 | ≤20 | |
ZEA | ≤50 | 60–120 | ≤40 |
>50 | 70–110 | ≤25 | |
T-2/HT-2 | 15–250 | 60–130 | ≤30 |
>250 | 60–130 | ≤25 | |
OTA | <1 | 50–120 | ≤40 |
≥1 | 70–110 | ≤20 |
Maize µg/kg | Wheat µg/kg | Barley µg/kg | |||||||
---|---|---|---|---|---|---|---|---|---|
Analyte | Level 1 | Level 2 | Level 3 | Level 1 | Level 2 | Level 3 | Level 1 | Level 2 | Level 3 |
AFB1 | 1.0 | 5.0 | 7.5 | 1.0 | 2.0 | 3.0 | 1.0 | 2.0 | 3.0 |
AFB2 | 0.5 | 1.25 | 1.875 | 0.5 | 0.75 | 1.5 | 0.5 | 0.75 | 1.5 |
AFG1 | 1.0 | 5.0 | 7.5 | 1.0 | 2.0 | 3.0 | 1.0 | 2.0 | 3.0 |
AFG2 | 0.5 | 1.25 | 1.875 | 0.5 | 0.75 | 1.5 | 0.5 | 0.75 | 1.5 |
DON | 200 | 1750 | 2625 | 200 | 1250 | 1875 | 200 | 1250 | 1875 |
FB1 | 150 | 2000 | 3000 | 150 | 1000 | 1500 | 150 | 1000 | 1500 |
FB2 | 150 | 2000 | 3000 | 150 | 1000 | 1500 | 150 | 1000 | 1500 |
ZEA | 30 | 350 | 525 | 30 | 100 | 150 | 30 | 100 | 150 |
T-2 | 10 | 100 | 150 | 10 | 100 | 150 | 10 | 100 | 150 |
HT-2 | 10 | 100 | 150 | 10 | 100 | 150 | 10 | 100 | 150 |
OTA | 1.0 | 5.0 | 7.5 | 1.0 | 5.0 | 7.5 | 1.0 | 5.0 | 7.5 |
Mycotoxin | Precursor Ion m/z | Cone Voltage V | Collision Energy V | Product Ions * m/z |
---|---|---|---|---|
AFB1 | 313.0 [M+H]+ | 60 | 38 | 241.0 |
23 | 285.0 | |||
AFB2 | 315.0 [M+H]+ | 60 | 30 | 259.0 |
25 | 287.0 | |||
AFG1 | 329.0 [M+H]+ | 60 | 28 | 243.0 |
24 | 311.0 | |||
AFG2 | 331.0 [M+H]+ | 60 | 24 | 313.0 |
28 | 245.0 | |||
DON | 297.0 [M+H]+ | 25 | 12 | 231.0 |
10 | 249.0 | |||
FB1 | 722.4 [M+H]+ | 50 | 40 | 334.3 |
40 | 352.3 | |||
FB2 | 706.4 [M+H]+ | 50 | 40 | 336.2 |
40 | 318.2 | |||
ZEA | 317.1 [M–H]− | −58 | 30 | 131.0 |
20 | 175.0 | |||
T-2 | 484.7 [M+NH4]+ | 25 | 20 | 185.0 |
25 | 215.0 | |||
HT-2 | 442.6 [M+NH4]+ | 25 | 10 | 263.4 |
15 | 215.3 | |||
OTA | 404.1 [M+H]+ | 30 | 24 | 239.0 |
14 | 358.0 |
Time min | Mobile Phase A% 5 mM AFNH4 in H2O | Mobile Phase B% MeOH |
---|---|---|
0.0 | 95 | 5 |
6.0 | 50 | 50 |
10.0 | 5 | 95 |
15.0 | 5 | 95 |
15.1 | 95 | 5 |
18.0 | 95 | 5 |
Analyte | Curve Type | Equation | Concentration Range [µg/kg] | Linearity R2 | LOD µg/kg | LOQ µg/kg |
---|---|---|---|---|---|---|
AFB1 | Solvent | y = 4233.3x − 151.78 | 1.0–16 | 0.9966 | 0.30 | 1.0 |
Wheat | y = 3255.2x − 33.549 | 0.9985 | ||||
Maize | y = 1243.3x − 19.301 | 0.9993 | ||||
Barley | y = 3405.3x − 97.552 | 0.9995 | ||||
AFB2 | Solvent | y = 3330.9x − 92.654 | 0.5–10 | 0.9995 | 0.15 | 0.5 |
Wheat | y = 2294.8x − 0.6601 | 0.9998 | ||||
Maize | y = 821.52x − 31.61 | 0.9995 | ||||
Barley | y = 2520.2x − 32.659 | 0.9998 | ||||
AFG1 | Solvent | y = 3933.1x − 31.126 | 1.0–16 | 0.9976 | 0.30 | 1.0 |
Wheat | y = 2902x + 27.304 | 0.9981 | ||||
Maize | y = 976.96x − 14.994 | 1.0000 | ||||
Barley | y = 1502.5x − 145.4 | 0.9989 | ||||
AFG2 | Solvent | y = 3330.9x − 92.654 | 0.5–10 | 0.9995 | 0.15 | 0.5 |
Wheat | y = 3502.6x − 9.2733 | 0.9997 | ||||
Maize | y = 1075.8 − 21.436 | 0.9999 | ||||
Barley | y = 2394.8x − 0.6601 | 0.9998 | ||||
DON | Solvent | y = 14.19x + 40.633 | 200–4000 | 0.9999 | 61 | 200 |
Wheat | y = 8.4400x + 3.6843 | 0.9992 | ||||
Maize | y = 8.7478x + 11.739 | 0.9997 | ||||
Barley | y = 8.3797x − 2.8576 | 0.9999 | ||||
FB1 | Solvent | y = 198.06x − 3113 | 150–3000 | 0.9966 | 46 | 150 |
Wheat | y = 230.94x − 866.12 | 0.9991 | ||||
Maize | y = 103.05x − 167.52 | 1.0000 | ||||
Barley | y = 237.94x − 866.12 | 0.9999 | ||||
FB2 | Solvent | y = 761.01x − 16822 | 150–3000 | 0.9945 | 46 | 150 |
Wheat | y = 493.7x − 4122.5 | 0.9966 | ||||
Maize | y = 209.36x − 598.27 | 0.9999 | ||||
Barley | y = 578.72x − 7184.9 | 0.9985 | ||||
ZEA | Solvent | y = 91.077x + 3.8326 | 30–600 | 0.9997 | 9 | 30 |
Wheat | y = 70.491x + 72.751 | 0.9992 | ||||
Maize | y = 26.71x + 35.167 | 0.9993 | ||||
Barley | y = 70.654x − 22.304 | 0.9999 | ||||
T-2 | Solvent | y = 696.5x − 134.59 | 10–200 | 0.9996 | 3 | 10 |
Wheat | y = 757.94x + 36.431 | 0.9996 | ||||
Maize | y = 267.43x − 69.004 | 1.0000 | ||||
Barley | y = 760.5x + 36.722 | 0.9999 | ||||
HT-2 | Solvent | y = 98.501x − 56.058 | 10–200 | 0.9975 | 3 | 10 |
Wheat | y = 97.296x + 87.819 | 0.9997 | ||||
Maize | y = 39.128x + 12.603 | 0.9996 | ||||
Barley | y = 115.99x + 58.863 | 0.9999 | ||||
OTA | Solvent | y = 1049.8x − 52.161 | 1.0–20 | 0.9979 | 0.30 | 1.0 |
Wheat | y = 853.76x − 68.076 | 0.9992 | ||||
Maize | y = 375.68 − 42.071 | 0.9991 | ||||
Barley | y = 889.28x − 14.52 | 0.9964 |
Maize | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Spike Level 1 | Spike Level 2 | Spike Level 3 | ||||||||||||||||||
R% | RSDM% | RSDP% | R% | RSDM% | RSDP% | R% | RSDM% | RSDP% | Average R% | |||||||||||
Analyte | Solvent | Matrix | Solvent | Matrix | Solvent | Matrix | Solvent | Matrix | Solvent | Matrix | Solvent | Matrix | Solvent | Matrix | Solvent | Matrix | Solvent | Matrix | Solvent | Matrix |
AFB1 | 101.0 | 109.9 | 5.4 | 5.9 | 6.9 | 10.6 | 73.3 | 101.7 | 3.5 | 2.0 | 5.8 | 3.2 | 75.9 | 96.0 | 1.8 | 1.7 | 5.2 | 4.1 | 83.4 | 102.5 |
AFB2 | 88.8 | 85.3 | 8.4 | 12.6 | 9.4 | 15.9 | 75.6 | 106.8 | 6.3 | 6.9 | 9.4 | 15.9 | 84.5 | 98.2 | 6.4 | 4.7 | 12.6 | 13.9 | 83.0 | 96.8 |
AFG1 | 98.5 | 81.8 | 8.0 | 10.4 | 13.7 | 13.6 | 82.1 | 83.1 | 2.4 | 3.2 | 3.9 | 4.1 | 94.5 | 96.2 | 3.7 | 4.1 | 5.0 | 5.2 | 91.7 | 87.0 |
AFG2 | 95.4 | 115.7 | 7.1 | 8.9 | 8.9 | 9.7 | 83.7 | 102.1 | 4.6 | 6.8 | 5.7 | 8.4 | 96.0 | 115.7 | 4.9 | 4.7 | 8.4 | 5.4 | 91.7 | 111.2 |
DON | 69.0 | 66.4 | 3.5 | 6.4 | 5.6 | 7.0 | 119.6 | 95.4 | 2.6 | 2.2 | 3.6 | 4.1 | 91.3 | 99.7 | 2.6 | 2.9 | 4.9 | 4.1 | 93.3 | 87.2 |
FB1 | 169.0 | 95.2 | 1.7 | 1.6 | 3.3 | 3.1 | 349.7 | 104.4 | 1.1 | 1.2 | 2.3 | 2.4 | 800.6 | 108.8 | 3.9 | 2.3 | 1.6 | 2.8 | 439.8 | 102.8 |
FB2 | 180.3 | 104.7 | 1.4 | 1.5 | 3.5 | 1.6 | 151.9 | 102.8 | 1.8 | 1.9 | 3.1 | 3.0 | 164.6 | 107.8 | 1.0 | 1.7 | 2.8 | 3.2 | 165.6 | 105.1 |
ZEA | 79.1 | 81.5 | 2.6 | 3.1 | 4.0 | 3.5 | 70.4 | 78.0 | 1.2 | 1.4 | 2.7 | 2.5 | 91.5 | 100.8 | 1.2 | 1.2 | 2.8 | 2.8 | 80.3 | 86.8 |
T-2 | 93.0 | 99.7 | 3.9 | 2.5 | 7.3 | 4.8 | 117.9 | 98.2 | 1.9 | 4.1 | 3.1 | 4.1 | 114.3 | 107.0 | 2.0 | 2.0 | 2.7 | 2.8 | 108.4 | 101.6 |
HT-2 | 79.4 | 99.4 | 9.2 | 6.4 | 14.9 | 8.6 | 102.0 | 81.5 | 4.1 | 4.4 | 6.3 | 6.4 | 122.6 | 99.1 | 4.4 | 3.3 | 7.4 | 4.1 | 101.3 | 93.3 |
OTA | 108.7 | 112.8 | 11.4 | 5.4 | 19.4 | 6.7 | 36.6 | 102.1 | 20.0 | 8.4 | 14.2 | 7.2 | 60.7 | 93.9 | 9.3 | 9.7 | 9.1 | 6.1 | 68.7 | 102.9 |
Wheat | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Spike Level 1 | Spike Level 2 | Spike Level 3 | ||||||||||||||||||
R% | RSDM% | RSDP% | R% | RSDM% | RSDP% | R% | RSDM% | RSDP% | Average R% | |||||||||||
Analyte | Solvent | Matrix | Solvent | Matrix | Solvent | Matrix | Solvent | Matrix | Solvent | Matrix | Solvent | Matrix | Solvent | Matrix | Solvent | Matrix | Solvent | Matrix | Solvent | Matrix |
AFB1 | 78.3 | 99.7 | 2.7 | 4.6 | 6.6 | 5.4 | 92.4 | 102.9 | 4.7 | 2.3 | 5.7 | 4.0 | 81.2 | 94.6 | 1.6 | 2.2 | 3.6 | 4.5 | 84.0 | 99.1 |
AFB2 | 99.6 | 100.6 | 6.6 | 5.8 | 9.4 | 6.2 | 86.0 | 115.7 | 6.6 | 5.8 | 9.4 | 6.2 | 88.4 | 87.3 | 10.3 | 8.7 | 12.6 | 13.9 | 91.3 | 101.2 |
AFG1 | 95.7 | 106.6 | 10.2 | 5.4 | 8.5 | 7.8 | 84.7 | 104.0 | 3.1 | 3.8 | 8.5 | 6.3 | 79.5 | 104.0 | 4.8 | 4.5 | 6.7 | 6.9 | 86.6 | 104.9 |
AFG2 | 91.4 | 100.1 | 3.5 | 4.6 | 5.2 | 6.9 | 79.9 | 93.9 | 5.4 | 5.8 | 5.4 | 5.8 | 81.8 | 96.8 | 5.1 | 5.3 | 6.5 | 5.7 | 84.4 | 96.9 |
DON | 66.6 | 108.7 | 4.1 | 2.2 | 6.1 | 4.6 | 93.4 | 114.2 | 2.9 | 2.0 | 4.8 | 4.0 | 79.7 | 110.5 | 1.7 | 1.1 | 3.3 | 4.2 | 79.9 | 111.1 |
FB1 | 226.4 | 101.9 | 1.7 | 1.3 | 2.3 | 1.8 | 237.5 | 106.1 | 1.6 | 1.1 | 3.4 | 3.6 | 200.4 | 96.2 | 1.7 | 1.0 | 5.3 | 3.5 | 221.4 | 101.4 |
FB2 | 207.6 | 112.1 | 1.1 | 2.2 | 2.3 | 3.4 | 166.1 | 97.5 | 1.5 | 1.6 | 3.7 | 3.3 | 144.5 | 91.5 | 1.3 | 1.0 | 3.6 | 2.5 | 172.7 | 100.4 |
ZEA | 73.9 | 97.3 | 1.6 | 2.6 | 5.1 | 4.0 | 85.2 | 100.3 | 1.9 | 1.1 | 2.5 | 1.4 | 89.2 | 94.0 | 1.1 | 1.1 | 30.0 | 2.9 | 82.8 | 97.2 |
T-2 | 115.6 | 92.0 | 3.7 | 5.0 | 6.4 | 2.8 | 99.6 | 99.6 | 1.8 | 3.4 | 4.1 | 7.4 | 99.9 | 100.2 | 2.7 | 2.5 | 2.5 | 3.1 | 105.0 | 97.3 |
HT-2 | 110.3 | 98.8 | 6.2 | 5.0 | 11.1 | 5.8 | 100.0 | 89.4 | 7.4 | 9.3 | 9.8 | 17.4 | 74.0 | 92.4 | 8.0 | 9.2 | 12.9 | 13.8 | 94.8 | 93.5 |
OTA | 97.2 | 102.5 | 6.4 | 7.7 | 17.3 | 7.2 | 97.1 | 93.6 | 3.7 | 8.0 | 3.2 | 6.0 | 94.8 | 86.9 | 4.3 | 8.4 | 1.9 | 6.0 | 96.4 | 94.3 |
Barley | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Spike Level 1 | Spike Level 2 | Spike Level 3 | ||||||||||||||||||
R% | RSDM% | RSDP% | R% | RSDM% | R% | RSDM% | RSDP% | Average R% | ||||||||||||
Analyte | Solvent | Matrix | Solvent | Matrix | Solvent | Matrix | Solvent | Matrix | Solvent | Matrix | Solvent | Matrix | Solvent | Matrix | Solvent | Matrix | Solvent | Matrix | Solvent | Matrix |
AFB1 | 84.7 | 109.6 | 7.0 | 4.9 | 7.5 | 6.2 | 85.8 | 99.0 | 4.7 | 4.4 | 5.0 | 4.5 | 85.6 | 91.7 | 2.9 | 2.7 | 5.0 | 4.6 | 85.4 | 100.1 |
AFB2 | 99.6 | 97.8 | 6.3 | 7.9 | 7.0 | 12.8 | 85.0 | 99.2 | 7.4 | 7.2 | 8.2 | 6.7 | 98.6 | 103.9 | 6.3 | 6.3 | 7.5 | 7.7 | 94.4 | 100.3 |
AFG1 | 85.0 | 103.4 | 3.6 | 8.9 | 6.5 | 8.5 | 87.2 | 98.5 | 4.2 | 2.4 | 5.3 | 3.6 | 79.7 | 89.3 | 2.5 | 2.1 | 4.8 | 4.0 | 84.0 | 97.1 |
AFG2 | 116.4 | 112.9 | 5.1 | 4.4 | 6.4 | 6.9 | 81.5 | 112.8 | 5.2 | 5.8 | 8.9 | 6.2 | 101.2 | 105.1 | 5.2 | 5.0 | 6.2 | 5.5 | 99.7 | 110.3 |
DON | 86.3 | 97.2 | 3.2 | 5.2 | 4.4 | 5.7 | 73.2 | 83.2 | 1.9 | 2.5 | 4.9 | 7.5 | 72.0 | 82.5 | 2.5 | 2.3 | 3.4 | 3.9 | 77.2 | 87.6 |
FB1 | 169.0 | 95.2 | 2.5 | 3.0 | 6.4 | 6.4 | 157.6 | 89.9 | 2.6 | 1.2 | 3.6 | 4.6 | 157.1 | 83.1 | 4.6 | 1.7 | 3.0 | 2.7 | 161.2 | 89.4 |
FB2 | 180.3 | 104.7 | 1.6 | 3.1 | 1.9 | 3.5 | 139.7 | 82.6 | 1.8 | 0.9 | 2.3 | 3.3 | 140.9 | 80.7 | 2.2 | 1.2 | 2.5 | 2.8 | 153.6 | 89.3 |
ZEA | 88.3 | 105.0 | 1.3 | 2.0 | 5.8 | 9.1 | 99.1 | 92.2 | 1.6 | 2.0 | 3.0 | 6.4 | 87.1 | 78.7 | 1.4 | 1.3 | 3.0 | 2.7 | 91.5 | 92.0 |
T-2 | 97.6 | 100.1 | 6.0 | 4.9 | 6.7 | 4.9 | 107.3 | 89.3 | 1.9 | 2.1 | 3.5 | 2.1 | 104.4 | 78.3 | 1.5 | 1.5 | 3.3 | 3.1 | 103.1 | 89.2 |
HT-2 | 100.7 | 92.9 | 3.8 | 11.0 | 5.8 | 17.6 | 95.9 | 78.8 | 6.2 | 3.8 | 7.3 | 7.1 | 102.4 | 101.9 | 1.7 | 2.2 | 2.9 | 2.2 | 99.7 | 91.2 |
OTA | 97.2 | 102.5 | 6.4 | 7.7 | 17.3 | 7.2 | 61.8 | 52.1 | 8.6 | 5.1 | 6.3 | 6.5 | 40.6 | 35.1 | 9.8 | 12.0 | 5.0 | 6.1 | 66.5 | 63.2 |
PT Scheme | Matrix | Analyte | z-Score |
---|---|---|---|
Romer Labs CSSMY0150-M18411AF | Maize | AFB1 | −1.20 |
AFB2 | −0.50 | ||
AFT | −1.10 | ||
Romer Labs CSSMY014-M18161DZ | Wheat | DON | 0.30 |
ZEA | 1.60 | ||
Bipea 03-0531 | Barley | AFB1 | −1.48 |
AFB2 | 0.00 | ||
AFG1 | −0.08 | ||
AFG2 | 0.35 | ||
T2 | −0.21 | ||
HT2 | 0.15 | ||
Fapas 04351 | Cereal-based feed (wheat) | AFB1 | 0.00 |
OTA | 0.60 | ||
ZEA | 0.30 | ||
Bipea 12-3931 | Cereal-based baby food (maize) | OTA | 0.42 |
DON | 0.58 | ||
T2 | 0.84 | ||
HT2 | 0.12 | ||
T2 + HT2 | 0.70 | ||
ZEA | −0.11 | ||
FB1 | 2.41 | ||
FB2 | 0.98 | ||
FB2 + FB2 | 1.70 | ||
Bipea 13-3931 | Cereal-based baby food (maize) | OTA | 1.48 |
DON | 0.67 | ||
T2 | 1.06 | ||
HT2 | 0.35 | ||
T2 + HT2 | 1.18 | ||
ZEA | 0.57 | ||
FB1 | −0.39 | ||
FB2 | −0.85 | ||
FB2 + FB2 | −0.83 | ||
Bipea 02-4731 | Buckwheat flour | AFB1 | −0.17 |
AFB2 | 0.38 | ||
AFG1 | −1.00 | ||
T-2 | 0.70 | ||
HT-2 | 0.11 | ||
Bipea 01-5131 | Rye | AFB1 | 0.00 |
AFB2 | −0.25 | ||
AFG1 | −0.20 | ||
AFG2 | −0.45 | ||
T-2 | −0.52 | ||
HT-2 | −0.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovač, M.; Nevistić, A.; Kovač, T.; Babić, J.; Šarić, A.; Miličević, B.; Panjičko, M.; Šarkanj, B. Development and Validation of an UHPLC-MS/MS Method for the Simultaneous Determination of 11 EU-Regulated Mycotoxins in Selected Cereals. J. Fungi 2022, 8, 665. https://doi.org/10.3390/jof8070665
Kovač M, Nevistić A, Kovač T, Babić J, Šarić A, Miličević B, Panjičko M, Šarkanj B. Development and Validation of an UHPLC-MS/MS Method for the Simultaneous Determination of 11 EU-Regulated Mycotoxins in Selected Cereals. Journal of Fungi. 2022; 8(7):665. https://doi.org/10.3390/jof8070665
Chicago/Turabian StyleKovač, Marija, Ante Nevistić, Tihomir Kovač, Jurislav Babić, Antonija Šarić, Borislav Miličević, Mario Panjičko, and Bojan Šarkanj. 2022. "Development and Validation of an UHPLC-MS/MS Method for the Simultaneous Determination of 11 EU-Regulated Mycotoxins in Selected Cereals" Journal of Fungi 8, no. 7: 665. https://doi.org/10.3390/jof8070665
APA StyleKovač, M., Nevistić, A., Kovač, T., Babić, J., Šarić, A., Miličević, B., Panjičko, M., & Šarkanj, B. (2022). Development and Validation of an UHPLC-MS/MS Method for the Simultaneous Determination of 11 EU-Regulated Mycotoxins in Selected Cereals. Journal of Fungi, 8(7), 665. https://doi.org/10.3390/jof8070665